
The Java ICAP Project User Guide

1.0.0.RC2

iii

Preface ... v

1. ICAP and the lack of java implementations ... v

2. Goals .. v

3. JBoss Netty (http://www.jboss.org/netty) .. v

1. Release Notes .. 1

1.1. 1.0.0.RC2 ... 1

1.2. 1.0.0.RC1 ... 1

2. Usage ... 3

2.1. Available Handlers .. 3

2.2. Client handler pipeline .. 3

2.3. Server handler pipeline ... 4

2.4. Preview .. 5

2.5. Abstraction handlers and the NIO threading paradigm ... 6

iv

v

Preface

1. ICAP and the lack of java implementations

ICAP (Internet Content Adaptation Protocol) was designed to encapsulate HTTP requests and

responses that they can be sent to a ICAP capable server which can either modify or notice the

HTTP messages. With this in mind the Protocol is made for HTTP based entry server and proxy

servers like Squid to off load message processing.

As seen above ICAP will never be as popular like HTTP. But since HTTP is so popular and the

demand for HTTP message processing in Security entities such as entry servers or reverse proxy

servers is getting bigger, ICAP has become a protocol that is relevant and important.

The initiator for this project of building a JBoss Netty ICAP codec was the simple fact that there are

roughly two ICAP implementations in Java, the problem is that both implementations are bound

within a complete server infrastructure. In other words, no JEE environment is supported and

therefore is the enterprise usage of ICAP as a server almost not possible. When building such

a server there are always demands such as "load balancing", "administration via web-services",

"jmx", "gui". These cannot be simply meet by the current implementations.

2. Goals

• Full Java ICAP protocol implementation according to RFC3507.

• JEE and Servlet container implementation capabilities.

• Server and Client support.

3. JBoss Netty (http://www.jboss.org/netty)

In order to achieve the above goals we have decided to implement the ICAP protocol on top of

JBoss Netty as a codec. The advantage of doing this is that Netty is already providing a HTTP

codec which can be integrated into the ICAP protocol codec. The encapsulated HTTP request

and response objects are therefore the Netty HTTP request and response implementations.

Netty can be used as a stand alone server or client and you can integrate it into a servlet container

or JEE environment. NIO and OIO sockets and streams are supported out of the box and the entire

socket api complexity is abstracted. The performance of Netty is outstanding and is therefore in

combination with our ICAP codec a real alternative to c or c++ based solutions.

vi

Chapter 1.

1

Release Notes
In this chapter we list all release note in a chronological order. Newest to Oldest.

1.1. 1.0.0.RC2

• Introduced specified date setter and getter methods in the IcapHeaders class.

• renamed the getBody() method to getBodyType() in IcapMessage in order to have a more

specific name. The old getBody() was ambiguous.

• fixed possible NBE in the simple icap server / client example.

1.2. 1.0.0.RC1

• Initial Release Candidate containing all basic funtionality for the ICAP protocol codec.

http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapHeaders.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapMessage.html

2

Chapter 2.

3

Usage
The basic usage is identical to all JBoss Netty codecs. You have different Handlers available for

message encoding, decoding. In addition to that we also provide handlers that allow the user to

abstract from protocol details like the chunked transfer of all message bodies. We recommend to

read up on JBoss Netty in order to successfully use this codec.

2.1. Available Handlers

You have a set of Handlers available that will encode and decode ICAP messages. These are the

basic handlers which are required in order to use the ICAP codec. Since ICAP encapsulated HTTP

bodies are always chunked you can use the aggregation and separation handlers to abstract from

this protocol overhead. alongside the source code are examples that suggest how to use the

provided handlers. The examples can be found in the package: ch.mimo.netty.example.icap.*

All examples show how to create a server and client handler pipeline. It is recommended to

construct client and server pipelines according to these examples.

The simple example shows how to best use the provided handlers. It implicitly uses the

aggregation and separation handlers which take care of all message body transfer details. The

below depicted pipelines are client and server pipelines:

Note that at the end of each Pipeline is either a Server or Client handler that represents the so

called Hub of the pipeline. This handler is responsible to receive messages process them and

send the response back into the pipeline.

2.2. Client handler pipeline

A straight forward client handler pipeline consists of:

• IcapRequestEncoder The Encoder will take a IcapRequest or IcapChunk and transfer them

into a ASCII string that represents the ICAP protocol.

• IcapResponseDecoder The Decoder produces an ICAP protocol ASCII string as input and

creates IcapRequest and IcapChunk instances.

@Override

 public ChannelPipeline getPipeline() throws Exception {

 ChannelPipeline pipeline = pipeline();

 pipeline.addLast("encoder",new IcapRequestEncoder());

 pipeline.addLast("decoder",new IcapResponseDecoder());

 pipeline.addLast("handler",new IcapClientHandler());

 return pipeline;

 }

http://www.jboss.org/netty
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequestEncoder.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequest.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunk.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapResponseDecoder.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequest.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunk.html

Chapter 2. Usage

4

You also have the possibility to abstract from the tedious message body chunk handling and

add two additional handlers which will take care of the chunked message body. It is important

to understand that in this scenario (if you plan to send a message body) you have to attach the

message body to the respective HTTP request or response.

