
Technology Compatibility

Kit Reference Guide for

Jakarta Contexts and

Dependency Injection

iii

Preface ... v

1. Who Should Use This Book ... v

2. Before You Read This Book ... v

3. How This Book Is Organized .. v

I. Getting Acquainted with the TCK .. 1

1. Introduction (CDI TCK) .. 3

1.1. TCK Primer .. 3

1.2. Compatibility Testing ... 3

1.2.1. Why Compatibility Is Important .. 4

1.3. Compatibility Requirements ... 4

1.3.1. Definitions .. 4

1.3.2. Rules for Jakarta Contexts and Dependency Injection Version 4.0

Products .. 7

1.4. About the CDI TCK ... 8

1.4.1. CDI TCK Specifications and Requirements .. 8

1.4.2. CDI TCK Components .. 9

1.5. Libraries for Jakarta Contexts and Dependency Injection Version 4.0 10

2. Appeals Process .. 11

2.1. What challenges to the TCK may be submitted? ... 11

2.2. How these challenges are submitted? .. 11

2.3. How and by whom challenges are addressed? ... 11

2.4. How accepted challenges to the TCK are managed? 11

3. Installation ... 13

3.1. Obtaining the Software .. 13

3.2. The TCK Environment ... 13

3.3. Eclipse Plugins ... 15

3.3.1. TestNG Plugin ... 15

3.3.2. Maven Plugin (m2e) ... 15

4. Configuration ... 17

4.1. TCK Properties ... 17

4.2. Arquillian settings .. 18

4.3. The Porting Package .. 18

4.4. Using the CDI TCK with the Jakarta EE Web Profile 18

4.5. Configuring TestNG to execute the TCK ... 19

4.6. Configuring your build environment to execute the TCK 20

4.7. Configuring your application server to execute the TCK 20

5. Reporting ... 21

5.1. CDI TCK Coverage Metrics ... 21

5.2. CDI TCK Coverage Report .. 21

5.2.1. CDK TCK Assertions .. 21

5.2.2. Producing the Coverage Report .. 22

5.2.3. TestNG Reports ... 23

II. Executing and Debugging Tests ... 31

6. Running the Signature Test ... 33

Technology Compatibility Kit ...

iv

6.1. Obtaining the sigtest plugin ... 33

6.2. Running the signature test ... 33

6.3. Forcing a signature test failure ... 36

7. Executing the Test Suite ... 39

7.1. The Test Suite Runner .. 39

7.2. Running the Tests In Standalone Mode .. 39

7.3. Running the Tests In the Container - Core and EE parts 40

7.4. Running the Tests In the Container - SE part .. 40

7.5. Dumping the Test Archives .. 41

8. Running Tests in Eclipse ... 43

8.1. Leveraging Eclipse’s plugin ecosystem ... 43

8.2. Readying the Eclipse workspace .. 44

8.3. Running a test in standalone mode .. 45

8.4. Running integration tests ... 46

9. Debugging Tests in Eclipse ... 49

9.1. Debugging a standalone test ... 49

9.2. Debugging an integration test .. 49

9.2.1. Attaching the IDE debugger to the container 50

9.2.2. Launching the test in the debugger ... 50

v

Preface

This guide describes how to download, install, configure, and run the Technology Compatibility

Kit (TCK) used to verify the compatibility of an implementation of the Jakarta Contexts and De-

pendency Injection.

The CDI TCK is built atop TestNG framework and Arquillian platform. The CDI TCK uses the

Arquillian version 1.7.0.Alpha2 to execute the test suite.

The CDI TCK is provided under Apache Public License 2.0 [http://www.apache.org/licenses/LI-

CENSE-2.0].

1. Who Should Use This Book

This guide is for implementors of the Jakarta Context and Dependency Injection 4.0 technology

to assist in running the test suite that verifies the compatibility of their implementation.

2. Before You Read This Book

Before reading this guide, you should familiarize yourself with the Jakarta EE programming model,

specifically the Jakarta Enterprise Beans (EJB) 4.0 and the Jakarta Contexts and Dependency

Injection 4.0 specifications. A good resource for the Jakarta EE programming model is the Jakarta

EE [http://jakarta.ee] web site.

The CDI TCK is based on the Jakarta Context and Dependency Injection technology specification.

Information about the specification, including links to the specification documents, can be found

on the CDI page [https://jakarta.ee/specifications/cdi].

Before running the tests in the CDI TCK, read and become familiar with the Arquillian testing

platform. A good starting point could be a series of Arquillian Guides [http://arquillian.org/guides/].

