
Reactor Netty Reference Guide
Stephane Maldini, Violeta Georgieva

Version 1.1.25

Table of Contents
1. About the Documentation . 1

1.1. Latest Version and Copyright Notice . 1

1.2. Contributing to the Documentation . 1

1.3. Getting Help . 1

2. Getting Started . 2

2.1. Introducing Reactor Netty . 2

2.2. Prerequisites . 2

2.3. Understanding the BOM and versioning scheme . 2

2.4. Getting Reactor Netty. 3

2.5. Support and policies. 6

Chapter 1. About the Documentation
This section provides a brief overview of Reactor Netty reference documentation. You do not need
to read this guide in a linear fashion. Each piece stands on its own, though they often refer to other
pieces.

1.1. Latest Version and Copyright Notice
The Reactor Netty reference guide is available as HTML documents. The latest copy is available at
https://projectreactor.io/docs/netty/release/reference/index.html

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

1.2. Contributing to the Documentation
The reference guide is written in Asciidoc, and you can find its sources at https://github.com/
reactor/reactor-netty/tree/1.1.x/docs/asciidoc.

If you have an improvement, we will be happy to get a pull request from you!

We recommend that you check out a local copy of the repository so that you can generate the
documentation by using the asciidoctor Gradle task and checking the rendering. Some of the
sections rely on included files, so GitHub rendering is not always complete.

1.3. Getting Help
There are several ways to reach out for help with Reactor Netty. You can:

• Get in touch with the community on Gitter.

• Ask a question on stackoverflow.com at reactor-netty.

• Report bugs in Github issues. The repository is the following: reactor-netty.

 All of Reactor Netty is open source, including this documentation.

1

https://projectreactor.io/docs/netty/release/reference/index.html
https://asciidoctor.org/docs/asciidoc-writers-guide/
https://github.com/reactor/reactor-netty/tree/1.1.x/docs/asciidoc
https://github.com/reactor/reactor-netty/tree/1.1.x/docs/asciidoc
https://gitter.im/reactor/reactor-netty
https://stackoverflow.com/tags/reactor-netty
https://github.com/reactor/reactor-netty/issues
https://github.com/reactor/reactor-netty/tree/1.1.x/docs/asciidoc

Chapter 2. Getting Started
This section contains information that should help you get going with Reactor Netty. It includes the
following information:

• Introducing Reactor Netty

• Prerequisites

• Understanding the BOM and versioning scheme

• Getting Reactor Netty

2.1. Introducing Reactor Netty
Suited for Microservices Architecture, Reactor Netty offers backpressure-ready network engines for
HTTP (including Websockets), TCP, and UDP.

2.2. Prerequisites
Reactor Netty runs on Java 8 and above.

It has transitive dependencies on:

• Reactive Streams v1.0.4

• Reactor Core v3.x

• Netty v4.1.x

2.3. Understanding the BOM and versioning scheme
Reactor Netty is part of the Project Reactor BOM (since the Aluminium release train). This curated list
groups artifacts that are meant to work well together, providing the relevant versions despite
potentially divergent versioning schemes in these artifacts.


The versioning scheme has changed between 0.9.x and 1.0.x (Dysprosium and
Europium).

Artifacts follow a versioning scheme of MAJOR.MINOR.PATCH-QUALIFIER while the BOM is versioned
using a CalVer inspired scheme of YYYY.MINOR.PATCH-QUALIFIER, where:

• MAJOR is the current generation of Reactor, where each new generation can bring fundamental
changes to the structure of the project (which might imply a more significant migration effort)

• YYYY is the year of the first GA release in a given release cycle (like 1.0.0 for 1.0.x)

• .MINOR is a 0-based number incrementing with each new release cycle

◦ in the case of projects, it generally reflects wider changes and can indicate a moderate
migration effort

◦ in the case of the BOM it allows discerning between release cycles in case two get first

2

released the same year

• .PATCH is a 0-based number incrementing with each service release

• -QUALIFIER is a textual qualifier, which is omitted in the case of GA releases (see below)

The first release cycle to follow that convention is thus 2020.0.x, codename Europium. The scheme
uses the following qualifiers (note the use of dash separator), in order:

• -M1..-M9: milestones (we don’t expect more than 9 per service release)

• -RC1..-RC9: release candidates (we don’t expect more than 9 per service release)

• -SNAPSHOT: snapshots

• no qualifier for GA releases



Snapshots appear higher in the order above because, conceptually, they’re always
"the freshest pre-release" of any given PATCH. Even though the first deployed
artifact of a PATCH cycle will always be a -SNAPSHOT, a similarly named but more
up-to-date snapshot would also get released after eg. a milestone or between
release candidates.

Each release cycle is also given a codename, in continuity with the previous codename-based
scheme, which can be used to reference it more informally (like in discussions, blog posts, etc…).
The codenames represent what would traditionally be the MAJOR.MINOR number. They (mostly)
come from the Periodic Table of Elements, in increasing alphabetical order.



Up until Dysprosium, the BOM was versioned using a release train scheme with a
codename followed by a qualifier, and the qualifiers were slightly different. For
example: Aluminium-RELEASE (first GA release, would now be something like
YYYY.0.0), Bismuth-M1, Californium-SR1 (service release would now be something
like YYYY.0.1), Dysprosium-RC1, Dysprosium-BUILD-SNAPSHOT (after each patch,
we’d go back to the same snapshot version. would now be something like YYYY.0.X-
SNAPSHOT so we get 1 snapshot per PATCH)

2.4. Getting Reactor Netty
As mentioned earlier, the easiest way to use Reactor Netty in your core is to use the BOM and add the
relevant dependencies to your project. Note that, when adding such a dependency, you must omit
the version so that the version gets picked up from the BOM.

However, if you want to force the use of a specific artifact’s version, you can specify it when adding
your dependency as you usually would. You can also forego the BOM entirely and specify
dependencies by their artifact versions.

2.4.1. Maven Installation

The BOM concept is natively supported by Maven. First, you need to import the BOM by adding the
following snippet to your pom.xml. If the top section (dependencyManagement) already exists in your
pom, add only the contents.

3

https://en.wikipedia.org/wiki/Periodic_table#Overview

<dependencyManagement> ①
 <dependencies>
 <dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-bom</artifactId>
 <version>2022.0.22</version> ②
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

① Notice the dependencyManagement tag. This is in addition to the regular dependencies section.

② As of this writing, 2022.0.22 is the latest version of the BOM. Check for updates at
https://github.com/reactor/reactor/releases.

Next, add your dependencies to the relevant reactor projects, as usual (except without a <version>).
The following listing shows how to do so:

<dependencies>
 <dependency>
 <groupId>io.projectreactor.netty</groupId>
 <artifactId>reactor-netty-core</artifactId> ①
②
 </dependency>
</dependencies>
<dependencies>
 <dependency>
 <groupId>io.projectreactor.netty</groupId>
 <artifactId>reactor-netty-http</artifactId>
 </dependency>
</dependencies>

① Dependency on Reactor Netty

② No version tag here

2.4.2. Gradle Installation

The BOM concept is supported in Gradle since version 5. The following listing shows how to import
the BOM and add a dependency to Reactor Netty:

4

https://github.com/reactor/reactor/releases

dependencies {
 // import a BOM
 implementation platform('io.projectreactor:reactor-bom:2022.0.22') ①

 // define dependencies without versions
 implementation 'io.projectreactor.netty:reactor-netty-core' ②
 implementation 'io.projectreactor.netty:reactor-netty-http'
}

① As of this writing, 2022.0.22 is the latest version of the BOM. Check for updates at
https://github.com/reactor/reactor/releases.

② There is no third : separated section for the version. It is taken from the BOM.

2.4.3. Milestones and Snapshots

Milestones and developer previews are distributed through the Spring Milestones repository rather
than Maven Central. To add it to your build configuration file, use the following snippet:

Milestones in Maven

<repositories>
 <repository>
 <id>spring-milestones</id>
 <name>Spring Milestones Repository</name>
 <url>https://repo.spring.io/milestone</url>
 </repository>
</repositories>

For Gradle, use the following snippet:

Milestones in Gradle

repositories {
 maven { url 'https://repo.spring.io/milestone' }
 mavenCentral()
}

Similarly, snapshots are also available in a separate dedicated repository (for both Maven and
Gradle):

5

https://github.com/reactor/reactor/releases

-SNAPSHOTs in Maven

<repositories>
 <repository>
 <id>spring-snapshots</id>
 <name>Spring Snapshot Repository</name>
 <url>https://repo.spring.io/snapshot</url>
 </repository>
</repositories>

-SNAPSHOTs in Gradle

repositories {
 maven { url 'https://repo.spring.io/snapshot' }
 mavenCentral()
}

2.5. Support and policies
The entries below are mirroring https://github.com/reactor/.github/blob/main/SUPPORT.adoc

2.5.1. Do you have a question?

 Search Stack Overflow first; discuss if necessary

If you’re unsure why something isn’t working or wondering if there is a better way of doing it
please check on Stack Overflow first and if necessary start a discussion. Use relevant tags among
the ones we monitor for that purpose:

• reactor-netty for specific reactor-netty questions

• project-reactor for generic reactor questions

If you prefer real-time discussion, we also have a few Gitter channels:

• reactor is the historic most active one, where most of the community can help

• reactor-core is intended for more advanced pinpointed discussions around the inner workings
of the library

• reactor-netty is intended for netty-specific questions

Refer to each project’s README for potential other sources of information.

