Technology Compatibility
Kit Reference Guide for
Jakarta Contexts and
Dependency Injection

[l (=] = Vo1 < T \Y;

1. Who Should Use ThiS BOOKoiiiiiiiiiiiiiiiee e %
2. Before You Read ThiS BOOKoiiiuniiiiiiii e e e e %
3. How This BOOK IS Organizedcc.oiiiiiiiiiiiiiii e e e v
I. Getting Acquainted With the TCK ... e 1
1. INtroduction (CDI TCK) .iiuiiiiiiiiie e e e e e e e e e e e e e e aaaees 3
I R 10 G =T 1= P 3
1.2. Compatibility TESHNG «.vuieeiei e e e e 3
1.2.1. Why Compatibility IS Importantccooiiiiiiiii e, 4
1.3. Compatibility REQUIFEMENTScovuiiiiciii e 4
I 0 R B =) 11101 1o 4

1.3.2. Rules for Jakarta Contexts and Dependency Injection Version 4.0
00 11 Tod £ 7
1.4. ADBOUL the CDI TCK ..iiiiiiiiiiiii ettt e e e et e e e eataaeeees 8
1.4.1. CDI TCK Specifications and Requirementsccoeeeevineeiivinneeennnnnn. 8
1.4.2. CDI TCK COMPONENLS ..uiiuiiiiiiiiie e e e e e 9
1.5. Libraries for Jakarta Contexts and Dependency Injection Version 4.0 10
2. APPEAIS PrOCESS .oiviiiiii it 11
2.1. What challenges to the TCK may be submitted?ccccooviiiiiiiiinn, 11
2.2. How these challenges are submitted?ccooveiiiiiiiiiiii e 11
2.3. How and by whom challenges are addressed?cccoeveiiiiiiiiiiiinienennnn, 11
2.4. How accepted challenges to the TCK are managed?ccoevvviiievinennnnn. 11
3. INSTAIALION oot 13
3.1. Obtaining the SOfWAIEcovviiiiii e 13
3.2. The TCK ENVIFONMENTuiiiieiiee e e e e e e e e e e eees 13
3.3, EClIPSE PIUGINS ..ouiiiiiiiii et e e e e e e e e e 15
3.3.1. TESING PIUGIN ..t 15
3.3.2. Maven PlUgin (M2€) ...c.uuiciiieeii e e e aeas 15
A, CONTIGUIALION .uiiiiti ettt ettt ettt e e e ab e e enanns 17
N O S = (0] o =1 4 11T PP 17
4.2, ArquIllian SEEHINGS ...vuuieeeiiie e 18
4.3. The POrting PACKAQEcccuuiiiiieiii e 18
4.4. Using the CDI TCK with the Jakarta EE Web Profile ..., 18
4.5, Configuring TestNG to execute the TCKcoeiiiiiiiiiiii e, 19
4.6. Configuring your build environment to execute the TCKccoovviviviniienns 20
4.7. Configuring your application server to execute the TCKcccooeviiiiinnnnnnnn. 20
LT (=T e 1o] 11 [0 PP POPPT TR 21
5.1. CDI TCK CoVverage MELIICSccuuuiiiiieiiii e e e e e e e e 21
5.2. CDI TCK CoVerage REPOITiiiriiiiieiiieie et 21
5.2.1. CDK TCK ASSEITIONS ...ceiiiiiieeiiiiiieetiiiie et e e et e e et e e et eeeaenes 21
5.2.2. Producing the Coverage REepPOItcoveviiiiiieiiiiiiieeciie e 22
5.2.3. TESING REPOITS ..iviiiiiiiiiiiieiei e 23
[I. Executing and Debugging TESESiiiiiiiiiiiiiiie et 31
6. RUNNING the SIgNature TeSt ..o e 33

Technology Compatibility Kit ...

6.1. Obtaining the Sigtest PlUGINcoouuiiiiiiiie e 33

6.2. Running the Signature teStcooiiii i 33

6.3. Forcing a signature test failurecooiiiiiiiii 36

7. EXECULING the TeST SUITE ..uuiiiiicii e e e e eeas 39
7.1. The TeSt SUItE RUNNETc.uiiiiiii et e e 39

7.2. Running the Tests In Standalone MOdec.ccooovviiiiiii i 39

7.3. Running the Tests In the Container - Core and EE partsc..cccevvveeennen. 40

7.4. Running the Tests In the Container - SE partccooccoiviiiiiiiiiiin e, 40

7.5. DUMpINg the TesSt ArChIVESccoouiiiiiii e 41

8. RUNNING TESES iN ECHPSE oottt e e e e e aee 43
8.1. Leveraging Eclipse’s plugin @COSYSIEMoviiiiiiiiiiiiiiiieiiii e 43

8.2. Readying the Eclipse WOIrKSPaCEcocvviiiiiiiiiii e 44

8.3. Running a test in standalone modeccooviiiiiiiiiiiii 45

8.4. RUNNING INtEQration eSSiivveiiiii e e e e e 46

9. Debugging Tests iN ECHPSE ..o 49
9.1. Debugging a standalone teStcccviiiiiii i 49

9.2. Debugging an integration teSTuii i 49
9.2.1. Attaching the IDE debugger to the containerc.cccoeeiiiiiiinn, 50

9.2.2. Launching the test in the debuggerc.oooiiiiiiiiii e 50

Preface

This guide describes how to download, install, configure, and run the Technology Compatibility
Kit (TCK) used to verify the compatibility of an implementation of the Jakarta Contexts and De-
pendency Injection.

The CDI TCK is built atop TestNG framework and Arquillian platform. The CDI TCK uses the
Arquillian version 1.7.0.Alpha2 to execute the test suite.

The CDI TCK is provided under Apache Public License 2.0 [http://www.apache.org/licenses/LI-
CENSE-2.0].

1. Who Should Use This Book

This guide is for implementors of the Jakarta Context and Dependency Injection 4.0 technology
to assist in running the test suite that verifies the compatibility of their implementation.

2. Before You Read This Book

Before reading this guide, you should familiarize yourself with the Jakarta EE programming model,
specifically the Jakarta Enterprise Beans (EJB) 4.0 and the Jakarta Contexts and Dependency
Injection 4.0 specifications. A good resource for the Jakarta EE programming model is the Jakarta
EE [http://jakarta.ee] web site.

The CDI TCK is based on the Jakarta Context and Dependency Injection technology specification.
Information about the specification, including links to the specification documents, can be found
on the CDI page [https://jakarta.ee/specifications/cdi].

Before running the tests in the CDI TCK, read and become familiar with the Arquillian testing
platform. A good starting point could be a series of Arquillian Guides [http://arquillian.org/guides/].

3. How This Book Is Organized

If you are running the CDI TCK for the first time, read Chapter 1, Introduction (CDI TCK) completely
for the necessary background information about the TCK. Once you have reviewed that material,
perform the steps outlined in the remaining chapters.

« Chapter 1, Introduction (CDI TCK) gives an overview of the principles that apply generally to all
Technology Compatibility Kits (TCKSs), outlines the appeals process and describes the CDI TCK
architecture and components. It also includes a broad overview of how the TCK is executed
and lists the platforms on which the TCK has been tested and verified.

« Chapter 2, Appeals Process explains the process to be followed by an implementor, who wish
to challenge any test in the TCK.

» Chapter 3, Installation explains where to obtain the required software for the CDI TCK and how
to install it. It covers both the primary TCK components as well as tools useful for troubleshooting
tests.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://jakarta.ee
http://jakarta.ee
http://jakarta.ee
https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/cdi
http://arquillian.org/guides/
http://arquillian.org/guides/

Preface

Chapter 4, Configuration details the configuration of the JBoss Test Harness, how to create a
TCK runner for the TCK test suite and the mechanics of how an in-container test is conducted.

Chapter 5, Reporting explains the test reports that are generated by the TCK test suite and
introduces the TCK audit report as a tool for measuring the completeness of the TCK in testing
the CDI specification and in understanding how testcases relate to the specification.

Chapter 7, Executing the Test Suite documents how the TCK test suite is executed. It covers
both modes supported by the TCK, standalone and in-container, and shows how to dump the
generated test artifacts to disk.

Chapter 8, Running Tests in Eclipse shows how to run individual tests in Eclipse and advises
the best way to setup your Eclipse workspace for running the tests.

Chapter 9, Debugging Tests in Eclipse builds on Chapter 8, Running Tests in Eclipse by detailing
how to debug individual tests in Eclipse.

Vi

Part I. Getting
Acquainted with the TCK

The CDI TCK must be used to ensure that your implementation conforms to the CDI specification.
This part introduces the TCK, gives some background about its purpose, states the requirements
for passing the TCK and outlines the appeals process.

In this part you will learn where to obtain the CDI TCK and supporting software. You are then
presented with recommendations of how to organize and configure the software so that you are
ready to execute the TCK.

Finally, it discusses the reporting provided by the TCK.

Chapter 1.

Chapter 1. Introduction (CDI TCK)

This chapter explains the purpose of a TCK and identifies the foundation elements of the CDI TCK.

1.1. TCK Primer

A TCK, or Technology Compatibility Kit, is one of the three required pieces for any specification
(the other two being the specification document and a compatible implementation). The TCK is a
set of tools and tests to verify that an implementation of the technology conforms to the specifica-
tion. The tests are the primary component, but the tools serve an equally critical role of providing
a framework and/or set of SPIs for executing the tests.