• IcapChunkSeparator This handler is useful when you create an IcapRequest instance

containing HTTP request/response and a body encapsulated with one of the http messages.

The responsibility of this handler is then to extract the message body and send it as chunks

to the receiving side.

• IcapChunkAggregator This handler is useful when you don't want to handle individual

IcapChunk instances but rather receive a combined IcapResponse

@Override

 public ChannelPipeline getPipeline() throws Exception {

 ChannelPipeline pipeline = pipeline();

 pipeline.addLast("encoder",new IcapRequestEncoder());

 pipeline.addLast("chunkSeparator",new IcapChunkSeparator(4096));

 pipeline.addLast("decoder",new IcapResponseDecoder());

 pipeline.addLast("chunkAggregator",new IcapChunkAggregator(4096));

 pipeline.addLast("handler",new IcapClientHandler());

 return pipeline;

 }

2.3. Server handler pipeline

A straight forward Server pipeline consists of:

• IcapRequestDecoder The Decoder produces an ICAP protocol ASCII string as input and

creates IcapRequest and IcapChunk instances.

• IcapResponseEncoder The Encoder will take a IcapResponse or IcapChunk and transfer them

into a ASCII string that represents the ICAP protocol.

@Override

 public ChannelPipeline getPipeline() throws Exception {

 ChannelPipeline pipeline = pipeline();

 pipeline.addLast("decoder",new IcapRequestDecoder());

 pipeline.addLast("encoder",new IcapResponseEncoder());

 pipeline.addLast("handler",new IcapServerHandler());

 return pipeline;

 }

http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunkSeparator.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequest.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunkAggregator.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunk.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapResponse.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequestDecoder.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequest.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunk.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapResponseEncoder.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapResponse.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunk.html

Preview

5

Analog to the Client example you also have the possibility to abstract from the tedious message

body chunk handling and add two additional handlers which will take care of the chunked message

body. It is important to understand that in this scenario (if you plan to send a message body) you

have to attach the message body to the respective HTTP request or response.

• IcapChunkSeparator This handler is useful when you create an IcapRequest instance

containing HTTP request/response and a body encapsulated with one of the HTTP messages.

The responsibility of this handler is then to extract the message body and send it as chunks

to the receiving side.

• IcapChunkAggregator This handler is useful when you don't want to handle individual

IcapChunk instances but rather receive a combined IcapResponse

@Override

 public ChannelPipeline getPipeline() throws Exception {

 ChannelPipeline pipeline = pipeline();

 pipeline.addLast("decoder",new IcapRequestDecoder());

 pipeline.addLast("chunkAggregator",new IcapChunkAggregator(4096));

 pipeline.addLast("encoder",new IcapResponseEncoder());

 pipeline.addLast("chunkSeparator",new IcapChunkSeparator(4096));

 pipeline.addLast("handler",new IcapServerHandler());

 return pipeline;

 }

2.4. Preview

The ICAP protocol supports a special scenario whereby the client is enabled to send a pre-

defined portion of the HTTP message body to the server and wait for further instructions. There

server can the ask for more data by responding with 100 Continue which tells the client to

send the rest of the message body, or with 204 No Content (If the client allows this!) and

the client knows ok no modification was made on the request. The Server is also capable of

sending a normal 200 OK message back to the client. This circumstance complicates the protocol

handling for a server or client. We have therefore made a simple example that can be found under

ch.mimo.netty.example.icap.preview.* which will help to understand the inner workings of

such a preview request for client and server.

In order to detect whether a IcapRequest or IcapChunk belongs to a preview message we

have added getters on each object that indicate if a request or chunk participates on a preview

interaction.

/**

 * @return whether this message is a preview of the actual message.

 */

http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunkSeparator.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequest.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunkAggregator.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunk.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapResponse.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequest.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunk.html

Chapter 2. Usage

6

 boolean isPreviewMessage();

/**

 * @return boolean true if this chunk is preview.

 */

 boolean isPreviewChunk();

The best way to handler preview requests is configuring a IcapChunkAggregator into your

pipeline. This will guarantee that once you have sent the 100 Continue response you will get the

same IcapRequest instance containing the rest of the body that was not sent in the preview mode.

2.5. Abstraction handlers and the NIO threading

paradigm

You cannot use the NIO (non blocking) threading paradigm togehther with the two abstaction

handlers IcapChunkAggregator and IcapChunkSeparator. Both handlers are statefull and

consider to be run by the same thread for one request only. As soon you will switch to NIO message

content will be exchanged between requests. In other words the two handlers are not threadsafe.

The roadmap contains the enablement of both handlers to be NIO capable.

http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunkAggregator.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapRequest.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunkAggregator.html
http://icapdoc.mimo.ch/1.0.0.RC2/api/ch/mimo/netty/handler/codec/icap/IcapChunkSeparator.html

	The Java ICAP Project User Guide
	Table of Contents
	Preface
	1. ICAP and the lack of java implementations
	2. Goals
	3. JBoss Netty (http://www.jboss.org/netty)

	Chapter 1. Release Notes
	1.1. 1.0.0.RC2
	1.2. 1.0.0.RC1

	Chapter 2. Usage
	2.1. Available Handlers
	2.2. Client handler pipeline
	2.3. Server handler pipeline
	2.4. Preview
	2.5. Abstraction handlers and the NIO threading paradigm