We generally discourage opening GitHub issues for questions, in favor of the two channels above.

6

https://github.com/reactor/.github/blob/main/SUPPORT.adoc
https://stackoverflow.com/questions/tagged/reactor-netty
https://stackoverflow.com/questions/tagged/project-reactor
https://gitter.im/reactor/reactor
https://gitter.im/reactor/reactor-core
https://gitter.im/reactor/reactor-netty

2.5.2. Our policy on deprecations

When dealing with deprecations, given a version A.B.C, we’ll ensure that:

• deprecations introduced in version A.B.0 will be removed no sooner than version A.B+1.0

• deprecations introduced in version A.B.1+ will be removed no sooner than version A.B+2.0

• we’ll strive to mention the following in the deprecation javadoc:

◦ target minimum version for removal

◦ pointers to replacements for the deprecated method

◦ version in which method was deprecated


This policy is officially in effect as of January 2021, for all modules in 2020.0 BOMs
and newer release trains, as well as Dysprosium releases after Dysprosium-SR15.


Deprecation removal targets are not a hard commitment, and the deprecated
methods could live on further than these minimum target GA versions (ie. only
the most problematic deprecated methods will be removed aggressively).



That said, deprecated code that has outlived its minimum removal target version
may be removed in any subsequent release (including patch releases, aka service
releases) without further notice. So users should still strive to update their code as
early as possible.

2.5.3. Support Timeline

Our GA release cadence is annual. The next release train is 2025. The timeline is subject to change.

The following table summarises the support dates for each individual project followed by the BOM
support.

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

reactor-core

3.7 2024-11-12 2026-08-31 2027-12-31 2024

3.6 2023-11-14 2025-08-31 2026-12-31 2023

3.5 2022-11-08 2024-08-31 2025-12-31 2022

3.4 2020-10-26 2024-08-31 2026-12-31 2020

reactor-netty

1.2 2024-11-12 2026-08-31 2027-12-31 2024

1.1 2022-11-08 2025-08-31 2026-12-31 2022, 2023

1.0 2020-10-26 2024-08-31 2026-12-31 2020

reactor-kafka

7

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

1.3 2020-10-26 2026-08-31 2027-12-31 2020, 2022, 2023,
2024

reactor-pool

1.1 2024-11-12 2026-08-31 2027-12-31 2024

1.0 2022-11-08 2025-08-31 2026-12-31 2022, 2023

0.2 2020-10-26 2024-08-31 2026-12-31 2020

reactor-addons

3.5 2022-11-08 2026-08-31 2027-12-31 2022, 2023, 2024

3.4 2020-10-26 2024-08-31 2026-12-31 2020

reactor-kotlin-
extensions

1.2 2022-11-08 2026-08-31 2027-12-31 2022, 2023, 2024

1.1 2020-10-26 2024-08-31 2026-12-31 2020

reactor-rabbitmq

1.5 2020-10-26 2024-08-31 2026-12-31 2020

reactor-bom

8

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

2024 2024-11-12 2026-08-31 2027-12-31

:leveloffset: 1

:leveloffset!:

:leveloffset: 1

:sourcedir:
./../../reactor-netty-
core/src/main/java
:examplesdir:
./../../reactor-netty-
examples/src/main
/java/reactor/netty
/examples/docume
ntation/tcp/server
:javadoc:
https://projectreact
or.io/docs/netty/
1.1.25/api
:nettyjavadoc:
https://netty.io/4.1/
api :wirelogger:
reactor.netty.tcp.T
cpServer

= TCP Server

Reactor Netty
provides an easy
to use and
configure
{javadoc}/reactor/
netty/tcp/TcpServe
r.html[TcpServer].
It hides most of
the Netty
functionality that
is needed to create
a TCP server and
adds Reactive
Streams
backpressure.

== Starting and
Stopping

=======

9

https://projectreactor.io/docs/netty/1.1.25/api
https://projectreactor.io/docs/netty/1.1.25/api
https://projectreactor.io/docs/netty/1.1.25/api
https://netty.io/4.1/api
https://netty.io/4.1/api

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Callback Description doOnBind Invoked when the
server channel is
about to bind.

doOnBound

Invoked when the
server channel is
bound.

doOnChannelInit Invoked when
initializing the
channel.

doOnConnection Invoked when a
remote client is
connected

10

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

doOnUnbound Invoked when the
server channel is
unbound.

=======

The following
example uses the
doOnConnection
and
doOnChannelInit
callbacks:

====
[source,java,inden
t=0]
.{examplesdir}/life
cycle/Application.j
ava ---- Unresolved
directive in tcp-
server.adoc -
include::{example
sdir}/lifecycle/App
lication.java[lines=
18..39] ---- <1>
Netty pipeline is
extended with
ReadTimeoutHandler
when a remote
client is
connected. <2>
Netty pipeline is
extended with
LoggingHandler
when initializing
the channel. ====

== TCP-level
Configurations

This section
describes three
kinds of
configuration that
you can use at the
TCP level:

* [server-tcp-level-
configurations-
channel-options] *
[server-tcp-level-
configurations-

======= metric name

11

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

type description reactor.netty.tcp.s
erver.connections.
total

Gauge The number of all
opened
connections. See
[observability-
metrics-
connections-total]

reactor.netty.tcp.s
erver.data.receive
d

DistributionSumm
ary

Amount of the
data received, in
bytes. See
[observability-
metrics-data-
received]

reactor.netty.tcp.s
erver.data.sent

DistributionSumm
ary

Amount of the
data sent, in bytes.
See [observability-
metrics-data-sent]

reactor.netty.tcp.s
erver.errors

Counter Number of errors
that occurred. See
[observability-
metrics-errors-
count]

reactor.netty.tcp.s
erver.tls.handshak
e.time

Timer Time spent for TLS
handshake. See
[observability-
metrics-tls-
handshake-time]

=======

These additional
metrics are also
available:

ByteBufAllocator
metrics

[width="100%",opt
ions="header"]

======= metric name

type description reactor.netty.byte
buf.allocator.used.
heap.memory

Gauge The number of
bytes reserved by
heap buffer
allocator. See
[observability-
metrics-used-
heap-memory]

reactor.netty.byte
buf.allocator.used.
direct.memory

Gauge The number of
bytes reserved by
direct buffer
allocator. See
[observability-
metrics-used-
direct-memory]

reactor.netty.byte
buf.allocator.heap.
arenas

Gauge

12

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

The number of
heap arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-heap-
arenas]

reactor.netty.byte
buf.allocator.direc
t.arenas

Gauge The number of
direct arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-direct-
arenas]

reactor.netty.byte
buf.allocator.threa
dlocal.caches

Gauge The number of
thread local
caches (when
PooledByteBufAlloc
ator). See
[observability-
metrics-thread-
local-caches]

reactor.netty.byte
buf.allocator.small
.cache.size

Gauge The size of the
small cache (when
PooledByteBufAlloc
ator). See
[observability-
metrics-small-
cache-size]

reactor.netty.byte
buf.allocator.norm
al.cache.size

Gauge The size of the
normal cache
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-normal-
cache-size]

reactor.netty.byte
buf.allocator.chun
k.size

Gauge

The chunk size for
an arena (when
PooledByteBufAlloc
ator). See
[observability-
metrics-chunk-
size]

reactor.netty.byte
buf.allocator.activ
e.heap.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
heap buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
heap-memory]

reactor.netty.byte
buf.allocator.activ
e.direct.memory

13

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Gauge The actual bytes
consumed by in-
use buffers
allocated from
direct buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
direct-memory]

======= EventLoop
metrics

[width="100%",opt
ions="header"]

======= metric name

type description reactor.netty.even
tloop.pending.task
s

Gauge The number of
tasks that are
pending for
processing on an
event loop. See
[observability-
metrics-pending-
tasks]

14

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

=======

The following
example enables
that integration:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/Application.ja
va ---- Unresolved
directive in tcp-
server.adoc -
include::{example
sdir}/metrics/Appli
cation.java[lines=1
8..32] ---- <1>
Enables the built-
in integration with
Micrometer ====

When TCP server
metrics are
needed for an
integration with a
system other than
Micrometer or you
want to provide
your own
integration with
Micrometer, you
can provide your
own metrics
recorder, as
follows:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/custom/Appli
cation.java ----
Unresolved
directive in tcp-
server.adoc -
include::{example
sdir}/metrics/custo

======= contextual name description tls handshake

15

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Information and
time spent for TLS
handshake. See
[observability-
spans-tls-
handshake-span].