3. How This Book Is Organized

If you are running the CDI TCK for the first time, read Chapter 1, Introduction (CDI TCK) completely

for the necessary background information about the TCK. Once you have reviewed that material,

perform the steps outlined in the remaining chapters.

• Chapter 1, Introduction (CDI TCK) gives an overview of the principles that apply generally to all

Technology Compatibility Kits (TCKs), outlines the appeals process and describes the CDI TCK

architecture and components. It also includes a broad overview of how the TCK is executed

and lists the platforms on which the TCK has been tested and verified.

• Chapter 2, Appeals Process explains the process to be followed by an implementor, who wish

to challenge any test in the TCK.

• Chapter 3, Installation explains where to obtain the required software for the CDI TCK and how

to install it. It covers both the primary TCK components as well as tools useful for troubleshooting

tests.

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://jakarta.ee
http://jakarta.ee
http://jakarta.ee
https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/cdi
http://arquillian.org/guides/
http://arquillian.org/guides/

Preface

vi

• Chapter 4, Configuration details the configuration of the JBoss Test Harness, how to create a

TCK runner for the TCK test suite and the mechanics of how an in-container test is conducted.

• Chapter 5, Reporting explains the test reports that are generated by the TCK test suite and

introduces the TCK audit report as a tool for measuring the completeness of the TCK in testing

the CDI specification and in understanding how testcases relate to the specification.

• Chapter 7, Executing the Test Suite documents how the TCK test suite is executed. It covers

both modes supported by the TCK, standalone and in-container, and shows how to dump the

generated test artifacts to disk.

• Chapter 8, Running Tests in Eclipse shows how to run individual tests in Eclipse and advises

the best way to setup your Eclipse workspace for running the tests.

• Chapter 9, Debugging Tests in Eclipse builds on Chapter 8, Running Tests in Eclipse by detailing

how to debug individual tests in Eclipse.

Part I. Getting

Acquainted with the TCK
The CDI TCK must be used to ensure that your implementation conforms to the CDI specification.

This part introduces the TCK, gives some background about its purpose, states the requirements

for passing the TCK and outlines the appeals process.

In this part you will learn where to obtain the CDI TCK and supporting software. You are then

presented with recommendations of how to organize and configure the software so that you are

ready to execute the TCK.

Finally, it discusses the reporting provided by the TCK.

Chapter 1.

3

Chapter 1. Introduction (CDI TCK)
This chapter explains the purpose of a TCK and identifies the foundation elements of the CDI TCK.

1.1. TCK Primer

A TCK, or Technology Compatibility Kit, is one of the three required pieces for any specification

(the other two being the specification document and a compatible implementation). The TCK is a

set of tools and tests to verify that an implementation of the technology conforms to the specifica-

tion. The tests are the primary component, but the tools serve an equally critical role of providing

a framework and/or set of SPIs for executing the tests.

The tests in the TCK are derived from assertions in the written specification document. The as-

sertions are itemized in an XML document, where they each get assigned a unique identifier,

and materialize as a suite of automated tests that collectively validate whether an implementation

complies with the aforementioned assertions, and in turn the specification. For a particular imple-

mentation to be certified, all of the required tests must pass (i.e., the provided test suite must be

run unmodified).

A TCK is entirely implementation agnostic. Ideally, it should validate assertions by consulting the

specification’s public API. However, when the information returned by the public API is not low-

level enough to validate the assertion, the implementation must be consulted directly. In this case,

the TCK provides an independent API as part of a porting package that enables this transparency.

The porting package must be implemented for each CDI implementation. Section 1.4.2, “CDI TCK

Components” introduces the porting package and Section 4.3, “The Porting Package” covers the

requirements for implementing it.

1.2. Compatibility Testing

The goal of any specification is to eliminate portability problems so long as the program which

uses the implementation also conforms to the rules laid out in the specification.

Executing the TCK is a form of compatibility testing. It’s important to understand that compatibility

testing is distinctly different from product testing. The TCK is not concerned with robustness,

performance or ease of use, and therefore cannot vouch for how well an implementation meets

these criteria. What a TCK can do is to ensure the exactness of an implementation as it relates

to the specification.

Compatibility testing of any feature relies on both a complete specification and a complete compat-

ible implementation. The compatible implementation demonstrates how each test can be passed

and provides additional context to the implementor during development for the corresponding as-

sertion.

Chapter 1. Introduction (CDI TCK)

4

1.2.1. Why Compatibility Is Important

Java platform compatibility is important to different groups involved with Java technologies for

different reasons:

• Compatibility testing is the means by which the Jakarta ensures that the Java platform does not

become fragmented as it’s ported to different operating systems and hardware.