The tests in the TCK are derived from assertions in the written specification document. The as-
sertions are itemized in an XML document, where they each get assigned a unique identifier,
and materialize as a suite of automated tests that collectively validate whether an implementation
complies with the aforementioned assertions, and in turn the specification. For a particular imple-
mentation to be certified, all of the required tests must pass (i.e., the provided test suite must be
run unmodified).

A TCK is entirely implementation agnostic. Ideally, it should validate assertions by consulting the
specification’s public API. However, when the information returned by the public API is not low-
level enough to validate the assertion, the implementation must be consulted directly. In this case,
the TCK provides an independent API as part of a porting package that enables this transparency.
The porting package must be implemented for each CDI implementation. Section 1.4.2, “CDI TCK
Components” introduces the porting package and Section 4.3, “The Porting Package” covers the
requirements for implementing it.

1.2. Compatibility Testing

The goal of any specification is to eliminate portability problems so long as the program which
uses the implementation also conforms to the rules laid out in the specification.

Executing the TCK is a form of compatibility testing. It's important to understand that compatibility
testing is distinctly different from product testing. The TCK is not concerned with robustness,
performance or ease of use, and therefore cannot vouch for how well an implementation meets
these criteria. What a TCK can do is to ensure the exactness of an implementation as it relates
to the specification.

Compatibility testing of any feature relies on both a complete specification and a complete compat-
ible implementation. The compatible implementation demonstrates how each test can be passed
and provides additional context to the implementor during development for the corresponding as-
sertion.

Chapter 1. Introduction (CDI TCK)

1.2.1. Why Compatibility Is Important

Java platform compatibility is important to different groups involved with Java technologies for
different reasons:

« Compatibility testing is the means by which the Jakarta ensures that the Java platform does not
become fragmented as it's ported to different operating systems and hardware.

« Compatibility testing benefits developers working in the Java programming language, enabling
them to write applications once and deploy them across heterogeneous computing environ-
ments without porting.

« Compatibility testing enables application users to obtain applications from disparate sources
and deploy them with confidence.

« Conformance testing benefits Java platform implementors by ensuring the same extent of reli-
ability for all Java platform ports.

The CDI specification goes to great lengths to ensure that programs written for Jakarta EE are
compatible and the TCK is rigorous about enforcing the rules the specification lays down.

1.3. Compatibility Requirements

The compatibility requirements for Jakarta Contexts and Dependency Injection Version 3.0 consist
of meeting the requirements set forth by the rules and associated definitions contained in this
section.

1.3.1. Definitions

These definitions are for use only with these compatibility requirements and are not intended for
any other purpose.

Table 1.1. Definitions

Term Definition

API Definition Product A Product for which the only Java class files
contained in the product are those corre-
sponding to the application programming in-
terfaces defined by the Specifications, and
which is intended only as a means for formal-
ly specifying the application programming in-
terfaces defined by the Specifications.

Computational Resource A piece of hardware or software that may vary
in quantity, existence, or version, which may
be required to exist in a minimum quantity
and/or at a specific or minimum revision level
S0 as to satisfy the requirements of the Test
Suite. Examples of computational resources

Definitions

Term Definition

that may vary in quantity are RAM and file
descriptors. Examples of computational re-
sources that may vary in existence (that is,
may or may not exist) are graphics cards and
device drivers. Examples of computational re-
sources that may vary in version are operat-
ing systems and device drivers.

Conformance Tests

All tests in the Test Suite for an indicated
Technology Under Test, as distributed by the
Maintenance Lead, excluding those tests on
the Exclude List for the Technology Under
Test.

Documented

Made technically accessible and made known
to users, typically by means such as market-
ing materials, product documentation, usage
messages, or developer support programs.

Edition

A Version of the Java Platform. Editions in-
clude Java Platform Standard Edition and
Jakarta Platform Enterprise Edition.

Exclude List

Libraries

Location Resource

The most current list of tests, distributed by
the Maintenance Lead or TCK Lead, that

are not required to be passed to certify con-
formance. The Maintenance Lead or TCK
Lead may add to the Exclude List for that Test
Suite as needed at any time, in which case
the updated Exclude List supplants any previ-
ous Exclude Lists for that Test Suite.

The class libraries for the Technology Under
Test. The Libraries for Jakarta Contexts and
Dependency Injection Version {revhumver}
are listed in Section 1.5, “Libraries for Jakarta
Contexts and Dependency Injection Version
4.0".

A location of classes or native libraries that
are components of the test tools or tests,
such that these classes or libraries may be re-
quired to exist in a certain location in order to
satisfy the requirements of the test suite. For
example, classes may be required to exist in
directories named in a CLASSPATH variable,

Chapter 1. Introduction (CDI TCK)

Term Definition

Product

Product Configuration

or native libraries may be required to exist in
directories named in a PATH variable.

A licensee product in which the Technology
Under Test is implemented or incorporated,
and that is subject to compatibility testing.

A specific setting or instantiation of an Oper-
ating Mode. For example, a Product support-
ing an Operating Mode that permits user se-
lection of an external encryption package may
have a Product Configuration that links the
Product to that encryption package.

Compatible Implementation (ClI)

The prototype or "proof of concept" imple-
mentation of a Specification.

Resource

Rules

Security Resource

A Computational Resource, a Location Re-
source, or a Security Resource.

These definitions and rules in this Compatibili-
ty Requirements section of this User’'s Guide.

A security privilege or policy necessary for
the proper execution of the Test Suite. For
example, the user executing the Test Suite
will need the privilege to access the files and
network resources necessary for use of the
Product.

Specifications

TCK Lead

Technology

Technology Under Test

The documents produced through the Jakarta
EE Specification Process that define a partic-
ular Version of a Technology. The Specifica-
tions for the Technology Under Test are refer-
enced later in this chapter.

Person responsible for maintaining TCK for
the Technology. TCK Lead is representative
of Red Hat Inc.

Specifications and a compatible implementa-
tion produced through the Jakarta EE Specifi-
cation Process.

Specifications and the compatible implemen-
tation for Jakarta Contexts and Dependency
Injection Version 3.0.

Test Suite

The requirements, tests, and testing tools
distributed by the Maintenance Lead or TCK

Rules for Jakarta Contexts and Dependency Injection Version 4.0 Products

Term Definition

Lead as applicable to a given Version of the

Technology.

Version A release of the Technology, as produced

through the Jakarta EE Specification Process.

1.3.2. Rules for Jakarta Contexts and Dependency Injection Ver-
sion 4.0 Products

The following rules apply for each version of an operating system, software component, and hard-
ware platform Documented as supporting the Product:

CDI-1 The Product must be able to satisfy all applicable compatibility requirements, including
passing all Conformance Tests, in every Product Configuration and in every combination of Prod-
uct Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product Con-
figuration, and combination of Product Configurations, of those Operating Modes.

CDI-1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test
Suite, testing may always use a Product Configuration of that Operating Mode providing that
Resource, even if other Product Configurations do not provide that Resource. Notwithstanding
such exceptions, each Product must have at least one set of Product Configurations of such
Operating Modes that is able to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy which has one or
more Product Configurations that cause Conformance Tests to fail may be tested using a Product
Configuration that allows all Conformance Tests to pass.

CDI-1.2 A Product Configuration of an Operating Mode that causes the Product to report only
version, usage, or diagnostic information is exempted from these compatibility rules.

CDI-1.3 A Product may contain an Operating Mode that selects the Edition with which it is com-
patible. The Product must meet the compatibility requirements for the corresponding Edition for
all Product Configurations of this Operating Mode. This Operating Mode must affect no smaller
unit of execution than an entire Application.

CDI-1.4 An API Definition Product is exempt from all functional testing requirements defined here,
except the signature tests.

CDI-2 Some Conformance Tests may have properties that may be changed. Properties that can
be changed are identified in the configuration interview. Properties that can be changed are spec-
ified in Section 4.1, “TCK Properties”. Apart from changing such properties and other allowed
modifications described in this User’s Guide (if any), no source or binary code for a Conformance
Test may be altered in any way without prior written permission.

Chapter 1. Introduction (CDI TCK)

CDI-3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance Lead
or TCK Lead must be used to certify compliance.

CDI-4 The Exclude List associated with the Test Suite cannot be modified.

CDI-5 The Maintenance Lead or TCK Lead can define exceptions to these Rules. Such exceptions
would be made available to and apply to all licensees.

CDI-6 All hardware and software component additions, deletions, and modifications to a Docu-
mented supporting hardware/software platform, that are not part of the Product but required for
the Product to satisfy the compatibility requirements, must be Documented and available to users
of the Product. For example, if a patch to a particular version of a supporting operating system
is required for the Product to pass the Conformance Tests, that patch must be Documented and
available to users of the Product.

CDI-7 The Product must contain the full set of public and protected classes and interfaces for all
the Libraries. Those classes and interfaces must contain exactly the set of public and protected
methods, constructors, and fields defined by the Specifications for those Libraries. No subsetting,
supersetting, or modifications of the public and protected API of the Libraries are allowed except
only as specifically exempted by these Rules.

CDI-8 Except for tests specifically required by this TCK to be recompiled (if any), the binary Con-
formance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead or TCK
Lead must be used to certify compliance.

CDI-9 The functional programmatic behavior of any binary class or interface must be that defined
by the Specifications.

1.4. About the CDI TCK

The CDI TCK is designed as a portable, configurable and automated test suite for verifying the
compatibility of an implementation of the Jakarta CDI specification. The test suite is built atop
TestNG framework and Arquillian platform.

Each test class in the suite acts as a deployable unit. The deployable units, or artifacts, can be
either a WAR or an EAR.

