This is a cluster manager implementation for Vert.x that uses Hazelcast.
It is the default cluster manager used in the Vert.x distribution, but it can be replaced with another implementation as Vert.x cluster managers are pluggable. This implementation is packaged inside:
<dependency>
<groupId>io.vertx</groupId>
<artifactId>vertx-hazelcast</artifactId>
<version>3.2.0</version>
</dependency>
In Vert.x a cluster manager is used for various functions including:
-
Discovery and group membership of Vert.x nodes in a cluster
-
Maintaining cluster wide topic subscriber lists (so we know which nodes are interested in which event bus addresses)
-
Distributed Map support
-
Distributed Locks
-
Distributed Counters
Cluster managers do not handle the event bus inter-node transport, this is done directly by Vert.x with TCP connections.
Using this cluster manager
If you are using Vert.x from the command line, the jar corresponding to this cluster manager (it will be named vertx-hazelcast-${version}
.jar`
should be in the lib
directory of the Vert.x installation.
If you want clustering with this cluster manager in your Vert.x Maven or Gradle project then just add a dependency to
the artifact: io.vertx:vertx-hazelcast:${version}
in your project.
If the jar is on your classpath as above then Vert.x will automatically detect this and use it as the cluster manager. Please make sure you don’t have any other cluster managers on your classpath or Vert.x might choose the wrong one.
You can also specify the cluster manager programmatically if you are embedding Vert.x by specifying it on the options when you are creating your Vert.x instance, for example:
ClusterManager mgr = new HazelcastClusterManager();
VertxOptions options = new VertxOptions().setClusterManager(mgr);
Vertx.clusteredVertx(options, res -> {
if (res.succeeded()) {
Vertx vertx = res.result();
} else {
// failed!
}
});
Configuring this cluster manager
Usually the cluster manager is configured by a file
default-cluster.xml
which is packaged inside the jar.
If you want to override this configuration you can provide a file called cluster.xml
on your classpath and this
will be used instead.
The xml file is a Hazelcast configuration file and is described in detail in the documentation on the Hazelcast web-site.
You can also specify configuration programmatically if embedding:
Config hazelcastConfig = new Config();
// Now set some stuff on the config (omitted)
ClusterManager mgr = new HazelcastClusterManager(hazelcastConfig);
VertxOptions options = new VertxOptions().setClusterManager(mgr);
Vertx.clusteredVertx(options, res -> {
if (res.succeeded()) {
Vertx vertx = res.result();
} else {
// failed!
}
});
Hazelcast supports several different transports including multicast and TCP. The default configuration uses multicast so you must have multicast enabled on your network for this to work.
For full documentation on how to configure the transport differently or use a different transport please consult the Hazelcast documentation.
Using an existing Hazelcast cluster
You can pass an existing HazelcastInstance
in the cluster manager to reuse an existing cluster:
ClusterManager mgr = new HazelcastClusterManager(hazelcastInstance);
VertxOptions options = new VertxOptions().setClusterManager(mgr);
Vertx.clusteredVertx(options, res -> {
if (res.succeeded()) {
Vertx vertx = res.result();
} else {
// failed!
}
});
In this case, vert.x is not the cluster owner and so do not shutdown the cluster on close.
Trouble shooting clustering
If the default multicast configuration is not working here are some common causes:
Multicast not enabled on the machine.
It is quite common in particular on OSX machines for multicast to be disabled by default. Please google for information on how to enable this.
Using wrong network interface
If you have more than one network interface on your machine (and this can also be the case if you are running VPN software on your machine), then Hazelcast may be using the wrong one.
To tell Hazelcast to use a specific interface you can provide the IP address of the interface in the interfaces
element of the configuration. Make sure you set the enabled
attribute to true
. For example:
<interfaces enabled="true"> <interface>192.168.1.20</interface> </interfaces>
When running Vert.x is in clustered mode, you should also make sure that Vert.x knows about the correct interface.
When running at the command line this is done by specifying the cluster-host
option:
vertx run myverticle.js -cluster -cluster-host your-ip-address
Where your-ip-address
is the same IP address you specified in the Hazelcast configuration.
If using Vert.x programmatically you can specify this using setClusterHost
.
Using a VPN
This is a variation of the above case. VPN software often works by creating a virtual network interface which often doesn’t support multicast. If you have a VPN running and you do not specify the correct interface to use in both the hazelcast configuration and to Vert.x then the VPN interface may be chosen instead of the correct interface.
So, if you have a VPN running you may have to configure both the Hazelcast and Vert.x to use the correct interface as described in the previous section.
When multicast is not available
In some cases you may not be able to use multicast as it might not be available in your environment. In that case you should configure another transport, e.g. TCP to use TCP sockets, or AWS when running on Amazon EC2.
For more information on available Hazelcast transports and how to configure them please consult the Hazelcast documentation.
Enabling logging
When trouble-shooting clustering issues with Hazelcast it’s often useful to get some logging output from Hazelcast
to see if it’s forming a cluster properly. You can do this (when using the default JUL logging) by adding a file
called vertx-default-jul-logging.properties
on your classpath. This is a standard java.util.loging (JUL)
configuration file. Inside it set:
com.hazelcast.level=INFO
and also
java.util.logging.ConsoleHandler.level=INFO java.util.logging.FileHandler.level=INFO