• Compatibility testing benefits developers working in the Java programming language, enabling

them to write applications once and deploy them across heterogeneous computing environ-

ments without porting.

• Compatibility testing enables application users to obtain applications from disparate sources

and deploy them with confidence.

• Conformance testing benefits Java platform implementors by ensuring the same extent of reli-

ability for all Java platform ports.

The CDI specification goes to great lengths to ensure that programs written for Jakarta EE are

compatible and the TCK is rigorous about enforcing the rules the specification lays down.

1.3. Compatibility Requirements

The compatibility requirements for Jakarta Contexts and Dependency Injection Version 3.0 consist

of meeting the requirements set forth by the rules and associated definitions contained in this

section.

1.3.1. Definitions

These definitions are for use only with these compatibility requirements and are not intended for

any other purpose.

Table 1.1. Definitions

Term Definition

API Definition Product A Product for which the only Java class files

contained in the product are those corre-

sponding to the application programming in-

terfaces defined by the Specifications, and

which is intended only as a means for formal-

ly specifying the application programming in-

terfaces defined by the Specifications.

Computational Resource A piece of hardware or software that may vary

in quantity, existence, or version, which may

be required to exist in a minimum quantity

and/or at a specific or minimum revision level

so as to satisfy the requirements of the Test

Suite. Examples of computational resources

Definitions

5

Term Definition

that may vary in quantity are RAM and file

descriptors. Examples of computational re-

sources that may vary in existence (that is,

may or may not exist) are graphics cards and

device drivers. Examples of computational re-

sources that may vary in version are operat-

ing systems and device drivers.

Conformance Tests All tests in the Test Suite for an indicated

Technology Under Test, as distributed by the

Maintenance Lead, excluding those tests on

the Exclude List for the Technology Under

Test.

Documented Made technically accessible and made known

to users, typically by means such as market-

ing materials, product documentation, usage

messages, or developer support programs.

Edition A Version of the Java Platform. Editions in-

clude Java Platform Standard Edition and

Jakarta Platform Enterprise Edition.

Exclude List The most current list of tests, distributed by

the Maintenance Lead or TCK Lead, that

are not required to be passed to certify con-

formance. The Maintenance Lead or TCK

Lead may add to the Exclude List for that Test

Suite as needed at any time, in which case

the updated Exclude List supplants any previ-

ous Exclude Lists for that Test Suite.

Libraries The class libraries for the Technology Under

Test. The Libraries for Jakarta Contexts and

Dependency Injection Version {revnumver}

are listed in Section 1.5, “Libraries for Jakarta

Contexts and Dependency Injection Version

4.0”.

Location Resource A location of classes or native libraries that

are components of the test tools or tests,

such that these classes or libraries may be re-

quired to exist in a certain location in order to

satisfy the requirements of the test suite. For

example, classes may be required to exist in

directories named in a CLASSPATH variable,

Chapter 1. Introduction (CDI TCK)

6

Term Definition

or native libraries may be required to exist in

directories named in a PATH variable.

Product A licensee product in which the Technology

Under Test is implemented or incorporated,

and that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an Oper-

ating Mode. For example, a Product support-

ing an Operating Mode that permits user se-

lection of an external encryption package may

have a Product Configuration that links the

Product to that encryption package.

Compatible Implementation (CI) The prototype or "proof of concept" imple-

mentation of a Specification.

Resource A Computational Resource, a Location Re-

source, or a Security Resource.

Rules These definitions and rules in this Compatibili-

ty Requirements section of this User’s Guide.

Security Resource A security privilege or policy necessary for

the proper execution of the Test Suite. For

example, the user executing the Test Suite

will need the privilege to access the files and

network resources necessary for use of the

Product.

Specifications The documents produced through the Jakarta

EE Specification Process that define a partic-

ular Version of a Technology. The Specifica-

tions for the Technology Under Test are refer-

enced later in this chapter.

TCK Lead Person responsible for maintaining TCK for

the Technology. TCK Lead is representative

of Red Hat Inc.

Technology Specifications and a compatible implementa-

tion produced through the Jakarta EE Specifi-

cation Process.

Technology Under Test Specifications and the compatible implemen-

tation for Jakarta Contexts and Dependency

Injection Version 3.0.

Test Suite The requirements, tests, and testing tools

distributed by the Maintenance Lead or TCK

Rules for Jakarta Contexts and Dependency Injection Version 4.0 Products

7

Term Definition

Lead as applicable to a given Version of the

Technology.

Version A release of the Technology, as produced

through the Jakarta EE Specification Process.