@ Note

The test archives are built with ShrinkWrap, a Java API for creating archives.
ShrinkWrap is a part of the Arqullian platform ecosystem.

1.4.1. CDI TCK Specifications and Requirements

This section lists the applicable requirements and specifications for the CDI TCK.

CDI TCK Components

» Specification requirements - Software requirements for a CDI implementation are itemized in
section 1.2, "Relationship to other specifications" in the CDI specification, with details provided
throughout the specification. Generally, the CDI specification targets the Jakarta EE 8 platform
and will be aligned with its specifications.

« Jakarta Contexts and Dependency Injection 4.0 API - The Java API defined in the CDI spec-
ification and provided by the compatible implementation.

e Testing platform - The CDI TCK requires version 1.7.0.Alpha2 of the Arquillian (http:/
arquillian.org). The TCK test suite is based on TestNG 6.x (http://testng.org). .

« Porting Package - An implementation of SPIs that are required for the test suite to run the in-
container tests and at times extend the CDI 3.0 API to provide extra information to the TCK.

* TCK Audit Tool - An itemization of the assertions in the specification documents which are
cross referenced by the individual tests. Describes how well the TCK covers the specification.

e Compatible implementation - A compatible implementation runtime for compatibility testing
of the CDI specification is the Jakarta Platform Enterprise Edition 8 compatible implementation.

« Jarkarta Dependency Injection - CDI builds on DI, and as such CDI implementations must
additionally pass the Jakarta Dependency Injection TCK.

Tip

The TCK distribution includes weld/porting-package-lib/weld-inject-tck-run-
ner-X.Y.Z-Q-tests.jar which contains two classes showing how the Weld com-
patible implementation passes the CDI TCK. The source for these class-
es is available from hhttps://github.com/weld/core/tree/4.0.0.Alpha2/inject-tck-run-
ner/src/test/java/org/jboss/weld/atinject/tck

1.4.2. CDI TCK Components

The CDI TCK includes the following components:

* Arquillian 1.7.0.Alpha2
* TestNG 6.14.3
« Porting Package SPIs - Extensions to the CDI SPIs to allow testing of a container.

» The test suite, which is a collection of TestNG tests, the TestNG test suite descriptor and
supplemental resources that configure CDI and other software components.

e The TCK audit is used to list out the assertions identified in the CDI specification. It matches
the assertions to testcases in the test suite by unique identifier and produces a coverage report.

http://arquillian.org
http://arquillian.org
http://testng.org
hhttps://github.com/weld/core/tree/4.0.0.Alpha2/inject-tck-runner/src/test/java/org/jboss/weld/atinject/tck
hhttps://github.com/weld/core/tree/4.0.0.Alpha2/inject-tck-runner/src/test/java/org/jboss/weld/atinject/tck

Chapter 1. Introduction (CDI TCK)

The audit document is provided along with the TCK; at least 95% of assertions are tested. Each
assertion is defined with a reference to a chapter, section and paragraph from the specification
document, making it easy for the implementor to locate the language in the specification document
that supports the feature being tested.

« TCK documentation accompanied by release notes identifying updates between versions.

The CDI TCK has been tested on following platforms:

» WildFly X using Oracle Java SE 8 on Red Hat Enterprise Linux 7.2

CDI supports Jakarta EE 8, Jakarta EE 8 Web Profile, Embeddable Jakarta Enterprise Beans 3.2.
The TCK will execute on any of these runtimes, but is only part of the CTS for Jakarta EE 8 and
Jakarta EE 8 Web Profile.

1.5. Libraries for Jakarta Contexts and Dependency In-
jection Version 4.0

The following is the list of packages that constitute the required class libraries for Jakarta Contexts
and Dependency Injection Version 4.0:

jakarta.decorator

* jakarta.enterprise.context

+ jakarta.enterprise.context.control

* jakarta.enterprise.context.spi

+ jakarta.enterprise.event

+ jakarta.enterprise.inject

* jakarta.enterprise.inject.literal

* jakarta.enterprise.inject.se

* jakarta.enterprise.inject.spi

« jakarta.enterprise.inject.spi.configurator

* jakarta.enterprise.util

10

Chapter 2.

Chapter 2. Appeals Process

While the CDI TCK is rigorous about enforcing an implementation’s conformance to the Jakarta
CDI specification, it's reasonable to assume that an implementor may discover new and/or better
ways to validate the assertions. The appeals process is defined by the Jakarta EE Jakarta EE
TCK Process 1.0 [https://jakarta.ee/committees/specification/tckprocess/]

2.1. What challenges to the TCK may be submitted?

Any test case (e.g., test class, @Test method), test case configuration (e.g., beans.xml), test
beans, annotations and other resources may be challenged by an appeal.

What is generally not challengeable are the assertions made by the specification. The specification
document is controlled by a separate process and challenges to it should be handled by the
Maintenance Lead or by sending an e-mail to link:mailto:cdi-dev@eclipse.org

2.2. How these challenges are submitted?

To submit a challenge, a new issue should be created in the CDI specification project [https://
github.com/eclipse-eedj/cdi] using the label challenge. Any communication regarding the issue
should be pursed in the comments of the filed issue for accurate record.

2.3. How and by whom challenges are addressed?

The challenges will be addressed in a timely fashion by the TCK Lead, as designated by Specifi-
cation Lead, Red Hat Inc. or his/her designate. The appellant can also monitor the process by fol-
lowing the issue report filed in the CDI TCK project [https://github.com/eclipse-ee4j/cdiK] issues.

The current TCK Lead is listed on the CDI Project Summary Page [https://jakarta.ee/specifica-
tions/cdi] on Jakarta EE.

2.4. How accepted challenges to the TCK are managed?

The worflow for TCK challenges is outlined in Jakarta EE TCK Process 1.0 [https://jakarta.ee/
committees/specification/tckprocess/].

Periodically, an updated TCK will be released, containing tests altered due to challenges - no new
tests will be added. Implementations are required to pass the updated TCK. This release stream
is named 4.0.x, where x will be incremented.

Additionally, new tests will be added to the TCK improving coverage of the specification. We
encourage implementations to pass this TCK, however it is not required. This release stream is
named 3.y.z wherey >= 1.

11

https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/cdiK
https://github.com/eclipse-ee4j/cdiK
https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/cdi
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/

12

Chapter 3.

Chapter 3. Installation

This chapter explains how to obtain the TCK and supporting software and provides recommen-
dations for how to install/extract it on your system.

3.1. Obtaining the Software

You can obtain a release of the CDI TCK project from the download page [https:/
download.eclipse.org/jakartaee/cdi/] on the CDI specification website. The release stream for
Jakarta CDI is named 4.0.x. The CDI TCK is distributed as a ZIP file, which contains the TCK
artifacts (the test suite binary and source, porting package API binary and source, the test suite
configuration file, the audit source and report) in /artifacts and documentation in /doc. The TCK
library dependencies are not part of the distribution and can be downloaded on demand (see
readme.txt file in /lib).

You can also download the current source code from GitHub repository [https://github.com/
eclipse-eedj/cdi-tck].

Executing the TCK requires a Jakarta EE 8 or better runtime environment (i.e., application server),
to which the test artifacts are deployed and the individual tests are invoked. The TCK does not
depend on any particular Jakarta EE implementation.

A Jakarta Contexts and Dependency Injection for compatible implementation project is named
Weld. The release stream for Jakarta CDI 4.0 is named 4.x. You can obtain the latest release
from the download page [http://weld.cdi-spec.org/download/] on the Weld website.

@ Note
Weld is not required for running the CDI TCK, but it can be used as a reference for
familiarizing yourself with the TCK before testing your own CDI implementation.

Naturally, to execute Java programs, you must have a Java SE runtime environment. The TCK
requires Java SE 8 or better, which you can obtain from the Java Software [http://www.oracle.com/
technetwork/java/index.html] website.

3.2. The TCK Environment

The TCK requires the following two Java runtime environments:

» Java SE 8 or better
» Jakarta EE 8 or better (e.g., WildFly 22.x or GlassFish V6)

You should refer to vendor instructions for how to install the runtime environment.

13

https://download.eclipse.org/jakartaee/cdi/
https://download.eclipse.org/jakartaee/cdi/
https://download.eclipse.org/jakartaee/cdi/
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/eclipse-ee4j/cdi-tck
http://weld.cdi-spec.org/download/
http://weld.cdi-spec.org/download/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Chapter 3. Installation

The rest of the TCK software can simply be extracted. It's recommended that you create a folder
named jakartacdi to hold all of the jakartacdi-related projects. Then, extract the TCK distribution
into a subfolder named tck. If you have downloaded the Weld distribution, extract it into a sibling
folder named weld. The resulting folder structure is shown here:

j akartacdi/ wel d/ tck/
tacdi/
wel d/

Each test class is treated as an individual artifact. All test methods (i.e., methods annotated with
@Test) in the test class are run in the application, meaning bean discovery occurs exactly once
per artifact and the same BeanManager is used by each test method in the class.

Tip

Running the TCK against Weld and WildFly

 First, you should download WildFly 22.x from the WildFly project page [http://
www.wildfly.org/downloads/].

e Set the JBOSS HOME environment variable to the location of the WildFly soft-
ware.

The CDI TCK distribution includes a TCK runner that executes the TCK using Weld
as the CDI implementation and WildFly as the Jakarta EE runtime. To run the TCK:

* You need to install Maven. You can find documentation on how to install Maven
in the Maven: The Definitive Guide [http://books.sonatype.com/mvnref-book/ref-

erence/installation.html] book published by Sonatype.