=======

The following
example enables
that integration.
This concrete
example uses
Brave and reports
the information to
Zipkin. See the
Micrometer Tracing
documentation for
OpenTelemetry
setup.

====
[source,java,inden
t=0]
.{examplesdir}/tra
cing/Application.ja
va ---- Unresolved
directive in tcp-
server.adoc -
include::{example
sdir}/tracing/Appli
cation.java[lines=1
8..81] ---- <1>
Initializes Brave,
Zipkin, and the
Observation
registry. <2>
Enables the built-
in integration with
Micrometer. ====

The result in
Zipkin looks like:

image::images/tcp-
server-
tracing.png[]

=== Access Current
Observation
Project
Micrometer
provides a library
that assists with

======= Callback Description

16

https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup
https://micrometer.io/docs/contextPropagation

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

doAfterResolve Invoked after the
remote address
has been resolved
successfully.

doOnChannelInit Invoked when
initializing the
channel.

doOnConnect

Invoked when the
channel is about
to connect.

doOnConnected Invoked after the
channel has been
connected.

doOnDisconnected Invoked after the
channel has been
disconnected.

17

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

doOnResolve Invoked when the
remote address is
about to be
resolved.

doOnResolveError Invoked in case
the remote
address hasn’t
been resolved
successfully.

=======

The following
example uses the
doOnConnected and
doOnChannelInit
callbacks:

====
[source,java,inden
t=0]
.{examplesdir}/life
cycle/Application.j
ava ---- Unresolved
directive in tcp-
client.adoc -
include::{example
sdir}/lifecycle/App
lication.java[lines=
18..41] ---- <1>
Netty pipeline is
extended with
ReadTimeoutHandler
when the channel
has been
connected. <2>
Netty pipeline is
extended with
LoggingHandler
when initializing
the channel. ====

== TCP-level
Configurations

This section
describes three
kinds of
configuration that
you can use at the
TCP level:

* [client-tcp-level-
configurations-
channel-options] *
[client-tcp-level-
configurations-
event-wire-logger]18

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

======= Configuration
name

Description disposeInactivePoo
lsInBackground

When this option
is enabled,
connection pools
are regularly
checked in the
background, and
those that are
empty and been
inactive for a
specified time
become eligible
for disposal. By
default, this
background
disposal of
inactive pools is
disabled.

19

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

disposeTimeout When
ConnectionProvider
#dispose() or
ConnectionProvider
#disposeLater() is
called, trigger a
graceful shutdown
for the connection
pools, with this
grace period
timeout. From
there on, all calls
for acquiring a
connection will
fail fast with an
exception.
However, for the
provided Duration,
pending acquires
will get a chance
to be served. Note:
The rejection of
new acquires and
the grace timer
start immediately,
irrespective of
subscription to the
Mono returned by
ConnectionProvider
#disposeLater().
Subsequent calls
return the same
Mono, effectively
getting
notifications from
the first graceful
shutdown call and
ignoring
subsequently
provided timeouts.
By default, dispose
timeout is not
specified.

maxConnections The maximum
number of
connections (per
connection pool)
before start
pending. Default
to 2 * available
number of
processors (but
with a minimum
value of 16).

metrics

20

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Enables/disables
built-in
integration with
Micrometer.
ConnectionProvider
.MeterRegistrar
can be provided
for integration
with another
metrics system. By
default, metrics
are not enabled.

pendingAcquireMaxC
ount

The maximum
number of extra
attempts at
acquiring a
connection to keep
in a pending
queue. If -1 is
specified, the
pending queue
does not have
upper limit.
Default to 2 * max
connections.

pendingAcquireTime
out

The maximum
time before which
a pending acquire
must complete, or
a
TimeoutException
is thrown
(resolution: ms). If
-1 is specified, no
such timeout is
applied. Default:
45 seconds.

21

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

=======

If you need to
disable the
connection pool,
you can apply the
following
configuration:

====
[source,java,inden
t=0]
.{examplesdir}/po
ol/Application.java
---- Unresolved
directive in tcp-
client-conn-
provider.adoc -
include::{example
sdir}/pool/Applicat
ion.java[lines=18..
35] ---- ====

=== Disposing
Connection Pool

- If you use the
default
ConnectionProvider
provided by
Reactor Netty,
invoke
{javadoc}/reactor/
netty/http/HttpRes
ources.html[HttpRe
sources]#disposeLo
opsAndConnections/
#disposeLoopsAndCo
nnectionsLater
method.

NOTE: Disposing
HttpResources
means that every
client that is using
it, will not be able
to use it anymore!

======= metric name type description

22

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

reactor.netty.conn
ection.provider.tot
al.connections

Gauge The number of all
connections,
active or idle. See
[observability-
metrics-total-
connections]

reactor.netty.conn
ection.provider.act
ive.connections

Gauge

The number of the
connections that
have been
successfully
acquired and are
in active use. See
[observability-
metrics-active-
connections]

reactor.netty.conn
ection.provider.m
ax.connections

Gauge The maximum
number of active
connections that
are allowed. See
[observability-
metrics-max-
connections]

reactor.netty.conn
ection.provider.idl
e.connections

Gauge The number of the
idle connections.
See [observability-
metrics-idle-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections

Gauge The number of
requests that are
waiting for a
connection. See
[observability-
metrics-pending-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections.
time

Timer Time spent in
pending acquire a
connection from
the connection
pool. See
[observability-
metrics-pending-
connections-time]

reactor.netty.conn
ection.provider.m
ax.pending.connec
tions

Gauge

23

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

The maximum
number of
requests that will
be queued while
waiting for a
ready connection.
See [observability-
metrics-max-
pending-
connections]

=======

The following
example enables
that integration:

====
[source,java,inden
t=0]
.{examplesdir}/po
ol/metrics/Applicat
ion.java ----
Unresolved
directive in tcp-
client-conn-
provider.adoc -
include::{example
sdir}/pool/metrics/
Application.java[li
nes=18..45] ---- <1>
Enables the built-
in integration with
Micrometer ====

== SSL and TLS

When you need
SSL or TLS, you
can apply the
following
configuration. By
default, if OpenSSL
is available, the
{nettyjavadoc}/io/
netty/handler/ssl/S
slProvider.html#O
PENSSL[SslProvid
er.OPENSSL]
provider is used as
a provider.
Otherwise, the
provider is
{nettyjavadoc}/io/
netty/handler/ssl/S
slProvider.html#J
DK[SslProvider.JD
K]. You can switch
the provider by

======= metric name type

24

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

description reactor.netty.tcp.cl
ient.data.received

DistributionSumm
ary

Amount of the
data received, in
bytes. See
[observability-
metrics-data-
received]

reactor.netty.tcp.cl
ient.data.sent

DistributionSumm
ary

Amount of the
data sent, in bytes.
See [observability-
metrics-data-sent]

reactor.netty.tcp.cl
ient.errors

Counter Number of errors
that occurred. See
[observability-
metrics-errors-
count]

reactor.netty.tcp.cl
ient.tls.handshake.
time

Timer Time spent for TLS
handshake. See
[observability-
metrics-tls-
handshake-time]

reactor.netty.tcp.cl
ient.connect.time

Timer

Time spent for
connecting to the
remote address.
See [observability-
metrics-connect-
time]

reactor.netty.tcp.cl
ient.address.resolv
er

Timer Time spent for
resolving the
address. See
[observability-
metrics-hostname-
resolution-time]

=======

These additional
metrics are also
available:

Pooled
ConnectionProvider
metrics

[width="100%",opt
ions="header"]

======= metric name type description reactor.netty.conn
ection.provider.tot
al.connections

Gauge The number of all
connections,
active or idle. See
[observability-
metrics-total-
connections]

reactor.netty.conn
ection.provider.act
ive.connections

Gauge The number of the
connections that
have been
successfully
acquired and are
in active use. See
[observability-
metrics-active-
connections]

25

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

reactor.netty.conn
ection.provider.m
ax.connections

Gauge The maximum
number of active
connections that
are allowed. See
[observability-
metrics-max-
connections]

reactor.netty.conn
ection.provider.idl
e.connections

Gauge

The number of the
idle connections.
See [observability-
metrics-idle-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections

Gauge The number of
requests that are
waiting for a
connection. See
[observability-
metrics-pending-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections.
time

Timer Time spent in
pending acquire a
connection from
the connection
pool. See
[observability-
metrics-pending-
connections-time]

reactor.netty.conn
ection.provider.m
ax.pending.connec
tions

Gauge The maximum
number of
requests that will
be queued while
waiting for a
ready connection.
See [observability-
metrics-max-
pending-
connections]

=======

ByteBufAllocator
metrics

[width="100%",opt
ions="header"]