1.3.2. Rules for Jakarta Contexts and Dependency Injection Ver-

sion 4.0 Products

The following rules apply for each version of an operating system, software component, and hard-

ware platform Documented as supporting the Product:

CDI-1 The Product must be able to satisfy all applicable compatibility requirements, including

passing all Conformance Tests, in every Product Configuration and in every combination of Prod-

uct Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that

Product must satisfy all applicable compatibility requirements for a Product in each Product Con-

figuration, and combination of Product Configurations, of those Operating Modes.

CDI-1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test

Suite, testing may always use a Product Configuration of that Operating Mode providing that

Resource, even if other Product Configurations do not provide that Resource. Notwithstanding

such exceptions, each Product must have at least one set of Product Configurations of such

Operating Modes that is able to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy which has one or

more Product Configurations that cause Conformance Tests to fail may be tested using a Product

Configuration that allows all Conformance Tests to pass.

CDI-1.2 A Product Configuration of an Operating Mode that causes the Product to report only

version, usage, or diagnostic information is exempted from these compatibility rules.

CDI-1.3 A Product may contain an Operating Mode that selects the Edition with which it is com-

patible. The Product must meet the compatibility requirements for the corresponding Edition for

all Product Configurations of this Operating Mode. This Operating Mode must affect no smaller

unit of execution than an entire Application.

CDI-1.4 An API Definition Product is exempt from all functional testing requirements defined here,

except the signature tests.

CDI-2 Some Conformance Tests may have properties that may be changed. Properties that can

be changed are identified in the configuration interview. Properties that can be changed are spec-

ified in Section 4.1, “TCK Properties”. Apart from changing such properties and other allowed

modifications described in this User’s Guide (if any), no source or binary code for a Conformance

Test may be altered in any way without prior written permission.

Chapter 1. Introduction (CDI TCK)

8

CDI-3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance Lead

or TCK Lead must be used to certify compliance.

CDI-4 The Exclude List associated with the Test Suite cannot be modified.

CDI-5 The Maintenance Lead or TCK Lead can define exceptions to these Rules. Such exceptions

would be made available to and apply to all licensees.

CDI-6 All hardware and software component additions, deletions, and modifications to a Docu-

mented supporting hardware/software platform, that are not part of the Product but required for

the Product to satisfy the compatibility requirements, must be Documented and available to users

of the Product. For example, if a patch to a particular version of a supporting operating system

is required for the Product to pass the Conformance Tests, that patch must be Documented and

available to users of the Product.

CDI-7 The Product must contain the full set of public and protected classes and interfaces for all

the Libraries. Those classes and interfaces must contain exactly the set of public and protected

methods, constructors, and fields defined by the Specifications for those Libraries. No subsetting,

supersetting, or modifications of the public and protected API of the Libraries are allowed except

only as specifically exempted by these Rules.

CDI-8 Except for tests specifically required by this TCK to be recompiled (if any), the binary Con-

formance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead or TCK

Lead must be used to certify compliance.

CDI-9 The functional programmatic behavior of any binary class or interface must be that defined

by the Specifications.

1.4. About the CDI TCK

The CDI TCK is designed as a portable, configurable and automated test suite for verifying the

compatibility of an implementation of the Jakarta CDI specification. The test suite is built atop

TestNG framework and Arquillian platform.

Each test class in the suite acts as a deployable unit. The deployable units, or artifacts, can be

either a WAR or an EAR.

Note

The test archives are built with ShrinkWrap, a Java API for creating archives.

ShrinkWrap is a part of the Arqullian platform ecosystem.

1.4.1. CDI TCK Specifications and Requirements

This section lists the applicable requirements and specifications for the CDI TCK.

CDI TCK Components

9

• Specification requirements - Software requirements for a CDI implementation are itemized in

section 1.2, "Relationship to other specifications" in the CDI specification, with details provided

throughout the specification. Generally, the CDI specification targets the Jakarta EE 8 platform

and will be aligned with its specifications.

• Jakarta Contexts and Dependency Injection 4.0 API - The Java API defined in the CDI spec-

ification and provided by the compatible implementation.

• Testing platform - The CDI TCK requires version 1.7.0.Alpha2 of the Arquillian (http://

arquillian.org). The TCK test suite is based on TestNG 6.x (http://testng.org). .

• Porting Package - An implementation of SPIs that are required for the test suite to run the in-

container tests and at times extend the CDI 3.0 API to provide extra information to the TCK.

• TCK Audit Tool - An itemization of the assertions in the specification documents which are

cross referenced by the individual tests. Describes how well the TCK covers the specification.

• Compatible implementation - A compatible implementation runtime for compatibility testing

of the CDI specification is the Jakarta Platform Enterprise Edition 8 compatible implementation.