* Next, instruct Maven to run the TCK:

» Use cdi.tck.version system property to specify particular TCK version:

http://www.wildfly.org/downloads/
http://www.wildfly.org/downloads/
http://www.wildfly.org/downloads/
http://books.sonatype.com/mvnref-book/reference/installation.html
http://books.sonatype.com/mvnref-book/reference/installation.html
http://books.sonatype.com/mvnref-book/reference/installation.html

Eclipse Plugins

» TestNG will report, via Maven, the outcome of the run, and report any failures

on the console. Details can be found in target/surefire-reports/TestSuite.txt.

3.3. Eclipse Plugins

Eclipse, or any other IDE, is not required to execute or pass the TCK. However an implementor
may wish to execute tests in an IDE to aid debugging the tests. This section introduces two es-
sential Eclipse plugins, TestNG and Maven, and points you to resources explaining how to install
them.

3.3.1. TestNG Plugin

The TCK test suite is built on the TestNG. Therefore, having the TestNG plugin installed in Eclipse
is essential. Instructions for using the TestNG update site to add the TestNG plugin to Eclipse
are provided on the TestNG download page [http://testng.org/doc/download.html]. You can find a
tutorial that explains how to use the TestNG plugin on the TestNG Eclipse page [http://testng.org/
doc/eclipse.html].

3.3.2. Maven Plugin (m2e)

Another useful pluginis m2e. The TCK project uses Maven. Therefore, to work with TCK in Eclipse,
you may wish to have native support for Maven projects, which the m2e plugin provides. Instruc-
tions for using the m2e update site to add the m2e plugin to Eclipse are provided on the m2e
home page [http://eclipse.org/m2e/].

You can alternatively use the Eclipse plugin for Maven to generate native Eclipse projects from
Maven projects.

If you have Maven installed, you have everything you need. Just execute the following command
from any Maven project to produce the Eclipse project files.

mvn ecli pse: ecli pse

Again, the Eclipse plugins are not required to execute the TCK, but can be very helpful when
validating an implementation against the TCK test suite and especially when using the modules
from the project.

15

http://testng.org/doc/download.html
http://testng.org/doc/download.html
http://testng.org/doc/eclipse.html
http://testng.org/doc/eclipse.html
http://testng.org/doc/eclipse.html
http://eclipse.org/m2e/
http://eclipse.org/m2e/

16

Chapter 4.

Chapter 4. Configuration

This chapter lays out how to configure the TCK Harness by specifying the SPI implementation
classes, defining the target container connection information, and various other switches. You

then learn how to setup a TCK runner project
settings into practice.

4.1. TCK Properties

that executes the TCK test suite, putting these

System properties and/or the resource META-INF/cdi-tck.properties, a Java properties file, are

used to configure the TCK.

You should set the following required properties

Table 4.1. Required TCK Configuration Properties

Property = Example Value Description

+org.jboss.cdi.tck.libraryDirectory=/path/to/ex-
tra/libraries

The directory containing extra JARs to be
placed in the test archive library directory
such as the porting package implementation.

org.jboss.cdi.tck.testDataSource=java:jboss/
datasources/ExampleDS

org.jboss.cdi.tck.testJmsConnectionFactory=ja
ConnectionFactory

org.jboss.cdi.tck.testImsQueue=java:/queue/
test

org.jboss.cdi.tck.testimsTopic=java:/topic/test

A few TCK tests work with Jakarta Persis-
tence services and require a data source to
be provided. This property defines JNDI name
of such resource. Required for the tests within
the persistence test group.

vdthe JNDI name of the JMS test Connection-
Factory. Required for the tests within the jms
test group.
The IJNDI name of the JMS test Queue. Re-
quired for the tests within the jms test group.

The JNDI name of the JMS test Topic. Re-
quired for the tests within the jms test group.

Table 4.2. Optional TCK Configuration Properties

Property = Example Value Description

org.jboss.cdi.tck.testTimeoutFactor=200

Tests use this percentage value to adjust

the final timeout (e.g. when waiting for some
async processing) so that it's possible to con-
figure timeouts according to the testing run-
time performance and throughput. The value
must be an integer greater than zero. The de-

17

Chapter 4. Configuration

Property = Example Value Description

fault value is 100% - i.e. timeouts will remain

the same.
The Arquillian testing platform will look for configuration settings in a file named arquillian.xml
in the root of your classpath. If it exists it will be auto loaded, else default values will be used.
This file is not a requirement however it's very useful for container configuration. See an example
configuration for JBoss TCK runner:

4.2. Arquillian settings

wel d/ j boss-tck-runner/src/test/w | dfly8/ arquillian.xn

4.3. The Porting Package

The CDI TCK relies on an implementation of the porting package to function. There are times when
the tests need to tap directly into the CDI implementation to manipulate behavior or verify results.
The porting package is Java package named "org.jboss.cdi.tck.spi" and includes a set of SPIs
that provide the TCK with this level of access without tying the tests to a given implementation.

The SPI classes in the CDI TCK are as follows:

 org.jboss.cdi.tck.spi.Beans
* org.jboss.cdi.tck.spi.Contexts
* org.jboss.cdi.tck.spi.EL

Please consult the JavaDoc for these interfaces for the implementation requirements.

4.4. Using the CDI TCK with the Jakarta EE Web Profile

You can configure the CDI TCK to just run tests appropriate to the Jakarta EE Web Profile by
excluding TestNG group javaee-full, e.g. via maven-surefire-plugin configuration:

<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<configurati on>
<excl udedG oups>j avaee-f ul | </ excl udedG oups>
</ confi guration>
</ pl ugi n>

18

Configuring TestNG to execute the TCK

4.5. Configuring TestNG to execute the TCK

The CDI TCK is built atop Arquillian and TestNG, and it's TestNG that is responsible for selecting
the tests to execute, the order of execution, and reporting the results. Detailed TestNG documen-
tation can be found at testng.org [http://testng.org/doc/documentation-main.html].

Certain TestNG configuration file must be run by TestNG (described by the TestNG documentation
as "with a testng.xml file") unmodified for an implementation to pass the TCK. The TCK distribution
contains the configuration file accurate at the date of the release - artifacts/cdi-tck-impl-suite.xml.
However this artifact may not be up to date due to unresolved challenges or pending releases.
Therefore a canonical configuration file exists. This file is located in the CDI TCK source code
repository at {CORRESPONDING_BRANCH_ROOT}impl/src/main/resources/tck-tests.xml.

i https://github.com/

eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml

This file also allows tests to be excluded from a run:

<sui te nane="CDI TCK" verbose="0" configfailurepolicy="continue">
<test nane="CDl TCK">

<cl asses>

<cl ass nanme="org.j boss. cdi.tck.tests.context.application.ApplicationContextTest">
<met hods>
<excl ude nane="test Appl i cati onScopeActi veDuri ngServi ceMet hod"/ >
</ met hods>
</ cl ass>
</ cl asses>
</test>
</ suite>

https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-
tests-previous.xml

19

http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests-previous.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests-previous.xml

Chapter 4. Configuration

TestNG provides extensive reporting information. Depending on the build tool or IDE you use,
the reporting will take a different format. Please consult the TestNG documentation and the tool
documentation for more information.

4.6. Configuring your build environment to execute the
TCK

It's beyond the scope of this guide to describe in how to set up your build environment to run the
TCK. The TestNG documentation provides extensive information on launching TestNG using the
Java, Ant, Eclipse or IntelliJ IDEA.

4.7. Configuring your application server to execute the
TCK

The TCK makes use of the Java 1.4 keyword assert; you must ensure that the JVM used to run the
application server is started with assertions enabled. See Programming With Assertions [http://
docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable] for more
information on how to enable assertions.

Tests within the jms test group require some basic Java Message Service configuration. A con-
nection factory, a queue destination for PTP messaging domain and a topic destination for pub/
sub messaging domain must be available via JNDI lookup. The corresponding JNDI names are
specified with configuration properties - see Section 4.1, “TCK Properties”.

Tests within the persistence test group require basic data source configuration. The data source
has to be valid and JTA-based. The JNDI name of the DataSource is specified with configuration
property - see Section 4.1, “TCK Properties”.

Tests within the installedLib test group require the CDI TCK cdi-tck-ext-lib artifact to be installed
as a library (see also Jakarta EE 8 specification, section EE.8.2.2 "Installed Libraries").

Tests within the systemProperties test group require the following system properties to be set:

cdiTckExcludeDummy true

Tests within the security test group require the following mapping of roles to principals:

Principal Group

‘ student ‘ student ‘
‘ alarm ‘ alarm, student ‘
‘ printer ‘ printer ‘

Tests within SE test groups require execution in a separate JVM instance with isolated classpath
including all required dependencies.

20

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable

Chapter 5.

Chapter 5. Reporting

This chapter covers the two types of reports that can be generated from the TCK, an assertion
coverage report and the test execution results. The chapter also justifies why the TCK is good
indicator of how accurately an implementation conforms to the CDI specification.

5.1. CDI TCK Coverage Metrics

The CDI TCK coverage has been measured as follows:

« Assertion Breadth Coverage

The CDI TCK provides at least 95% coverage of identified assertions with test cases.

« Assertion Depth Coverage

The assertion depth coverage has not been measured, as, when an assertion requires more than
one testcase, these have been enumerated in an assertion group and so are adequately described
by the assertion breadth coverage.

» API Signature Coverage

The CDI TCK covers 100% of all API public methods using the Java CTT Sig Test tool.