======= metric name type description

reactor.netty.byte
buf.allocator.used.
heap.memory

Gauge The number of
bytes reserved by
heap buffer
allocator. See
[observability-
metrics-used-
heap-memory]

reactor.netty.byte
buf.allocator.used.
direct.memory

Gauge

26

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

The number of
bytes reserved by
direct buffer
allocator. See
[observability-
metrics-used-
direct-memory]

reactor.netty.byte
buf.allocator.heap.
arenas

Gauge The number of
heap arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-heap-
arenas]

reactor.netty.byte
buf.allocator.direc
t.arenas

Gauge The number of
direct arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-direct-
arenas]

reactor.netty.byte
buf.allocator.threa
dlocal.caches

Gauge The number of
thread local
caches (when
PooledByteBufAlloc
ator). See
[observability-
metrics-thread-
local-caches]

reactor.netty.byte
buf.allocator.small
.cache.size

Gauge The size of the
small cache (when
PooledByteBufAlloc
ator). See
[observability-
metrics-small-
cache-size]

reactor.netty.byte
buf.allocator.norm
al.cache.size

Gauge

The size of the
normal cache
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-normal-
cache-size]

reactor.netty.byte
buf.allocator.chun
k.size

Gauge The chunk size for
an arena (when
PooledByteBufAlloc
ator). See
[observability-
metrics-chunk-
size]

reactor.netty.byte
buf.allocator.activ
e.heap.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
heap buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
heap-memory]

reactor.netty.byte
buf.allocator.activ
e.direct.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
direct buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
direct-memory]

27

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

======= EventLoop
metrics

[width="100%",opt
ions="header"]

======= metric name type description

28

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

reactor.netty.even
tloop.pending.task
s

Gauge The number of
tasks that are
pending for
processing on an
event loop. See
[observability-
metrics-pending-
tasks]

=======

The following
example enables
that integration:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/Application.ja
va ---- Unresolved
directive in tcp-
client.adoc -
include::{example
sdir}/metrics/Appli
cation.java[lines=1
8..34] ---- <1>
Enables the built-
in integration with
Micrometer ====

When TCP client
metrics are
needed for an
integration with a
system other than
Micrometer or you
want to provide
your own
integration with
Micrometer, you
can provide your
own metrics
recorder, as
follows:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/custom/Appli
cation.java ----
Unresolved
directive in tcp-
client.adoc -
include::{example
sdir}/metrics/custo

=======

29

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

contextual name description hostname
resolution

Information and
time spent for
resolving the
address. See
[observability-
spans-hostname-
resolution-span].

connect

30

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Information and
time spent for
connecting to the
remote address.
See [observability-
spans-connect-
span].

tls handshake Information and
time spent for TLS
handshake. See
[observability-
spans-tls-
handshake-span].

=======

The following
example enables
that integration.
This concrete
example uses
Brave and reports
the information to
Zipkin. See the
Micrometer Tracing
documentation for
OpenTelemetry
setup.

====
[source,java,inden
t=0]
.{examplesdir}/tra
cing/Application.ja
va ---- Unresolved
directive in tcp-
client.adoc -
include::{example
sdir}/tracing/Appli
cation.java[lines=1
8..81] ---- <1>
Initializes Brave,
Zipkin, and the
Observation
registry. <2>
Enables the built-
in integration with
Micrometer. ====

The result in
Zipkin looks like:

image::images/tcp-
client-
tracing.png[]

=== Access Current
Observation
Project
Micrometer
provides a library
that assists with

=======

31

https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup
https://micrometer.io/docs/contextPropagation

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Configuration
name

Description bindAddressSupplie
r

The supplier of the
local address to
bind to.

cacheMaxTimeToLive

The max time to
live of the cached
DNS resource
records
(resolution:
seconds). If the
time to live of the
DNS resource
record returned
by the DNS server
is greater than this
max time to live,
this resolver
ignores the time to
live from the DNS
server and uses
use this max time
to live. Default to
Integer.MAX_VALUE.

cacheMinTimeToLive The min time to
live of the cached
DNS resource
records
(resolution:
seconds). If the
time to live of the
DNS resource
record returned
by the DNS server
is less than this
min time to live,
this resolver
ignores the time to
live from the DNS
server and uses
this min time to
live. Default: 0.

cacheNegativeTimeT
oLive

The time to live of
the cache for the
failed DNS queries
(resolution:
seconds). Default:
0.

completeOncePrefer
redResolved

When this setting
is enabled, the
resolver notifies
as soon as all
queries for the
preferred address
type are complete.
When this setting
is disabled, the
resolver notifies
when all possible
address types are
complete. This
configuration is
applicable for
DnsNameResolver#re
solveAll(String).
By default, this
setting is enabled.

disableOptionalRec
ord

Disables the
automatic
inclusion of an
optional record
that tries to give a
hint to the remote
DNS server about
how much data
the resolver can
read per response.
By default, this
setting is enabled.

disableRecursionDe
sired

32

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Specifies whether
this resolver has
to send a DNS
query with the
recursion desired
(RD) flag set. By
default, this
setting is enabled.

dnsAddressResolver
GroupProvider

Sets a custom
function to create
a
DnsAddressResolver
Group given a
DnsNameResolverBui
lder

hostsFileEntriesRe
solver

Sets a custom
{nettyjavadoc}/io/
netty/resolver/Hos
tsFileEntriesResol
ver.html[HostsFile
EntriesResolver]
to be used for
hosts file entries.
Default:
{nettyjavadoc}/io/
netty/resolver/Def
aultHostsFileEntri
esResolver.html[De
faultHostsFileEntr
iesResolver].

maxPayloadSize Sets the capacity
of the datagram
packet buffer (in
bytes). Default:
4096.

maxQueriesPerResol
ve

Sets the maximum
allowed number
of DNS queries to
send when
resolving a host
name. Default: 16.

ndots

Sets the number of
dots that must
appear in a name
before an initial
absolute query is
made. Default: -1
(to determine the
value from the OS
on Unix or use a
value of 1
otherwise).

queryTimeout Sets the timeout of
each DNS query
performed by this
resolver
(resolution:
milliseconds).
Default: 5000.

resolveCache The cache to use to
store resolved DNS
entries.

resolvedAddressTyp
es

The list of the
protocol families
of the resolved
address.

retryTcpOnTimeout Specifies whether
this resolver will
also fallback to
TCP if a timeout is
detected. By
default, the
resolver will only
try to use TCP if
the response is
marked as
truncated.

roundRobinSelectio
n

33

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Enables an
{nettyjavadoc}/io/
netty/resolver/Add
ressResolverGrou
p.html[AddressReso
lverGroup] of
{nettyjavadoc}/io/
netty/resolver/dns/
DnsNameResolver.
html[DnsNameResol
ver] that supports
random selection
of destination
addresses if
multiple are
provided by the
nameserver. See
{nettyjavadoc}/io/
netty/resolver/dns/
RoundRobinDnsA
ddressResolverGro
up.html[RoundRobi
nDnsAddressResolve
rGroup]. Default:
{nettyjavadoc}/io/
netty/resolver/dns/
DnsAddressResolv
erGroup.html[DnsA
ddressResolverGrou
p]

runOn Performs the
communication
with the DNS
servers on the
given
{javadoc}/reactor/
netty/resources/Lo
opResources.html[
LoopResources]. By
default, the
LoopResources
specified on the
client level are
used.

searchDomains The list of search
domains of the
resolver. By
default, the
effective search
domain list is
populated by
using the system
DNS search
domains.

34

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

trace A specific logger
and log level to be
used by this
resolver when
generating
detailed trace
information in
case of resolution
failure.

=======

Sometimes, you
may want to
switch to the JVM
built-in resolver.
To do so, you can
configure the
TcpClient as
follows:

====
[source,java,inden
t=0]
.{examplesdir}/res
olver/custom/Appl
ication.java ----
Unresolved
directive in tcp-
client.adoc -
include::{example
sdir}/resolver/cust
om/Application.jav
a[lines=18..37] ----
<1> Sets the JVM
built-in resolver.
====

:leveloffset: 3

:leveloffset: 1

:sourcedir:
./../../reactor-netty-
http/src/main/java
:examplesdir:
./../../reactor-netty-
examples/src/main
/java/reactor/netty
/examples/docume
ntation/http/server
:javadoc:
https://projectreact
or.io/docs/netty/
1.1.25/api
:nettyjavadoc:
https://netty.io/4.1/
api :wirelogger:

======= Configuration
name

35

https://projectreactor.io/docs/netty/1.1.25/api
https://projectreactor.io/docs/netty/1.1.25/api
https://projectreactor.io/docs/netty/1.1.25/api
https://netty.io/4.1/api
https://netty.io/4.1/api

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Description baseDirectory Configures the
directory where to
store the data on
the disk. Default to
generated temp
directory.

charset Configures the
Charset for the
data. Default to
StandardCharsets#U
TF_8.

maxInMemorySize Configures the
maximum in-
memory size per
data i.e. the data is
written on disk if
the size is greater
than
maxInMemorySize,
else it is in
memory. If set to
-1 the entire
contents is stored
in memory. If set
to 0 the entire
contents is stored
on disk. Default to
16kb.

maxSize Configures the
maximum size per
data. When the
limit is reached,
an exception is
raised. If set to -1
this means no
limitation. Default
to -1 - unlimited.

scheduler

36

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Configures the
scheduler to be
used for
offloading disk
operations in the
decoding phase.
Default to
Schedulers#bounded
Elastic()

streaming When set to true,
the data is
streamed directly
from the parsed
input buffer
stream, which
means it is not
stored either in
memory or file.
When false, parts
are backed by in-
memory and/or
file storage.
Default to false.
NOTE that with
streaming
enabled, the
provided data
might not be in a
complete state i.e.
HttpData#isComplet
ed() has to be
checked. Also note
that enabling this
property
effectively ignores
maxInMemorySize,
baseDirectory, and
scheduler.