• Jarkarta Dependency Injection - CDI builds on DI, and as such CDI implementations must

additionally pass the Jakarta Dependency Injection TCK.

Tip

The TCK distribution includes weld/porting-package-lib/weld-inject-tck-run-

ner-X.Y.Z-Q-tests.jar which contains two classes showing how the Weld com-

patible implementation passes the CDI TCK. The source for these class-

es is available from hhttps://github.com/weld/core/tree/4.0.0.Alpha2/inject-tck-run-

ner/src/test/java/org/jboss/weld/atinject/tck

1.4.2. CDI TCK Components

The CDI TCK includes the following components:

• Arquillian 1.7.0.Alpha2

• TestNG 6.14.3

• Porting Package SPIs - Extensions to the CDI SPIs to allow testing of a container.

• The test suite, which is a collection of TestNG tests, the TestNG test suite descriptor and

supplemental resources that configure CDI and other software components.

• The TCK audit is used to list out the assertions identified in the CDI specification. It matches

the assertions to testcases in the test suite by unique identifier and produces a coverage report.

http://arquillian.org
http://arquillian.org
http://testng.org
hhttps://github.com/weld/core/tree/4.0.0.Alpha2/inject-tck-runner/src/test/java/org/jboss/weld/atinject/tck
hhttps://github.com/weld/core/tree/4.0.0.Alpha2/inject-tck-runner/src/test/java/org/jboss/weld/atinject/tck

Chapter 1. Introduction (CDI TCK)

10

The audit document is provided along with the TCK; at least 95% of assertions are tested. Each

assertion is defined with a reference to a chapter, section and paragraph from the specification

document, making it easy for the implementor to locate the language in the specification document

that supports the feature being tested.

• TCK documentation accompanied by release notes identifying updates between versions.

The CDI TCK has been tested on following platforms:

• WildFly X using Oracle Java SE 8 on Red Hat Enterprise Linux 7.2

CDI supports Jakarta EE 8, Jakarta EE 8 Web Profile, Embeddable Jakarta Enterprise Beans 3.2.

The TCK will execute on any of these runtimes, but is only part of the CTS for Jakarta EE 8 and

Jakarta EE 8 Web Profile.

1.5. Libraries for Jakarta Contexts and Dependency In-

jection Version 4.0

The following is the list of packages that constitute the required class libraries for Jakarta Contexts

and Dependency Injection Version 4.0:

• jakarta.decorator

• jakarta.enterprise.context

• jakarta.enterprise.context.control

• jakarta.enterprise.context.spi

• jakarta.enterprise.event

• jakarta.enterprise.inject

• jakarta.enterprise.inject.literal

• jakarta.enterprise.inject.se

• jakarta.enterprise.inject.spi

• jakarta.enterprise.inject.spi.configurator

• jakarta.enterprise.util

Chapter 2.

11

Chapter 2. Appeals Process
While the CDI TCK is rigorous about enforcing an implementation’s conformance to the Jakarta

CDI specification, it’s reasonable to assume that an implementor may discover new and/or better

ways to validate the assertions. The appeals process is defined by the Jakarta EE Jakarta EE

TCK Process 1.0 [https://jakarta.ee/committees/specification/tckprocess/]

2.1. What challenges to the TCK may be submitted?

Any test case (e.g., test class, @Test method), test case configuration (e.g., beans.xml), test

beans, annotations and other resources may be challenged by an appeal.

What is generally not challengeable are the assertions made by the specification. The specification

document is controlled by a separate process and challenges to it should be handled by the

Maintenance Lead or by sending an e-mail to link:mailto:cdi-dev@eclipse.org

2.2. How these challenges are submitted?

To submit a challenge, a new issue should be created in the CDI specification project [https://

github.com/eclipse-ee4j/cdi] using the label challenge. Any communication regarding the issue

should be pursed in the comments of the filed issue for accurate record.

2.3. How and by whom challenges are addressed?

The challenges will be addressed in a timely fashion by the TCK Lead, as designated by Specifi-

cation Lead, Red Hat Inc. or his/her designate. The appellant can also monitor the process by fol-

lowing the issue report filed in the CDI TCK project [https://github.com/eclipse-ee4j/cdiK] issues.

The current TCK Lead is listed on the CDI Project Summary Page [https://jakarta.ee/specifica-

tions/cdi] on Jakarta EE.

2.4. How accepted challenges to the TCK are managed?

The worflow for TCK challenges is outlined in Jakarta EE TCK Process 1.0 [https://jakarta.ee/

committees/specification/tckprocess/].