5.2. CDI TCK Coverage Report

A specification can be distilled into a collection of assertions that define the behavior of the soft-
ware. This section introduces the CDI TCK coverage report, which documents the relationship
between the assertions that have been identified in the Jakarta CDI specification document and
the tests in the TCK test suite.

The structure of this report is controlled by the assertion document, so we’ll start there.

5.2.1. CDK TCK Assertions

The CDI TCK developers have analyzed the Jakarta CDI specification document and identified
the assertions that are present in each chapter. Here’'s an example of one such assertion found
in section 2.3.3:

Any bean may declare multiple qualifier types.

The assertions are listed in the XML file impl/src/main/resources/tck-audit.xml in the CDI TCK
distribution. Each assertion is identified by the section identifier of the specification document in
which it resides and assigned a unique paragraph identifier to narrow down the location of the

21

Chapter 5. Reporting

assertion further. To continue with the example, the assertion shown above is listed in the tck-
audit.xml file using this XML fragment:

<section id="decl aring_bean_qualifiers" title="Declaring the qualifiers
of a bean">

<assertion id="d">
<t ext >Any bean may declare nultiple qualifier types.</type>
</ assertion>

</ section>

The strategy of the CDI TCK is to write a test which validates this assertion when run against an
implementation. A test case (a method annotated with @Test in a test class) is correlated with an
assertion using the @org.jboss.test.audit.annotations.SpecAssertion annotation as follows:

@est
@BpecAssertion(secti on = DECLARI NG BEAN QUALI FIERS, id = "d")
public void testMiltipleQualifiers()

{

Bean<?> nodel = get Beans(Cod. cl ass, new ChunkyBi ndi ng(true), new WitefishBinding()).iterator
assert nodel . get Bi ndi ngs().size() == 3;

@ Note

Section identifiers are not used directly. Instead automatically generated constants
are applied.

To help evaluate the distribution of coverage for these assertions, the TCK provides a detailed
coverage report. This report is also useful to help implementors match tests with the language in
the specification that supports the behavior being tested.

5.2.2. Producing the Coverage Report

The coverage report is an HTML report generated as part of the TCK project build. Specifically,
it is generated by an annotation processor that attaches to the compilation of the classes in the
TCK test suite, another tool from the JBoss Test Utils project. The report is only generated when
using Java 6 or above, as it requires the annotation processor.

mvn cl ean install

22

TestNG Reports

@ Note
You must run clean first because the annotation processor performs it's work when
the test class is being compiled. If compilation is unnecessary, then the assertions
referenced in that class will not be discovered.

The report is written to the file target/coverage.html in the same project. The report has five sec-
tions:

1. Chapter Summary - Lists the chapters (that contain assertions) in the specification document
along with total assertions, tests and coverage percentage.

2. Section Summary - Lists the sections (that contain assertions) in the specification document
along with total assertions, tests and coverage percentage.

3. Coverage Detail - Each assertion and the test that covers it, if any.

4. Unmatched Tests - A list of tests for which there is no matching assertion (useful during TCK
development).

5. Unversioned Tests - A list of tests for which there is no @SpecVersion annotation on the test
class (useful during TCK development).

The coverage report is color coded to indicate the status of an assertion, or group of assertions.
The status codes are as follows:

* Covered - a test exists for this assertion

* Not covered - no test exists for this assertion

« Problematic - a test exists but is currently disabled. For example, this may be because the test
is under development

* Untestable - the assertion has been deemed untestable; a note, explaining why, is normally
provided

For reasons provided in the tck-audit.xml document and presented in the coverage report, some
assertions are not testable.

The coverage report does not give any indication as to whether the tests are passing. That's where
the TestNG reports come in.

5.2.3. TestNG Reports

The CDI TCK test suite is really just a TestNG test suite. That means an execution of the CDI
TCK test suite produces the same reports as TestNG does. This section will go over those reports
and show you where to find each of them.

23

Chapter 5. Reporting

5.2.3.1. Maven, Surefire and TestNG

When the CDI TCK test suite is executed during the Maven test phase of the TCK runner project,
TestNG is invoked indirectly through the Maven Surefire plugin. Surefire is a test execution ab-
straction layer capable of executing a mix of tests written for JUnit, TestNG, and other supported
test frameworks.

Why is this relevant? It means two things. First, it means that you are going to get a summary
of the test run on the commandline. Here’s the output generated when the tests are run using
standalone mode.

Runni ng TestSuite
[Xm Met hodSel ect or]
CLASSNAME: or g. j boss. t est harness. i npl . t est ng. Di sabl el nt egrati onTest sMet hodSel ect or
[Xm Met hodSel ector] SETTING PRIORITY: 0
[Xm Met hodSel ect or]
CLASSNAME: or g. j boss. t est harness. i npl . t est ng. Excl udel ncont ai ner Under | nvesti gati onMet hodSel ect or
[Xm Met hodSel ector] SETTING PRIORITY: O
Tests run: 441, Failures: 0, Errors: 0, Skipped: 0, Tine el apsed: 22.816 sec

Results :

Tests run: 441, Failures: 0, Errors: 0, Skipped: O

@ Note

The number of tests executed, the execution time, and the output will differ when
you run the tests using in-container mode as the CDI TCK requires.

If the Maven reporting plugin that complements Surefire is configured properly, Maven will also
generate a generic HTML test result report. That report is written to the file test-report.html in the
target/surefire-reports directory of the TCK runner project. It shows how many tests were run, how
many failed and the success rate of the test run.

The one drawback of the Maven Surefire report plugin is that it buffers the test failures and puts
them in the HTML report rather than outputting them to the commandline. If you are running the
test suite to determine if there are any failures, it may be more useful to get this information in the
foreground. You can prevent the failures from being redirected to the report using the following
commandline switch:

24

TestNG Reports

mvn test -Dsurefire.useFile=fal se

The information that the Surefire provides is fairly basic and the detail pales in comparison to what
the native TestNG reports provide.

5.2.3.2. TestNG HTML Reports

TestNG produces several HTML reports for a given test run. All the reports can be found in the
target/surefire-reports directory in the TCK runner project. Below is a list of the three types of
reports:

¢ Test Summary Report
» Test Suite Detail Report
« Emailable Report

The first report, the test summary report, shown below, is written to the file index.html. It produces
the same information as the generic Surefire report.

Test results

' Passed | Failed | Skipped | testng.xml

The summary report links to the test suite detail report, which has a wealth of information. It shows
a complete list of test groups along with the classes in each group, which groups were included
and excluded, and any exceptions that were raised, whether from a passed or failed test. A partial
view of the test suite detail report is shown below.

25

Chapter 5. Reporting

JSR-299 TCK
Tests passed/Failed/Skipped: [441/1/0
Started on: 'Wed Jul 29 12:53:39 EDT 2009
Total time: 12 seconds (12169 ms)
Included groups:
[Excluded groups: lbroken rewrite stub deployment underinvestigation ri-broken

(Hover the method name to see the test class name)

_

T

The test suite detail report is very useful, but it borderlines on complex. As an alternative, you can
have a look at the emailable report, which is a single HTML document that shows much of the
same information as the test suite detail report in a more compact layout. A partial view of the
emailable report is shown below.

26

TestNG Reports

Methods | Scenarios # # Total | Included Excluded
Test Passed Passed | skipped failed Time | Groups Groups
broken rewrite stub
JSR-299 441 441 12.2 deployment underlnvestigation
TCK seconds .
ri-broken
Class

Now that you have seen two ways to get test results from the Maven test execution, let's switch
over to the IDE, specifically Eclipse, and see how it presents TestNG test results.

5.2.3.3. Test Results in the TestNG Plugin View

After running a test in Eclipse, the test results are displayed in the TestNG plugin view, as shown

below.

Chapter 5. Reporting

N TestNG &3 4% @ B @ Y5O0
~ Tests: 1/1 Methods: 9/9(2161ms)
Passed: 8 H Failed: 1 B Skipped: 0

L/t All Tests | L Failed Tests
= [t jsr299-tck-impl { 8/3/0/0)
~ EJ org.jboss jsr299 tck tests.event.observerresolve ResolveEventObs

EtestMuItipIeDb5emerMethUHSDnBeanPermiSSible
EtestMuItipleob5ewerMethndsFarSameEventP&rmi55ib|e
EtestMethadWithF’arameterﬁnnntatedWithObsewesRegistersObse
EtestobsEwerMeth0dAutumaticallyRegistered
EtestObsewerMethudRegistratinn
EtestObzewerMeth0dWithDutBindingTypesODEEwezEventsmﬁthm.
EtestBeanManagerResaIveObsemersSignature

EtestOBSeruerMethDdMayHaveMultipleBindingTypEE

-

Failure Exception £

L
|

i javalang.AssertionError —

at org.jboss jsr299 tck.tests event.observerresolve ResolveEventObs

at sun.reflect MativeMethodAccessorimpl.invokeO(Native Method)

at sun.reflect MativeMethodAccessorimpl.invoke(MNativeMethodAccess

at sun.reflect.DelegatingMethodAccessorimplinvoke(DelegatingMethe

at java.lang.reflect. Method.invoke(Method.java:585)

at org.testng.internal MethodHelper.invokeMethod(MethodHelper java:!

at org testng.internal MethodHelper$l runTestMethod(MethodHelper ja

at org.jboss testharness AbstractTest run{AbstractTest java: 240)

at sun.reflect. NativeMethodAccessorlmplinvokeO{MNative Method)

at sun.reflect MNativeMethodAccessorimpl.invoke(NativeMethodAccess

at sun.reflect. DelegatingMethodAccessorimplinvoke(DelegatingMethe

at java.lang.reflect. Method.invoke(Method.java:585)

L] | D

(4]

28

TestNG Reports

The view offers two lists. The first is a list of all methods (tests) in the class flagged as either
passed or failed. The second is a list of methods (tests) in the class that failed. If there is a test
failure, you can click on the method name to get the stacktrace leading up to the failure to display
in the lower frame.