=======

==== Obtaining the
Remote (Client)
Address

In addition to the
metadata that you
can obtain from
the request, you
can also receive
the host (server)
address, the remote
(client) address
and the scheme.
Depending on the
chosen factory
method, you can
retrieve the
information
directly from the
channel or by
using the
Forwarded or X-
Forwarded- HTTP
request headers.
The following
example shows how
to do so:

====
[source,java,inden
t=0]
.{examplesdir}/cli
entaddress/Applica
tion.java ----
Unresolved
directive in http-
server.adoc -
include::{examples
dir}/clientaddress
/Application.java[
lines=18..38] ----
<1> Specifies that
the information
about the
connection is to
be obtained from
the Forwarded and
X-Forwarded- HTTP
request headers, if
possible. <2>

=======

37

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Callback Description doOnBind Invoked when the
server channel is
about to bind.

doOnBound

Invoked when the
server channel is
bound.

doOnChannelInit Invoked when
initializing the
channel.

doOnConnection Invoked when a
remote client is
connected

38

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

doOnUnbound Invoked when the
server channel is
unbound.

=======

The following
example uses the
doOnConnection
and
doOnChannelInit
callbacks:

====
[source,java,inden
t=0]
.{examplesdir}/life
cycle/Application.j
ava ---- Unresolved
directive in http-
server.adoc -
include::{example
sdir}/lifecycle/App
lication.java[lines=
18..39] ---- <1>
Netty pipeline is
extended with
ReadTimeoutHandler
when a remote
client is
connected. <2>
Netty pipeline is
extended with
LoggingHandler
when initializing
the channel. ====

== TCP-level
Configuration

When you need to
change
configuration on
the TCP level, you
can use the
following snippet
to extend the
default TCP server
configuration:

====
[source,java,inden

======= metric name

39

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

type description reactor.netty.http.
server.streams.act
ive

Gauge The number of
active HTTP/2
streams. See
[observability-
metrics-streams-
active]

reactor.netty.http.
server.connections
.active

Gauge The number of
http connections
currently
processing
requests. See
[observability-
metrics-
connections-
active]

reactor.netty.http.
server.connections
.total

Gauge

The number of all
opened
connections. See
[observability-
metrics-
connections-total]

reactor.netty.http.
server.data.receiv
ed

DistributionSumm
ary

Amount of the
data received, in
bytes. See
[observability-
metrics-data-
received]

reactor.netty.http.
server.data.sent

DistributionSumm
ary

Amount of the
data sent, in bytes.
See [observability-
metrics-data-sent]

reactor.netty.http.
server.errors

Counter Number of errors
that occurred. See
[observability-
metrics-errors-
count]

reactor.netty.http.
server.data.receiv
ed.time

Timer Time spent in
consuming
incoming data. See
[observability-
metrics-http-
server-data-
received-time]

reactor.netty.http.
server.data.sent.ti
me

Timer

40

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Time spent in
sending outgoing
data. See
[observability-
metrics-http-
server-data-sent-
time]

reactor.netty.http.
server.response.ti
me

Timer Total time for the
request/response
See [observability-
metrics-http-
server-response-
time]

=======

These additional
metrics are also
available:

ByteBufAllocator
metrics

[width="100%",opt
ions="header"]

======= metric name type description reactor.netty.byte
buf.allocator.used.
heap.memory

Gauge The number of
bytes reserved by
heap buffer
allocator. See
[observability-
metrics-used-
heap-memory]

reactor.netty.byte
buf.allocator.used.
direct.memory

Gauge The number of
bytes reserved by
direct buffer
allocator. See
[observability-
metrics-used-
direct-memory]

reactor.netty.byte
buf.allocator.heap.
arenas

Gauge The number of
heap arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-heap-
arenas]

reactor.netty.byte
buf.allocator.direc
t.arenas

Gauge

The number of
direct arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-direct-
arenas]

reactor.netty.byte
buf.allocator.threa
dlocal.caches

Gauge The number of
thread local
caches (when
PooledByteBufAlloc
ator). See
[observability-
metrics-thread-
local-caches]

reactor.netty.byte
buf.allocator.small
.cache.size

41

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Gauge The size of the
small cache (when
PooledByteBufAlloc
ator). See
[observability-
metrics-small-
cache-size]

reactor.netty.byte
buf.allocator.norm
al.cache.size

Gauge The size of the
normal cache
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-normal-
cache-size]

reactor.netty.byte
buf.allocator.chun
k.size

Gauge The chunk size for
an arena (when
PooledByteBufAlloc
ator). See
[observability-
metrics-chunk-
size]

reactor.netty.byte
buf.allocator.activ
e.heap.memory

Gauge

The actual bytes
consumed by in-
use buffers
allocated from
heap buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
heap-memory]

reactor.netty.byte
buf.allocator.activ
e.direct.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
direct buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
direct-memory]

======= EventLoop
metrics

[width="100%",opt
ions="header"]

======= metric name type description reactor.netty.even
tloop.pending.task
s

42

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Gauge The number of
tasks that are
pending for
processing on an
event loop. See
[observability-
metrics-pending-
tasks]

=======

The following
example enables
that integration:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/Application.ja
va ---- Unresolved
directive in http-
server.adoc -
include::{example
sdir}/metrics/Appli
cation.java[lines=1
8..52] ---- <1>
Applies upper
limit for the
meters with URI
tag <2> Templated
URIs will be used
as an URI tag
value when
possible <3>
Enables the built-
in integration with
Micrometer ====

NOTE: In order to
avoid a memory
and CPU overhead
of the enabled
metrics, it is
important to
convert the real
URIs to templated
URIs when
possible. Without
a conversion to a
template-like
form, each distinct
URI leads to the
creation of a
distinct tag, which
takes a lot of
memory for the

======= contextual name

43

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

description <HTTP
METHOD>_<URI>

Information and
total time for the
request. See
[observability-
spans-http-server-
response-span].

=======

The following
example enables
that integration.
This concrete
example uses
Brave and reports
the information to
Zipkin. See the
Micrometer Tracing
documentation for
OpenTelemetry
setup.

====
[source,java,inden
t=0]
.{examplesdir}/tra
cing/Application.ja
va ---- Unresolved
directive in http-
server.adoc -
include::{example
sdir}/tracing/Appli
cation.java[lines=1
8..91] ---- <1>
Initializes Brave,
Zipkin, and the
Observation
registry. <2>
Templated URIs
are used as an URI
tag value when
possible. <3>
Enables the built-
in integration with
Micrometer. ====

The result in
Zipkin looks like:

image::images/htt
p-server-
tracing.png[]

=== Access Current
Observation

302

44

https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

303 307 308`. When it is
303 status code,
GET method is used
for the redirect. *
followRedirect(BiP
redicate<HttpClien
tRequest,
HttpClientResponse
>): Enables auto-
redirect support if
the supplied
predicate matches.

The following
example uses
followRedirect(tru
e):

====
[source,java,inden
t=0]
.{examplesdir}/red
irect/Application.j
ava ---- Unresolved
directive in http-
client.adoc -
include::{example
sdir}/redirect/Appl
ication.java[lines=
18..32] ---- ====

== Consuming
Data

To receive data
from a given HTTP
endpoint, you can
use one of the
methods from
{javadoc}/reactor/
netty/http/client/H
ttpClient.Response
Receiver.html[Http
Client.ResponseRec
eiver]. The
following example
uses the
responseContent
method:

======= Callback

45

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Description doAfterRequest Invoked when the
request has been
sent.

doAfterResolve Invoked after the
remote address
has been resolved
successfully.

doAfterResponseSuc
cess

Invoked after the
response has been
fully received.

doOnChannelInit Invoked when
initializing the
channel.

doOnConnect

Invoked when the
channel is about
to connect.

doOnConnected Invoked after the
channel has been
connected.

doOnDisconnected Invoked after the
channel has been
disconnected.

doOnError Invoked when the
request has not
been sent and
when the response
has not been fully
received.

doOnRedirect Invoked when the
response headers
have been
received, and the
request is about to
be redirected.

doOnRequest

Invoked when the
request is about to
be sent.

doOnRequestError Invoked when the
request has not
been sent.

doOnResolve Invoked when the
remote address is
about to be
resolved.

doOnResolveError Invoked in case
the remote
address hasn’t
been resolved
successfully.

doOnResponse Invoked after the
response headers
have been
received.

doOnResponseError

46

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Invoked when the
response has not
been fully
received.