Periodically, an updated TCK will be released, containing tests altered due to challenges - no new

tests will be added. Implementations are required to pass the updated TCK. This release stream

is named 4.0.x, where x will be incremented.

Additionally, new tests will be added to the TCK improving coverage of the specification. We

encourage implementations to pass this TCK, however it is not required. This release stream is

named 3.y.z where y >= 1.

https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/cdiK
https://github.com/eclipse-ee4j/cdiK
https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/cdi
https://jakarta.ee/specifications/cdi
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/
https://jakarta.ee/committees/specification/tckprocess/

12

Chapter 3.

13

Chapter 3. Installation
This chapter explains how to obtain the TCK and supporting software and provides recommen-

dations for how to install/extract it on your system.

3.1. Obtaining the Software

You can obtain a release of the CDI TCK project from the download page [https://

download.eclipse.org/jakartaee/cdi/] on the CDI specification website. The release stream for

Jakarta CDI is named 4.0.x. The CDI TCK is distributed as a ZIP file, which contains the TCK

artifacts (the test suite binary and source, porting package API binary and source, the test suite

configuration file, the audit source and report) in /artifacts and documentation in /doc. The TCK

library dependencies are not part of the distribution and can be downloaded on demand (see

readme.txt file in /lib).

You can also download the current source code from GitHub repository [https://github.com/

eclipse-ee4j/cdi-tck].

Executing the TCK requires a Jakarta EE 8 or better runtime environment (i.e., application server),

to which the test artifacts are deployed and the individual tests are invoked. The TCK does not

depend on any particular Jakarta EE implementation.

A Jakarta Contexts and Dependency Injection for compatible implementation project is named

Weld. The release stream for Jakarta CDI 4.0 is named 4.x. You can obtain the latest release

from the download page [http://weld.cdi-spec.org/download/] on the Weld website.

Note

Weld is not required for running the CDI TCK, but it can be used as a reference for

familiarizing yourself with the TCK before testing your own CDI implementation.

Naturally, to execute Java programs, you must have a Java SE runtime environment. The TCK

requires Java SE 8 or better, which you can obtain from the Java Software [http://www.oracle.com/

technetwork/java/index.html] website.

3.2. The TCK Environment

The TCK requires the following two Java runtime environments:

• Java SE 8 or better

• Jakarta EE 8 or better (e.g., WildFly 22.x or GlassFish V6)

You should refer to vendor instructions for how to install the runtime environment.

https://download.eclipse.org/jakartaee/cdi/
https://download.eclipse.org/jakartaee/cdi/
https://download.eclipse.org/jakartaee/cdi/
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/eclipse-ee4j/cdi-tck
http://weld.cdi-spec.org/download/
http://weld.cdi-spec.org/download/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

Chapter 3. Installation

14

The rest of the TCK software can simply be extracted. It’s recommended that you create a folder

named jakartacdi to hold all of the jakartacdi-related projects. Then, extract the TCK distribution

into a subfolder named tck. If you have downloaded the Weld distribution, extract it into a sibling

folder named weld. The resulting folder structure is shown here:

Note

This layout is assumed through all descriptions in this reference guide.

jakartacdi/ weld/ tck/

tacdi/

 weld/

Each test class is treated as an individual artifact. All test methods (i.e., methods annotated with

@Test) in the test class are run in the application, meaning bean discovery occurs exactly once

per artifact and the same BeanManager is used by each test method in the class.

Tip

Running the TCK against Weld and WildFly

• First, you should download WildFly 22.x from the WildFly project page [http://

www.wildfly.org/downloads/].

• Set the JBOSS_HOME environment variable to the location of the WildFly soft-

ware.

The CDI TCK distribution includes a TCK runner that executes the TCK using Weld

as the CDI implementation and WildFly as the Jakarta EE runtime. To run the TCK:

• You need to install Maven. You can find documentation on how to install Maven

in the Maven: The Definitive Guide [http://books.sonatype.com/mvnref-book/ref-

erence/installation.html] book published by Sonatype.

• Next, instruct Maven to run the TCK:

cd jakartacdi/tck/weld/jboss-tck-runnermvn test -Dincontainer

tck-runnermvn test

• Use cdi.tck.version system property to specify particular TCK version:

http://www.wildfly.org/downloads/
http://www.wildfly.org/downloads/
http://www.wildfly.org/downloads/
http://books.sonatype.com/mvnref-book/reference/installation.html
http://books.sonatype.com/mvnref-book/reference/installation.html
http://books.sonatype.com/mvnref-book/reference/installation.html

Eclipse Plugins

15

mvn test -Dincontainer -Dcdi.tck.version=3.0.0-RC1

• TestNG will report, via Maven, the outcome of the run, and report any failures

on the console. Details can be found in target/surefire-reports/TestSuite.txt.