You can also find the raw output of the TestNG execution in the IDE console view. In that view,
you can click on a test in the stacktrace to open it in the editor pane.

One of the nice features of TestNG is that it can keep track of which tests failed and offer to run
only those tests again. You can also rerun the entire class. Buttons are available for both functions
at the top of the view.

29

30

Part Il. Executing
and Debugging Tests

In this part you learn how to execute the CDI TCK on the Wled compatible implementation. First,
you are walked through the steps necessary to execute the test suite on Weld. Then you discover
how to modify the TCK runner to execute the test suite on your own implementation. Finally, you
learn how to debug tests from the test suite in Eclipse.

Chapter 6.

Chapter 6. Running the Signature
Test

One of the requirements of an implementation passing the TCK is for it to pass the CDI signature
test. This section describes how the signature file is generated and how to run it against your
implementation.

6.1. Obtaining the sigtest plugin

The source for the sigtest plugin can be found here: https://github.com/emilianbold/net-
beans-apitest.git

6.2. Running the signature test

To run the signature test, use a pom file like that found in https://github.com/eclipse-ee4j/cdi-tck/
blob/master/impl/src/main/resources/sigtest-pom.xml and shown here:

<?xm version="1.0"?>

<l-- Sanple maven pomto verify signatures -->
<pr oj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0" xm ns: xsi="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance" xsi : schemalLocati on="http://

maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ maven-v4_0_0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>j akarta. enterprise</groupl d>
<artifactld>cdi-tck-sigtest</artifactld>
<ver si on>{r evnunber}</versi on>
<nanme>CDl TCK Si gnature Tests</nane>
<description>CDl TCK Signature test validation of CDI dependent APl jars</
descri ption>
<properties>
<l-- Set the api jar artifact versions here -->
<annot ati on. api . ver si on>2. 0. 0</ annot at i on. api . ver si on>
<atinject.api.version>2.0.0</atinject.api.version>
<interceptor.api.version>2.0.0</interceptor.api.version>
<el . api . version>4.0.0</el . api . versi on>
<cdi . api . versi on>3. 0. 0</ cdi . api . ver si on>
</ properties>

<I-- Set the api jar artifact dependencies here -->
<dependenci es>
<dependency>
<groupl d>j akart a. annot ati on</ gr oupl d>
<artifactld>jakarta.annotation-api</artifactld>
<versi on>${annot ati on. api . ver si on} </ ver si on>
</ dependency>

33

https://github.com/emilianbold/netbeans-apitest.git
https://github.com/emilianbold/netbeans-apitest.git
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/sigtest-pom.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/sigtest-pom.xml

Chapter 6. Running the Signat...

<dependency>
<groupl d>j akart a. el </ gr oupl d>
<artifactld>jakarta.el-api</artifactld>
<version>${el . api . version}</version>

</ dependency>

<dependency>
<groupl d>j akarta. i nt erceptor</groupl d>
<artifactld>jakarta.interceptor-api</artifactld>
<versi on>${i nterceptor. api . version}</version>

</ dependency>

<dependency>
<gr oupl d>j akart a. i nj ect </ gr oupl d>
<artifactld>jakarta.inject-api</artifactld>
<version>${atinject.api.version}</version>

</ dependency>

<dependency>
<groupl d>j akart a. enterpri se</groupl d>
<artifactld>jakarta.enterprise.cdi-api</artifactld>
<versi on>${cdi . api . versi on} </ versi on>

</ dependency>

</ dependenci es>

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact!|d>maven- dependency-pl ugi n</artifact!d>
<executi ons>
<execut i on>
<i d>unpack- dependenci es</i d>
<phase>package</ phase>
<goal s>
<goal >unpack- dependenci es</ goal >
</ goal s>
<confi gurati on>
<stripVersion>true</stripVersion>
<over Wit eRel eases>true</over Wit eRel eases>
<out put Di rect ory>t arget/ cl asses</ out put Di r ect or y>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. net beans. t ool s</ gr oupl d>
<artifactld>sigtest-nmaven-plugin</artifact!d>
<ver si on>1. 2</ ver si on>
<executi ons>
<executi on>
<i d>sigtest</id>

34

Running the signature test

<phase>veri f y</ phase>
<goal s>
<goal >check</ goal >
</ goal s>
</ executi on>
</ executi ons>
<configuration>
<sigfile>cdi-api-jdk8.sig</sigfile>
<packages>j akarta. decorator, j akarta. enterprise</packages>
<cl asses>t arget/cl asses</ cl asses>
<report>cdi-sig-report.txt</report>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ pr oj ect >

Scotts-i MacPro: resources st arksnt m/n -f si gt est - pom xni ver
i fy[I NFO Scanni ng for projects...[INFO[INFQ = -----------------
< jakarta.enterprise: cdi-tck-sigtest e [I NFO Bui | di ng
CDI TCK Si gnature Tests B.0[INFO = ----mmmmmmm e
[jar R e [INFG...[INFQ --- si gt est -
maven- pl ugi n: 1. 2: check (sigtest) @ cdi -t ck-si gtest ---[INFQ
Packages: jakarta.decorator,jakarta.enterprise[lNFQ SignatureTest reportBase
ver si on: 3. 0. 0- SNAPSHOT Test ed ver si on: 3. 0Check node: bi n
[throws r enoved] Const ant checki ng: onWar ni ng: The return type
java.l ang. refl ect. Menmber can't be r esol vedWar ni ng: The return type
java.lang.refl ect. Menmber can't be resol vedWar ni ng: The return type
java.l ang. refl ect. Mermber can't be resol ved[| NFQ /' User s/ st ar ksm Dev/
JBoss/ Jakartal/ cdi-tck/inpl/src/main/resources/cdi-sig-report.txt: 0 failures

in [Users/starksm Dev/ JBoss/ Jakarta/cdi-tck/inpl/src/min/resources/cdi-api-
j dk8. si g[| NFQ

BUI LD

Total time: 1.887 S[INFQ Finished at: 2020-05-27T15:55:18-05:00[! NFQ

i fy[INFQ Scanning for

projects...[INFO[INFQ ----------------- < jakarta.enterprise:cdi-tck-sigtest
R [INFQ Building CDI TCK Sighature Tests

[INFQ...[INFQ --- sigtest-naven-plugin:1.2:check (sigtest) @cdi-tck-sigtest
---[INFQ Packages:
j akarta. decorator,jakarta.enterprise[l NFO SignatureTest

35

Chapter 6. Running the Signat...

report Base version:

3. 0. 0- SNAPSHOTTest ed ver si on:
3. 0Check node: bin [throws
renoved] Const ant checki ng:

onWarni ng: The return type java.lang.refl ect. Menber can't be
resol vedWarni ng: The return type java.lang.reflect. Menber can't be
resol vedWarni ng: The return type java.lang.reflect. Menber can't be

resol ved[| NFQ| [User s/ st arksnf Dev/ JBoss/ Jakarta/ cdi -t ck/inpl/src/ main/
resources/cdi-sig-report.txt: O failures in/Users/starksni Dev/JBoss/Jakarta/cdi-tck/
i mpl / src/ mai n/resources/cdi-
api -j dk8. si g[| NFQ
-- [INFQ BU LD

-- [INFQ Total tine:
s[INFQ Finished at:
2020- 05- 27T15: 55: 18- 05: 00[| NFO

You can ignore the following warnings: "The return type java.lang.reflect. Member can't be re-
solved"

The important thing is that the mvn version shows "BUILD SUCCESS".

6.3. Forcing a signature test failure

Just for fun (and to confirm that the signature test is working correctly), you can try the following:
1) Edit cdi-api.sig

2) Modify one of the class signatures - in the following example we change one of the constructors
for BusyConversationException - here’s the original:

CLSS public jakarta.enterprise.context.BusyConversati onExceptioncons public
BusyConver sati onExcepti on() cons
BusyConver sati onException(j ava. |l ang. String)cons
BusyConver sati onExcepti on(j ava. |l ang. String, j ava. | ang. Thr owabl e) cons public

jakarta.enterprise.context.ContextExcepti onhfds serial Versi onU D
jakarta.enterprise.context.BusyConversati onExcepti oncons public
BusyConver sati onExcepti on()cons public
BusyConver sati onExcepti on(j ava. |l ang. Stri ng)cons public
BusyConver sati onExcepti on(j ava. |l ang. Stri ng, j ava. | ang. Thr owabl e) cons public
BusyConver sati onExcepti on(j ava. | ang. Thr owabl e) supr
jakarta.enterprise. context.Context Excepti onhfds

36

Forcing a signature test failure

Let's change the default (empty) constructor parameter to one with a java.lang.Integer parameter
instead:

CLSS public jakarta.enterprise.context.BusyConversati onExcepti oncons
public BusyConver sati onExcepti on(j ava. | ang. I nt eger) cons public
BusyConver sati onExcepti on(j ava. | ang. Stri ng) cons
BusyConver sati onExcepti on(j ava. |l ang. String, j ava. | ang. Thr owabl e) cons public

j akarta. enterprise. context.ContextExcepti onhfds seri al Versi onU D
jakarta. enterprise. context.BusyConversati onExcepti oncons public
BusyConver sati onExcepti on(j ava. |l ang. I nteger)cons public
BusyConver sati onExcepti on(j ava. |l ang. String)cons public
BusyConver sati onException(j ava.l ang. String, j ava. | ang. Thr owabl e) cons public
BusyConver sati onExcepti on(j ava. | ang. Thr owabl e) supr
jakarta. enterprise. context.Context Excepti onhfds

3) Now when we run the signature test using the above command, we should get the following
errors:

M ssi ng Const ruc
tors------mommmcmea oo j akarta. enterprise. context.BusyConversati onExcepti on:
constructor public
constructor public
errors
Con
structors-------------------- jakarta.enterprise.context.BusyConversati onExcepti on:

construct or

public jakarta.enterprise.context.BusyConversati onExcepti on. BusyConver sati onExcepti on(j ava. | anc
Added

Constructors------------------ jakarta. enterprise. context.BusyConversati onExcepti on:

constructor

public jakarta.enterprise.context.BusyConversati onExcepti on. BusyConver sati onExcepti on()

37

38

Chapter 7.