=======

The following
example uses the
doOnConnected and
doOnChannelInit
callbacks:

====
[source,java,inden
t=0]
.{examplesdir}/life
cycle/Application.j
ava ---- Unresolved
directive in http-
client.adoc -
include::{example
sdir}/lifecycle/App
lication.java[lines=
18..39] ---- <1>
Netty pipeline is
extended with
ReadTimeoutHandler
when the channel
has been
connected. <2>
Netty pipeline is
extended with
LoggingHandler
when initializing
the channel. ====

== TCP-level
Configuration

When you need
configurations on
a TCP level, you
can use the
following snippet
to extend the
default TCP client
configuration (add
an option, bind
address etc.):

====
[source,java,inden

======= Configuration
name

Description

47

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

disposeInactivePoo
lsInBackground

When this option
is enabled,
connection pools
are regularly
checked in the
background, and
those that are
empty and been
inactive for a
specified time
become eligible
for disposal.
Connection pool is
considered empty
when there are no
active
connections, idle
connections and
pending
acquisitions. By
default, this
background
disposal of
inactive pools is
disabled.

disposeTimeout When
ConnectionProvider
#dispose() or
ConnectionProvider
#disposeLater() is
called, trigger a
graceful shutdown
for the connection
pools, with this
grace period
timeout. From
there on, all calls
for acquiring a
connection will
fail fast with an
exception.
However, for the
provided Duration,
pending acquires
will get a chance
to be served. Note:
The rejection of
new acquires and
the grace timer
start immediately,
irrespective of
subscription to the
Mono returned by
ConnectionProvider
#disposeLater().
Subsequent calls
return the same
Mono, effectively
getting
notifications from
the first graceful
shutdown call and
ignoring
subsequently
provided timeouts.
By default, dispose
timeout is not
specified.

evictInBackground

48

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

When this option
is enabled, each
connection pool
regularly checks
for connections
that are eligible
for removal
according to
eviction criteria
like maxIdleTime.
By default, this
background
eviction is
disabled.

fifo Configure the
connection pool so
that if there are
idle connections
(i.e. pool is under-
utilized), the next
acquire operation
will get the Least
Recently Used
connection (LRU,
i.e. the connection
that was released
first among the
current idle
connections).
Default leasing
strategy.

lifo Configure the
connection pool so
that if there are
idle connections
(i.e. pool is under-
utilized), the next
acquire operation
will get the Most
Recently Used
connection (MRU,
i.e. the connection
that was released
last among the
current idle
connections).

maxConnections The maximum
number of
connections (per
connection pool)
before start
pending. Default
to 2 * available
number of
processors (but
with a minimum
value of 16).

maxIdleTime The time after
which the channel
is eligible to be
closed when idle
(resolution: ms).
Default: max idle
time is not
specified.

maxLifeTime

The total life time
after which the
channel is eligible
to be closed
(resolution: ms).
Default: max life
time is not
specified.

metrics Enables/disables
built-in
integration with
Micrometer.
ConnectionProvider
.MeterRegistrar
can be provided
for integration
with another
metrics system. By
default, metrics
are not enabled.

pendingAcquireMaxC
ount

The maximum
number of extra
attempts at
acquiring a
connection to keep
in a pending
queue. If -1 is
specified, the
pending queue
does not have
upper limit.
Default to 2 * max
connections.

49

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

pendingAcquireTime
out

The maximum
time before which
a pending acquire
must complete, or
a
TimeoutException
is thrown
(resolution: ms). If
-1 is specified, no
such timeout is
applied. Default:
45 seconds.

=======

NOTE: When you
expect a high load,
be cautious with a
connection pool
with a very high
value for
maximum
connections. You
might experience
reactor.netty.http
.client.PrematureC
loseException
exception with a
root cause
"Connect Timeout"
due to too many
concurrent
connections
opened/acquired.

If you need to
disable the
connection pool,
you can apply the
following
configuration:

====
[source,java,inden
t=0]
.{examplesdir}/po
ol/Application.java
---- Unresolved
directive in http-
client-conn-
provider.adoc -
include::{example
sdir}/pool/Applicat
ion.java[lines=18..
49] ---- ====

=== Disposing
Connection Pool

- If you use the
default

======= metric name

50

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

type description reactor.netty.conn
ection.provider.tot
al.connections

Gauge The number of all
connections,
active or idle. See
[observability-
metrics-total-
connections]

reactor.netty.conn
ection.provider.act
ive.connections

Gauge The number of the
connections that
have been
successfully
acquired and are
in active use. See
[observability-
metrics-active-
connections]

reactor.netty.conn
ection.provider.m
ax.connections

Gauge

The maximum
number of active
connections that
are allowed. See
[observability-
metrics-max-
connections]

reactor.netty.conn
ection.provider.idl
e.connections

Gauge The number of the
idle connections.
See [observability-
metrics-idle-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections

Gauge The number of
requests that are
waiting for a
connection. See
[observability-
metrics-pending-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections.
time

Timer Time spent in
pending acquire a
connection from
the connection
pool. See
[observability-
metrics-pending-
connections-time]

reactor.netty.conn
ection.provider.m
ax.pending.connec
tions

Gauge The maximum
number of
requests that will
be queued while
waiting for a
ready connection.
See [observability-
metrics-max-
pending-
connections]

=======

The following
table provides
information for
the HTTP client
metrics when it is
configured to
serve HTTP/2
traffic:

[width="100%",opt
ions="header"]

=======

51

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

metric name type description reactor.netty.conn
ection.provider.act
ive.streams

Gauge

52

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

The number of the
active HTTP/2
streams. See
[observability-
metrics-active-
streams]

reactor.netty.conn
ection.provider.pe
nding.streams

Gauge The number of
requests that are
waiting for
opening HTTP/2
stream. See
[observability-
metrics-pending-
streams]

=======

The following
example enables
that integration:

====
[source,java,inden
t=0]
.{examplesdir}/po
ol/metrics/Applicat
ion.java ----
Unresolved
directive in http-
client-conn-
provider.adoc -
include::{example
sdir}/pool/metrics/
Application.java[li
nes=18..45] ---- <1>
Enables the built-
in integration with
Micrometer ====

== SSL and TLS
When you need
SSL or TLS, you
can apply the
configuration
shown in the next
example. By
default, if OpenSSL
is available, a
{nettyjavadoc}/io/
netty/handler/ssl/S
slProvider.html#O
PENSSL[SslProvid
er.OPENSSL]
provider is used as
a provider.
Otherwise, a
{nettyjavadoc}/io/
netty/handler/ssl/S
slProvider.html#J
DK[SslProvider.JD
K] provider is used
You can switch the
provider by using53

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

======= metric name type description reactor.netty.http.
client.data.receive
d

DistributionSumm
ary

Amount of the
data received, in
bytes. See
[observability-
metrics-data-
received]

reactor.netty.http.
client.data.sent

DistributionSumm
ary

Amount of the
data sent, in bytes.
See [observability-
metrics-data-sent]

reactor.netty.http.
client.errors

Counter Number of errors
that occurred. See
[observability-
metrics-errors-
count]

reactor.netty.http.
client.tls.handshak
e.time

Timer

Time spent for TLS
handshake. See
[observability-
metrics-tls-
handshake-time]

reactor.netty.http.
client.connect.tim
e

Timer Time spent for
connecting to the
remote address.
See [observability-
metrics-connect-
time]

reactor.netty.http.
client.address.reso
lver

Timer Time spent for
resolving the
address. See
[observability-
metrics-hostname-
resolution-time]

reactor.netty.http.
client.data.receive
d.time

Timer Time spent in
consuming
incoming data. See
[observability-
metrics-http-
client-data-
received-time]

reactor.netty.http.
client.data.sent.ti
me

Timer Time spent in
sending outgoing
data. See
[observability-
metrics-http-
client-data-sent-
time]

reactor.netty.http.
client.response.ti
me

Timer

54

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Total time for the
request/response
See [observability-
metrics-http-
client-response-
time]

=======

These additional
metrics are also
available:

Pooled
ConnectionProvider
metrics

[width="100%",opt
ions="header"]

======= metric name type

description reactor.netty.conn
ection.provider.tot
al.connections

Gauge The number of all
connections,
active or idle. See
[observability-
metrics-total-
connections]

reactor.netty.conn
ection.provider.act
ive.connections

Gauge The number of the
connections that
have been
successfully
acquired and are
in active use. See
[observability-
metrics-active-
connections]

reactor.netty.conn
ection.provider.m
ax.connections

Gauge The maximum
number of active
connections that
are allowed. See
[observability-
metrics-max-
connections]

reactor.netty.conn
ection.provider.idl
e.connections

Gauge The number of the
idle connections.
See [observability-
metrics-idle-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections

Gauge

The number of
requests that are
waiting for a
connection. See
[observability-
metrics-pending-
connections]

reactor.netty.conn
ection.provider.pe
nding.connections.
time

Timer Time spent in
pending acquire a
connection from
the connection
pool. See
[observability-
metrics-pending-
connections-time]

reactor.netty.conn
ection.provider.m
ax.pending.connec
tions

55

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Gauge The maximum
number of
requests that will
be queued while
waiting for a
ready connection.
See [observability-
metrics-max-
pending-
connections]

=======

The following
table provides
information for
the HTTP client
metrics when it is
configured to
serve HTTP/2
traffic:

[width="100%",opt
ions="header"]

======= metric name

type description reactor.netty.conn
ection.provider.act
ive.streams

Gauge The number of the
active HTTP/2
streams. See
[observability-
metrics-active-
streams]

reactor.netty.conn
ection.provider.pe
nding.streams

Gauge The number of
requests that are
waiting for
opening HTTP/2
stream. See
[observability-
metrics-pending-
streams]

=======

ByteBufAllocator
metrics

[width="100%",opt
ions="header"]

=======

metric name type description reactor.netty.byte
buf.allocator.used.
heap.memory

Gauge

The number of
bytes reserved by
heap buffer
allocator. See
[observability-
metrics-used-
heap-memory]

reactor.netty.byte
buf.allocator.used.
direct.memory

Gauge The number of
bytes reserved by
direct buffer
allocator. See
[observability-
metrics-used-
direct-memory]

reactor.netty.byte
buf.allocator.heap.
arenas

56

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Gauge The number of
heap arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-heap-
arenas]

reactor.netty.byte
buf.allocator.direc
t.arenas

Gauge The number of
direct arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-direct-
arenas]

reactor.netty.byte
buf.allocator.threa
dlocal.caches

Gauge The number of
thread local
caches (when
PooledByteBufAlloc
ator). See
[observability-
metrics-thread-
local-caches]

reactor.netty.byte
buf.allocator.small
.cache.size

Gauge

The size of the
small cache (when
PooledByteBufAlloc
ator). See
[observability-
metrics-small-
cache-size]

reactor.netty.byte
buf.allocator.norm
al.cache.size

Gauge The size of the
normal cache
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-normal-
cache-size]

reactor.netty.byte
buf.allocator.chun
k.size

Gauge The chunk size for
an arena (when
PooledByteBufAlloc
ator). See
[observability-
metrics-chunk-
size]

reactor.netty.byte
buf.allocator.activ
e.heap.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
heap buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
heap-memory]

57

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

reactor.netty.byte
buf.allocator.activ
e.direct.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
direct buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
direct-memory]

======= EventLoop
metrics

[width="100%",opt
ions="header"]

=======

metric name type description reactor.netty.even
tloop.pending.task
s

Gauge

58

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

The number of
tasks that are
pending for
processing on an
event loop. See
[observability-
metrics-pending-
tasks]

=======

The following
example enables
that integration:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/Application.ja
va ---- Unresolved
directive in http-
client.adoc -
include::{example
sdir}/metrics/Appli
cation.java[lines=1
8..51] ---- <1>
Applies upper
limit for the
meters with URI
tag <2> Templated
URIs will be used
as a URI tag value
when possible <3>
Enables the built-
in integration with
Micrometer ====

NOTE: In order to
avoid a memory
and CPU overhead
of the enabled
metrics, it is
important to
convert the real
URIs to templated
URIs when
possible. Without
a conversion to a
template-like
form, each distinct
URI leads to the
creation of a
distinct tag, which
takes a lot of
memory for the
metrics.

======= contextual name description

59

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

HTTP <HTTP
METHOD>

Information and
total time for the
request. See
[observability-
spans-http-client-
response-span].

hostname
resolution

Information and
time spent for
resolving the
address. See
[observability-
spans-hostname-
resolution-span].

connect

60

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Information and
time spent for
connecting to the
remote address.
See [observability-
spans-connect-
span].

tls handshake Information and
time spent for TLS
handshake. See
[observability-
spans-tls-
handshake-span].

=======

The following
example enables
that integration.
This concrete
example uses
Brave and reports
the information to
Zipkin. See the
Micrometer Tracing
documentation for
OpenTelemetry
setup.

====
[source,java,inden
t=0]
.{examplesdir}/tra
cing/Application.ja
va ---- Unresolved
directive in http-
client.adoc -
include::{example
sdir}/tracing/Appli
cation.java[lines=1
8..90] ---- <1>
Initializes Brave,
Zipkin, and the
Observation
registry. <2>
Templated URIs
are used as an URI
tag value when
possible. <3>
Enables the built-
in integration with
Micrometer. ====

The result in
Zipkin looks like:

image::images/htt
p-client-
tracing.png[]

=== Access Current
Observation

=======

61

https://micrometer.io/docs/tracing#_micrometer_tracing_opentelemetry_setup

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Configuration
name

Description bindAddressSupplie
r

The supplier of the
local address to
bind to.

cacheMaxTimeToLive

The max time to
live of the cached
DNS resource
records
(resolution:
seconds). If the
time to live of the
DNS resource
record returned
by the DNS server
is greater than this
max time to live,
this resolver
ignores the time to
live from the DNS
server and uses
this max time to
live. Default to
Integer.MAX_VALUE.

cacheMinTimeToLive The min time to
live of the cached
DNS resource
records
(resolution:
seconds). If the
time to live of the
DNS resource
record returned
by the DNS server
is less than this
min time to live,
this resolver
ignores the time to
live from the DNS
server and uses
this min time to
live. Default: 0.

cacheNegativeTimeT
oLive

The time to live of
the cache for the
failed DNS queries
(resolution:
seconds). Default:
0.

completeOncePrefer
redResolved

When this setting
is enabled, the
resolver notifies
as soon as all
queries for the
preferred address
type are complete.
When this setting
is disabled, the
resolver notifies
when all possible
address types are
complete. This
configuration is
applicable for
DnsNameResolver#re
solveAll(String).
By default, this
setting is enabled.

disableOptionalRec
ord

Disables the
automatic
inclusion of an
optional record
that tries to give a
hint to the remote
DNS server about
how much data
the resolver can
read per response.
By default, this
setting is enabled.

disableRecursionDe
sired

62

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Specifies whether
this resolver has
to send a DNS
query with the
recursion desired
(RD) flag set. By
default, this
setting is enabled.

dnsAddressResolver
GroupProvider

Sets a custom
function to create
a
DnsAddressResolver
Group given a
DnsNameResolverBui
lder

hostsFileEntriesRe
solver

Sets a custom
{nettyjavadoc}/io/
netty/resolver/Hos
tsFileEntriesResol
ver.html[HostsFile
EntriesResolver]
to be used for
hosts file entries.
Default:
{nettyjavadoc}/io/
netty/resolver/Def
aultHostsFileEntri
esResolver.html[De
faultHostsFileEntr
iesResolver].

maxPayloadSize Sets the capacity
of the datagram
packet buffer (in
bytes). Default:
4096.

maxQueriesPerResol
ve

Sets the maximum
allowed number
of DNS queries to
send when
resolving a host
name. Default: 16.

ndots

Sets the number of
dots that must
appear in a name
before an initial
absolute query is
made. Default: -1
(to determine the
value from the OS
on Unix or use a
value of 1
otherwise).

queryTimeout Sets the timeout of
each DNS query
performed by this
resolver
(resolution:
milliseconds).
Default: 5000.

resolveCache The cache to use to
store resolved DNS
entries.

resolvedAddressTyp
es

The list of the
protocol families
of the resolved
address.

retryTcpOnTimeout Specifies whether
this resolver will
also fallback to
TCP if a timeout is
detected. By
default, the
resolver will only
try to use TCP if
the response is
marked as
truncated.

roundRobinSelectio
n

63

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Enables an
{nettyjavadoc}/io/
netty/resolver/Add
ressResolverGrou
p.html[AddressReso
lverGroup] of
{nettyjavadoc}/io/
netty/resolver/dns/
DnsNameResolver.
html[DnsNameResol
ver] that supports
random selection
of destination
addresses if
multiple are
provided by the
nameserver. See
{nettyjavadoc}/io/
netty/resolver/dns/
RoundRobinDnsA
ddressResolverGro
up.html[RoundRobi
nDnsAddressResolve
rGroup]. Default:
{nettyjavadoc}/io/
netty/resolver/dns/
DnsAddressResolv
erGroup.html[DnsA
ddressResolverGrou
p]

runOn Performs the
communication
with the DNS
servers on the
given
{javadoc}/reactor/
netty/resources/Lo
opResources.html[
LoopResources]. By
default, the
LoopResources
specified on the
client level are
used.

searchDomains The list of search
domains of the
resolver. By
default, the
effective search
domain list is
populated by
using the system
DNS search
domains.

64

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

trace A specific logger
and log level to be
used by this
resolver when
generating
detailed trace
information in
case of resolution
failure.