3.3. Eclipse Plugins

Eclipse, or any other IDE, is not required to execute or pass the TCK. However an implementor

may wish to execute tests in an IDE to aid debugging the tests. This section introduces two es-

sential Eclipse plugins, TestNG and Maven, and points you to resources explaining how to install

them.

3.3.1. TestNG Plugin

The TCK test suite is built on the TestNG. Therefore, having the TestNG plugin installed in Eclipse

is essential. Instructions for using the TestNG update site to add the TestNG plugin to Eclipse

are provided on the TestNG download page [http://testng.org/doc/download.html]. You can find a

tutorial that explains how to use the TestNG plugin on the TestNG Eclipse page [http://testng.org/

doc/eclipse.html].

3.3.2. Maven Plugin (m2e)

Another useful plugin is m2e. The TCK project uses Maven. Therefore, to work with TCK in Eclipse,

you may wish to have native support for Maven projects, which the m2e plugin provides. Instruc-

tions for using the m2e update site to add the m2e plugin to Eclipse are provided on the m2e

home page [http://eclipse.org/m2e/].

You can alternatively use the Eclipse plugin for Maven to generate native Eclipse projects from

Maven projects.

If you have Maven installed, you have everything you need. Just execute the following command

from any Maven project to produce the Eclipse project files.

mvn eclipse:eclipse

Again, the Eclipse plugins are not required to execute the TCK, but can be very helpful when

validating an implementation against the TCK test suite and especially when using the modules

from the project.

http://testng.org/doc/download.html
http://testng.org/doc/download.html
http://testng.org/doc/eclipse.html
http://testng.org/doc/eclipse.html
http://testng.org/doc/eclipse.html
http://eclipse.org/m2e/
http://eclipse.org/m2e/

16

Chapter 4.

17

Chapter 4. Configuration
This chapter lays out how to configure the TCK Harness by specifying the SPI implementation

classes, defining the target container connection information, and various other switches. You

then learn how to setup a TCK runner project that executes the TCK test suite, putting these

settings into practice.

4.1. TCK Properties

System properties and/or the resource META-INF/cdi-tck.properties, a Java properties file, are

used to configure the TCK.

You should set the following required properties:

Table 4.1. Required TCK Configuration Properties

Property = Example Value Description

+org.jboss.cdi.tck.libraryDirectory=/path/to/ex-

tra/libraries

The directory containing extra JARs to be

placed in the test archive library directory

such as the porting package implementation.

org.jboss.cdi.tck.testDataSource=java:jboss/

datasources/ExampleDS

A few TCK tests work with Jakarta Persis-

tence services and require a data source to

be provided. This property defines JNDI name

of such resource. Required for the tests within

the persistence test group.

org.jboss.cdi.tck.testJmsConnectionFactory=java:/

ConnectionFactory

The JNDI name of the JMS test Connection-

Factory. Required for the tests within the jms

test group.

org.jboss.cdi.tck.testJmsQueue=java:/queue/

test

The JNDI name of the JMS test Queue. Re-

quired for the tests within the jms test group.

org.jboss.cdi.tck.testJmsTopic=java:/topic/test The JNDI name of the JMS test Topic. Re-

quired for the tests within the jms test group.

Table 4.2. Optional TCK Configuration Properties

Property = Example Value Description

org.jboss.cdi.tck.testTimeoutFactor=200 Tests use this percentage value to adjust

the final timeout (e.g. when waiting for some

async processing) so that it’s possible to con-

figure timeouts according to the testing run-

time performance and throughput. The value

must be an integer greater than zero. The de-

Chapter 4. Configuration

18

Property = Example Value Description

fault value is 100% - i.e. timeouts will remain

the same.

4.2. Arquillian settings

The Arquillian testing platform will look for configuration settings in a file named arquillian.xml

in the root of your classpath. If it exists it will be auto loaded, else default values will be used.

This file is not a requirement however it’s very useful for container configuration. See an example

configuration for JBoss TCK runner:

 weld/jboss-tck-runner/src/test/wildfly8/arquillian.xml

4.3. The Porting Package

The CDI TCK relies on an implementation of the porting package to function. There are times when

the tests need to tap directly into the CDI implementation to manipulate behavior or verify results.

The porting package is Java package named "org.jboss.cdi.tck.spi" and includes a set of SPIs

that provide the TCK with this level of access without tying the tests to a given implementation.