Chapter 7. Executing the Test Suite

This chapter explains how to run the TCK on Weld as well as your own implementation. The CDI
TCK uses the Maven Surefire plugin and the Arquillian test platform to execute the test suite.
Learning to execute the test suite from Maven is prerequisite knowledge for running the tests in
an IDE, such as Eclipse.

7.1. The Test Suite Runner

The test suite is executed by the Maven Surefire plugin during the test phase of the Maven life
cycle. The execution happens within a TCK runner project (as opposed to the TCK project itself).
Weld includes a TCK runner project that executes the CDI TCK on Weld running inside WildFly
22.x. To execute the CDI TCK on your own CDI implementation, you could modify the TCK runner
project included with Weld to use your CDI implementation.

7.2. Running the Tests In Standalone Mode

To execute the TCK test suite against Weld, first switch to the jboss-tck-runner directory in the
extracted TCK distribution:

cd jakartacdi/tck/wel d/jboss-tck-runner

@ Note

These instructions assume you have extracted the Jakarta CDI TCK software ac-
cording to the recommendation given in

Then execute the Maven life cycle through the test phase:

mvn test

Without any command-line flags, the test suite is run in standalone mode (activating weld-embed-
ded Maven profile), which means that any test within the integration, javaee-full and SE TestNG
group is excluded. This mode uses the Weld EE Embedded Arquillian container adapter to invoke
the test within a mock Jakarta EE life cycle and capture the results of the test. However, passing
the suite in this mode is not sufficient to pass the TCK as a whole. The suite must be passed while
executing using the in-container mode.

39

Chapter 7. Executing the Test...

7.3. Running the Tests In the Container - Core and EE
parts

To execute tests within Core and EE parts of the specification you need to use in-container mode
with the JBoss TCK runner, you first have to setup WildFly as described in the Running the TCK
against Weld and WildFly callout.

Then, execute the TCK runner with Maven as follows:
mvn test -Dincontainer

The presence of the incontainer property activates an incontainer Maven profile. This time, all the
tests except the tests within SE TestNG group are executed.

In order to run tests appropriate to the Jakarta EE Web Profile execute:
m/n test -Di ncontai ner=webprofile
To specify particular TCK version:

mvn test -Dincontainer -Dcdi.tck.version=3.0.0-RCL

@ Note
In order to run the TCK Test Suite in the container an Arquillian container adapter
is required. See also [https://docs.jboss.org/author/dis-
play/ARQ/Containers].

The Arquillian will also start and stop the application server automatically (provided a managed
Argullian container adapter is used).

Since Arquillian in-container tests are executed in a remote JVM, the results of the test must be
communicated back to the runner over a container-supported protocol. The TCK utilizes servlet-
based protocol (communication over HTTP).

7.4. Running the Tests In the Container - SE part

To execute full TCK testsuite you have to run tests within SE group as well. SE tests make use
of Arquillian container SE [https://github.com/arquillian/arquillian-container-se]. This way the tests
are executed in a separate JVM instance with isolated and configurable classpath. The Arquillian

40

https://docs.jboss.org/author/display/ARQ/Containers
https://docs.jboss.org/author/display/ARQ/Containers
https://docs.jboss.org/author/display/ARQ/Containers
https://github.com/arquillian/arquillian-container-se
https://github.com/arquillian/arquillian-container-se

Dumping the Test Archives

container does not start CDI container in any way - this is still done directly in the tests using CDI
SE bootstrap APl and j akart a. enterprise.inject.se.SeContainerlnitializer.Inorderto
run SE TCK tests in Weld, you need to execute "weld-se" Maven profile from the JBoss TCK
runner POM file as follows:

mvn test -Dincontainer=se

The profile needs to provide RI dependencies as well as Arquillian settings (ar qui | I'i an. xm).
These two need to be stored into a directory so that Arquillian container can then be
instructed to pick them up. In RI [https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-run-
ner/pom.xml#L424], this orchestration is done using maven- dependency- pl ugi n along with
maven- sur efire-pl ugi n.

7.5. Dumping the Test Archives

As you have learned, when the test suite is executing using in-container mode, each test class
is packaged as a deployable archive and deployed to the container. The test is then executed
within the context of the deployed application. This leaves room for errors in packaging. When
investigating a test failure, you may find it helpful to inspect the archive after it's generated. The
TCK (or Arquillian respectively) can accommodate this type of inspection by "dumping” the gen-
erated archive to disk.

The feature just described is activated in the Arquillian configuration file (Section 4.2, “Arquillian
settings”). In order to export the test archive you'll have to add the deploymentExportPath property
element inside engine element and assign a relative or absolute directory where the test archive
should be exported, e.g.:

<engi ne>
<property nane="depl oyment Export Pat h" >t ar get/ </ pr operty>
</ engi ne>

Arquillian will export the archive to that location for any test you run.

To enable the export for just a single test, use the VM argument arquillian.deploymentExportPath:

-Darqui |l l'ian. depl oynent Export Pat h=t ar get / depl oynment s/

41

https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-runner/pom.xml#L424
https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-runner/pom.xml#L424
https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-runner/pom.xml#L424

42

Chapter 8.

Chapter 8. Running Tests in Eclipse

This chapter explains how to run individual tests using the Eclipse TestNG plugin. It covers running
non-integration tests in standalone mode and integration tests (as well as non-integration tests)
in in-container mode. You should be able to use the lessons learned here to debug tests in an
alternate IDE as well.

8.1. Leveraging Eclipse’s plugin ecosystem

Using an existing test harness (TestNG) allows the tests to be executed and debugged in an Inte-
grated Development Environment (IDE) using available plugins. Using an IDE is also the easiest
way to execute a test class in isolation.

The TCK can be executed in any IDE for which there is a TestNG plugin [http://testng.org/doc/
index.html] available. Running a test from the CDI TCK test suite using the Eclipse TestNG plugin
is almost as simple as running any other TestNG test. You can also use the plugin to debug a
test, which is described in the next chapter.

Before running a test from the TCK test suite in Eclipse, you must have the Eclipse TestNG plu-
gin and either the m2e plugin or an Eclipse project generated using the Maven 2 Eclipse plug-
in (maven-eclipse-plugin). Refer to Section 3.3, “Eclipse Plugins” for more information on these
plugins.

https://
github.com/eclipse-ee4j/cdi-tck https://github.com/weld/core

With the m2e plugin installed, Eclipse should recognize the CDI TCK projects as valid Eclipse
projects (or any Weld project for that matter). Import them into the Eclipse workspace at this time.
You should also import the Weld projects if you want to debug into that code, which is covered
later.

Tip

If you choose to use the Maven 2 Eclipse plugin (maven-eclipse-plugin), you should
execute the plugin in both the tck and weld projects:

43

http://testng.org/doc/index.html
http://testng.org/doc/index.html
http://testng.org/doc/index.html
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/weld/core

Chapter 8. Running Tests in E...

8.2. Readying the Eclipse workspace

When setting up your Eclipse workspace, we recommended creating three workings sets:

Weld - Groups the CDI APl and the Weld projects CDI TCK - Groups the CDI TCK APl and the test
suite projects Weld JBoss TCK Runner - Groups the porting package implementation and TCK
runner projects The dependencies between the projects will either be established automatically
by the m2e plugin, based on the dependency information in the pom.xml files, or as generated
by the mvn eclipse:eclipse command.

Your workspace should appear as follows:

Vel d
cdi - ap
wel d- core
CDI TCK
cdi -tck-ap
cdi -tck-inpl
cdi -t ck- par ent
Vel d JBoss TCK Runner

wel d-j boss-runner-tck
wel d- porti ng- package-tck

The tests in the TCK test suite are located in the cdi-tck-impl project. You'll be working within
this project in Eclipse when you are developing tests. However, as you learned earlier, there are
no references to a CDI implementation in the TCK. So how can you execute an individual test
in Eclipse? The secret is that you need to establish a link in Eclipse (not in Maven) between the
cdi-tck-impl project and your TCK runner project, which in this case is weld-jboss-runner-tck (the
project in the jboss-tck-runner directory).