=======

Sometimes, you
may want to
switch to the JVM
built-in resolver.
To do so, you can
configure the
HttpClient as
follows:

====
[source,java,inden
t=0]
.{examplesdir}/res
olver/custom/Appl
ication.java ----
Unresolved
directive in http-
client.adoc -
include::{example
sdir}/resolver/cust
om/Application.jav
a[lines=18..38] ----
<1> Sets the JVM
built-in resolver.
====

== Timeout
Configuration This
section describes
various timeout
configuration
options that can
be used in
HttpClient.
Configuring a
proper timeout
may improve or
solve issues in the
communication
process. The
configuration
options can be
grouped as
follows:

* [connection-

======= Callback

65

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

Description doOnBind Invoked when the
server channel is
about to bind.

doOnBound Invoked when the
server channel is
bound.

66

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

doOnChannelInit Invoked when
initializing the
channel.

doOnUnbound Invoked when the
server channel is
unbound.

=======

The following
example uses the
doOnBound and
doOnChannelInit
callbacks:

====
[source,java,inden
t=0]
.{examplesdir}/life
cycle/Application.j
ava ---- Unresolved
directive in udp-
server.adoc -
include::{example
sdir}/lifecycle/App
lication.java[lines=
18..39] ---- <1>
Netty pipeline is
extended with
LineBasedFrameDeco
der when the
server channel is
bound. <2> Netty
pipeline is
extended with
LoggingHandler
when initializing
the channel. ====

== Connection
Configuration

This section
describes three
kinds of
configuration that
you can use at the
UDP level:

* [server-udp-
connection-
configurations-
channel-options] *
[server-udp-
connection- 67

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

======= metric name type description reactor.netty.udp.s
erver.data.receive
d

DistributionSumm
ary

Amount of the
data received, in
bytes. See
[observability-
metrics-data-
received]

reactor.netty.udp.s
erver.data.sent

DistributionSumm
ary

Amount of the
data sent, in bytes.
See [observability-
metrics-data-sent]

reactor.netty.udp.s
erver.errors

Counter Number of errors
that occurred. See
[observability-
metrics-errors-
count]

=======

These additional
metrics are also
available:

ByteBufAllocator
metrics

[width="100%",opt
ions="header"]

=======

metric name type description reactor.netty.byte
buf.allocator.used.
heap.memory

Gauge

The number of
bytes reserved by
heap buffer
allocator. See
[observability-
metrics-used-
heap-memory]

reactor.netty.byte
buf.allocator.used.
direct.memory

Gauge The number of
bytes reserved by
direct buffer
allocator. See
[observability-
metrics-used-
direct-memory]

reactor.netty.byte
buf.allocator.heap.
arenas

Gauge The number of
heap arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-heap-
arenas]

reactor.netty.byte
buf.allocator.direc
t.arenas

Gauge The number of
direct arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-direct-
arenas]

68

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

reactor.netty.byte
buf.allocator.threa
dlocal.caches

Gauge The number of
thread local
caches (when
PooledByteBufAlloc
ator). See
[observability-
metrics-thread-
local-caches]

reactor.netty.byte
buf.allocator.small
.cache.size

Gauge

The size of the
small cache (when
PooledByteBufAlloc
ator). See
[observability-
metrics-small-
cache-size]

reactor.netty.byte
buf.allocator.norm
al.cache.size

Gauge The size of the
normal cache
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-normal-
cache-size]

reactor.netty.byte
buf.allocator.chun
k.size

Gauge The chunk size for
an arena (when
PooledByteBufAlloc
ator). See
[observability-
metrics-chunk-
size]

reactor.netty.byte
buf.allocator.activ
e.heap.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
heap buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
heap-memory]

reactor.netty.byte
buf.allocator.activ
e.direct.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
direct buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
direct-memory]

======= EventLoop
metrics

[width="100%",opt
ions="header"]

=======

metric name type description reactor.netty.even
tloop.pending.task
s

Gauge

69

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

The number of
tasks that are
pending for
processing on an
event loop. See
[observability-
metrics-pending-
tasks]

=======

The following
example enables
that integration:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/Application.ja
va ---- Unresolved
directive in udp-
server.adoc -
include::{example
sdir}/metrics/Appli
cation.java[lines=1
8..34] ---- <1>
Enables the built-
in integration with
Micrometer ====

When UDP server
metrics are
needed for an
integration with a
system other than
Micrometer or you
want to provide
your own
integration with
Micrometer, you
can provide your
own metrics
recorder, as
follows:

====
[source,java,inden
t=0]
.{examplesdir}/me
trics/custom/Appli
cation.java ----
Unresolved
directive in udp-
server.adoc -
include::{example
sdir}/metrics/custo

======= Callback Description

70

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

doAfterResolve Invoked after the
remote address
has been resolved
successfully.

doOnChannelInit Invoked when
initializing the
channel.

doOnConnect

Invoked when the
channel is about
to connect.

doOnConnected Invoked after the
channel has been
connected.

doOnDisconnected Invoked after the
channel has been
disconnected.

71

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

doOnResolve Invoked when the
remote address is
about to be
resolved.

doOnResolveError Invoked in case
the remote
address hasn’t
been resolved
successfully.

=======

The following
example uses the
doOnConnected and
doOnChannelInit
callbacks:

====
[source,java,inden
t=0]
.{examplesdir}/life
cycle/Application.j
ava ---- Unresolved
directive in udp-
client.adoc -
include::{example
sdir}/lifecycle/App
lication.java[lines=
18..40] ---- <1>
Netty pipeline is
extended with
LineBasedFrameDeco
der when the
channel has been
connected. <2>
Netty pipeline is
extended with
LoggingHandler
when initializing
the channel. ====

== Connection
Configuration

This section
describes three
kinds of
configuration that
you can use at the
UDP level:

* [client-udp-
connection-
configurations-
channel-options] *
[client-udp-
connection-72

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

======= metric name type description reactor.netty.udp.c
lient.data.received

DistributionSumm
ary

Amount of the
data received, in
bytes. See
[observability-
metrics-data-
received]

reactor.netty.udp.c
lient.data.sent

DistributionSumm
ary

Amount of the
data sent, in bytes.
See [observability-
metrics-data-sent]

reactor.netty.udp.c
lient.errors

Counter Number of errors
that occurred. See
[observability-
metrics-errors-
count]

reactor.netty.udp.c
lient.connect.time

Timer

Time spent for
connecting to the
remote address.
See [observability-
metrics-connect-
time]

reactor.netty.udp.c
lient.address.resol
ver

Timer Time spent for
resolving the
address. See
[observability-
metrics-hostname-
resolution-time]

=======

These additional
metrics are also
available:

ByteBufAllocator
metrics

[width="100%",opt
ions="header"]

======= metric name type description reactor.netty.byte
buf.allocator.used.
heap.memory

Gauge The number of
bytes reserved by
heap buffer
allocator. See
[observability-
metrics-used-
heap-memory]

reactor.netty.byte
buf.allocator.used.
direct.memory

Gauge The number of
bytes reserved by
direct buffer
allocator. See
[observability-
metrics-used-
direct-memory]

reactor.netty.byte
buf.allocator.heap.
arenas

Gauge The number of
heap arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-heap-
arenas]

reactor.netty.byte
buf.allocator.direc
t.arenas

Gauge

73

Version Initial OSS
Release

OSS Support End Commercial
Support (*) End

Published in BOM

The number of
direct arenas
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-direct-
arenas]

reactor.netty.byte
buf.allocator.threa
dlocal.caches

Gauge The number of
thread local
caches (when
PooledByteBufAlloc
ator). See
[observability-
metrics-thread-
local-caches]

reactor.netty.byte
buf.allocator.small
.cache.size

Gauge The size of the
small cache (when
PooledByteBufAlloc
ator). See
[observability-
metrics-small-
cache-size]

reactor.netty.byte
buf.allocator.norm
al.cache.size

Gauge The size of the
normal cache
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-normal-
cache-size]

reactor.netty.byte
buf.allocator.chun
k.size

Gauge The chunk size for
an arena (when
PooledByteBufAlloc
ator). See
[observability-
metrics-chunk-
size]

reactor.netty.byte
buf.allocator.activ
e.heap.memory

Gauge

The actual bytes
consumed by in-
use buffers
allocated from
heap buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
heap-memory]

reactor.netty.byte
buf.allocator.activ
e.direct.memory

Gauge The actual bytes
consumed by in-
use buffers
allocated from
direct buffer pools
(when
PooledByteBufAlloc
ator). See
[observability-
metrics-active-
direct-memory]

======= EventLoop
metrics

[width="100%",opt
ions="header"]

======= metric name type description reactor.netty.even
tloop.pending.task
s

74

	Reactor Netty Reference Guide
	Table of Contents
	Chapter 1. About the Documentation
	1.1. Latest Version and Copyright Notice
	1.2. Contributing to the Documentation
	1.3. Getting Help

	Chapter 2. Getting Started
	2.1. Introducing Reactor Netty
	2.2. Prerequisites
	2.3. Understanding the BOM and versioning scheme
	2.4. Getting Reactor Netty
	2.5. Support and policies