Here are the steps to establish the link:

1. Right click on the cdi-tck-impl project

2. Select Build Path > Configure Build Path...
3. Click on the Projects tab

4. Click the Add... button on the right

5. Check the TCK runner project (e.g., weld-jboss-runner-tck)

44

Running a test in standalone mode

6. Click the OK button on the Required Project Selection dialog window
7. Click the OK button on the Java Build Path window

Of course, the weld-jboss-runner-tck also depends on the cdi-tck-impl at runtime (so it can actu-
ally find the tests to execute). But m2e plugin doesn't distinguish between build-time and runtime
dependencies. As a result, we've created a circular dependency between the projects. In all like-
lihood, Eclipse will struggle (if not fail) to compile one or more projects. How can we break this
cycle?

As it turns out, the TCK runner doesn’t need to access the tests to build. It only needs its classes,
configurations and other dependencies at runtime (when the TestNG plugin executes). Therefore,
we can disable Resolve dependencies from workspace projects setting on weld-jboss-runner-tck
project:

1. Right click on the weld-jboss-runner-tck project

2. Select Maven

3. Uncheck Resolve dependencies from workspace projects option
4. Click the OK button on the Properties window

As you have learned, the TCK determines how to behave based on the values of system properties
or properties defined in META-INF/cdi-tck.properties classpath resources. In order to run the tests,
you need to add a properties file to the classpath or define corresponding system properties.

The CDI TCK project conveniently provides the properties file src/test/resources/META-INF/cdi-
tck.properties that contains all of the necessary properties for testing in Eclipse. You have to tune
the org.jboss.cdi.tck.libraryDirectory and org.jboss.cdi.tck.testDataSource properties to point to
the relative location of the related projects and specify the name of test datasource. The properties
should be defined as follows:

org.jboss.cdi.tck.libraryDirectory - the path to the target/dependency/lib directory in the TCK run-
ner project org.jboss.cdi.tck.testDataSource - the JNDI name of the test datasource, e.g. WildFly
22:

org.j boss. cdi.tck.testDataSource=j ava: j boss/ dat asour ces/ Exanpl eDS

You are now ready to execute an individual test class (or artifact). Let's start with a test artifact
capable of running in standalone mode.

8.3. Running a test in standalone mode

Use weld-embedded Maven profile (active by default) in order to run a test in standalone mode.

45

Chapter 8. Running Tests in E...

w Tip

If using m2e Eclipse plugin, you can activate/deactivate the profile in Maven section

of project properties.

Select a test class containing standalone tests and open it in the Eclipse editor. Now right click
in the editor view and select Run As > TestNG Test. The TestNG view should pop out and you
should see all the tests in that artifact pass (if all goes well).

So far you have executed a test in standalone mode. That's not sufficient to pass the TCK. The
test must be executed using in-container mode.

Let's see what has to be done to execute an integration test. This will result in the artifact being
deployed to the container, which is WildFly if you are using the JBoss TCK runner.

8.4. Running integration tests

In order to run a test in the container you must explicitly specify following active Maven profiles in
JBoss TCK runner Eclipse project properties: incontainer,!weld-embedded.

Select an integration test (a class that extends org.jboss.cdi.tck.AbstractTest and open it in your
Eclipse editor. Right click in the editor view and select Run As > TestNG Test.

Running integration tests

You have now mastered running the CDI TCK against Weld using both Maven and within Eclipse.
Now you're likely interested in how to debug a test so that you can efficiently investigate test
failures.

47

48

Chapter 9.

Chapter 9. Debugging Tests in
Eclipse

This chapter explains how to debug standalone and integration tests from the TCK test suite in
Eclipse. You should be able to use the lessons learned here to debug tests in an alternate IDE
as well.

9.1. Debugging a standalone test

There is almost no difference in how you debug a standalone test from how you run it. With the
test class open in the Eclipse editor, simply right click in the editor view and select Debug As >
TestNG Test. Eclipse will stop at any breakpoints you set just like it would with any other local
debug process.

If you plan to step into a class in the Weld implementation (or any other dependent library), you
must ensure that the source is properly associated with the library. Below are the steps to follow
to associate the source of Weld with the TestNG debug configuration:

1. Select the Run > Debug Configurations... menu from the main menubar

2. Select the name of the test class in the TestNG category

3. Select the Source tab

4. Click the Add... button on the right

5. Select Java Project

6. Check the project that contains the class you want to debug (e.g., weld-core)

7. Click OK on the Project Selection window

8. Click Close on the Debug Configurations window

You'll have to complete those steps for any test class you are debugging, though you only have
to do it once (the debug configuration hangs around indefinitely).

Again, running a test in standalone mode isn’t enough to pass the TCK and cannot be used to
run or debug an integration test. Let's look at how to debug a test running in the context of the
container.

9.2. Debugging an integration test

In order to debug an integration test, or any test run using in-container mode, the test must be
configured to run in-container, as described in Section 8.4, “Running integration tests”, and you

49

Chapter 9. Debugging Tests in...

must attach the IDE debugger to the container. That puts the debugger on both sides of the fence,
so to speak.

Since setting up a test to run in-container has already been covered, we’ll look at how to attach
the IDE debugger to the container, and then move on launching the test in debug mode.

9.2.1. Attaching the IDE debugger to the container

There are two ways to attach the IDE debugger to the container. You can either start the container
in debug mode from within the IDE, or you can attach the debugger over a socket connection to
a standalone container running with JPDA enabled.

The Eclipse Server Tools, a subproject of the Eclipse Web Tools Project (WTP), has support for
launching most major application servers, including WildFly 22. However, if you are using Wild-
Fly, you should consider using JBoss Tools instead, which offers tighter integration with JBoss
technologies. See either the Server Tools documentation [http://www.eclipse.org/webtools/serv-
er/server.php] or the JBoss Tools documentation [http://docs.jboss.org/tools/] for how to setup a
container and start it in debug mode.

See this blog entry [http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-
and-eclipse/] to learn how to start WildFly with JPDA enabled and how to get the Eclipse debugger
to connect to the remote process.

9.2.2. Launching the test in the debugger

Once Eclipse is debugging the container, you can set a breakpoint in the test and debug it just
like a standalone test. Let's give it a try.

Open a test in the Eclipse editor, right click in the editor view, and select Debug As > TestNG
Test (this works for the container started in debug mode from within the IDE) or run the TestNG
test and debug Remote Java Application (remote debug configuration) in the same time (when
attaching the debugger over a socket connection to a container). This time when the IDE hits the
breakpoint, it halts the JVM thread of the container rather than the thread that launched the test.

Remember that if you need to debug into dependent libraries, the source code for those libraries
will need to be registered with the TestNG debug configuration as described in the first section
in this chapter.

50

http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://docs.jboss.org/tools/
http://docs.jboss.org/tools/
http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-and-eclipse/
http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-and-eclipse/
http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-and-eclipse/

	Technology Compatibility Kit Reference Guide for Jakarta Contexts and Dependency Injection
	Table of Contents
	Preface
	1. Who Should Use This Book
	2. Before You Read This Book
	3. How This Book Is Organized

	Part I. Getting Acquainted with the TCK
	Chapter 1. Introduction (CDI TCK)
	1.1. TCK Primer
	1.2. Compatibility Testing
	1.2.1. Why Compatibility Is Important

	1.3. Compatibility Requirements
	1.3.1. Definitions
	1.3.2. Rules for Jakarta Contexts and Dependency Injection Version 4.0 Products

	1.4. About the CDI TCK
	1.4.1. CDI TCK Specifications and Requirements
	1.4.2. CDI TCK Components

	1.5. Libraries for Jakarta Contexts and Dependency Injection Version 4.0

	Chapter 2. Appeals Process
	2.1. What challenges to the TCK may be submitted?
	2.2. How these challenges are submitted?
	2.3. How and by whom challenges are addressed?
	2.4. How accepted challenges to the TCK are managed?

	Chapter 3. Installation
	3.1. Obtaining the Software
	3.2. The TCK Environment
	3.3. Eclipse Plugins
	3.3.1. TestNG Plugin
	3.3.2. Maven Plugin (m2e)

	Chapter 4. Configuration
	4.1. TCK Properties
	4.2. Arquillian settings
	4.3. The Porting Package
	4.4. Using the CDI TCK with the Jakarta EE Web Profile
	4.5. Configuring TestNG to execute the TCK
	4.6. Configuring your build environment to execute the TCK
	4.7. Configuring your application server to execute the TCK

	Chapter 5. Reporting
	5.1. CDI TCK Coverage Metrics
	5.2. CDI TCK Coverage Report
	5.2.1. CDK TCK Assertions
	5.2.2. Producing the Coverage Report
	5.2.3. TestNG Reports
	5.2.3.1. Maven, Surefire and TestNG
	5.2.3.2. TestNG HTML Reports
	5.2.3.3. Test Results in the TestNG Plugin View

	Part II. Executing and Debugging Tests
	Chapter 6. Running the Signature Test
	6.1. Obtaining the sigtest plugin
	6.2. Running the signature test
	6.3. Forcing a signature test failure

	Chapter 7. Executing the Test Suite
	7.1. The Test Suite Runner
	7.2. Running the Tests In Standalone Mode
	7.3. Running the Tests In the Container - Core and EE parts
	7.4. Running the Tests In the Container - SE part
	7.5. Dumping the Test Archives

	Chapter 8. Running Tests in Eclipse
	8.1. Leveraging Eclipse’s plugin ecosystem
	8.2. Readying the Eclipse workspace
	8.3. Running a test in standalone mode
	8.4. Running integration tests

	Chapter 9. Debugging Tests in Eclipse
	9.1. Debugging a standalone test
	9.2. Debugging an integration test
	9.2.1. Attaching the IDE debugger to the container
	9.2.2. Launching the test in the debugger