The SPI classes in the CDI TCK are as follows:

• org.jboss.cdi.tck.spi.Beans

• org.jboss.cdi.tck.spi.Contexts

• org.jboss.cdi.tck.spi.EL

Please consult the JavaDoc for these interfaces for the implementation requirements.

4.4. Using the CDI TCK with the Jakarta EE Web Profile

You can configure the CDI TCK to just run tests appropriate to the Jakarta EE Web Profile by

excluding TestNG group javaee-full, e.g. via maven-surefire-plugin configuration:

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifactId>

 <configuration>

 <excludedGroups>javaee-full</excludedGroups>

 </configuration>

 </plugin>

Configuring TestNG to execute the TCK

19

4.5. Configuring TestNG to execute the TCK

The CDI TCK is built atop Arquillian and TestNG, and it’s TestNG that is responsible for selecting

the tests to execute, the order of execution, and reporting the results. Detailed TestNG documen-

tation can be found at testng.org [http://testng.org/doc/documentation-main.html].

Certain TestNG configuration file must be run by TestNG (described by the TestNG documentation

as "with a testng.xml file") unmodified for an implementation to pass the TCK. The TCK distribution

contains the configuration file accurate at the date of the release - artifacts/cdi-tck-impl-suite.xml.

However this artifact may not be up to date due to unresolved challenges or pending releases.

Therefore a canonical configuration file exists. This file is located in the CDI TCK source code

repository at ${CORRESPONDING_BRANCH_ROOT}/impl/src/main/resources/tck-tests.xml.

Note

The canonical configuration file for CDI TCK is located at https://github.com/

eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml.

This file also allows tests to be excluded from a run:

<suite name="CDI TCK" verbose="0" configfailurepolicy="continue">

 <test name="CDI TCK">

 ...

 <classes>

 <class name="org.jboss.cdi.tck.tests.context.application.ApplicationContextTest">

 <methods>

 <exclude name="testApplicationScopeActiveDuringServiceMethod"/>

 </methods>

 </class>

 </classes>

 ...

 </test>

</suite>

Note

Additionally there is available canonical configuration file

at https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-

tests-previous.xml. Please note that this exclude list serves only for the previous

micro version of TCK release! This means that if the latest version of TCK is e.g.

4.0.1 then this exclude list is valid only for the version 4.0.0 and invalid for any

other version!

http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests-previous.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/tck-tests-previous.xml

Chapter 4. Configuration

20

TestNG provides extensive reporting information. Depending on the build tool or IDE you use,

the reporting will take a different format. Please consult the TestNG documentation and the tool

documentation for more information.

4.6. Configuring your build environment to execute the

TCK

It’s beyond the scope of this guide to describe in how to set up your build environment to run the

TCK. The TestNG documentation provides extensive information on launching TestNG using the

Java, Ant, Eclipse or IntelliJ IDEA.

4.7. Configuring your application server to execute the

TCK

The TCK makes use of the Java 1.4 keyword assert; you must ensure that the JVM used to run the

application server is started with assertions enabled. See Programming With Assertions [http://

docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable] for more

information on how to enable assertions.

Tests within the jms test group require some basic Java Message Service configuration. A con-

nection factory, a queue destination for PTP messaging domain and a topic destination for pub/

sub messaging domain must be available via JNDI lookup. The corresponding JNDI names are

specified with configuration properties - see Section 4.1, “TCK Properties”.

Tests within the persistence test group require basic data source configuration. The data source

has to be valid and JTA-based. The JNDI name of the DataSource is specified with configuration

property - see Section 4.1, “TCK Properties”.

Tests within the installedLib test group require the CDI TCK cdi-tck-ext-lib artifact to be installed

as a library (see also Jakarta EE 8 specification, section EE.8.2.2 "Installed Libraries").

Tests within the systemProperties test group require the following system properties to be set:

Name Value

cdiTckExcludeDummy true

Tests within the security test group require the following mapping of roles to principals:

Principal Group

student student

alarm alarm, student

printer printer

Tests within SE test groups require execution in a separate JVM instance with isolated classpath

including all required dependencies.

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html#enable-disable

Chapter 5.

21

Chapter 5. Reporting
This chapter covers the two types of reports that can be generated from the TCK, an assertion

coverage report and the test execution results. The chapter also justifies why the TCK is good

indicator of how accurately an implementation conforms to the CDI specification.

5.1. CDI TCK Coverage Metrics

The CDI TCK coverage has been measured as follows:

• Assertion Breadth Coverage

The CDI TCK provides at least 95% coverage of identified assertions with test cases.

• Assertion Depth Coverage

The assertion depth coverage has not been measured, as, when an assertion requires more than

one testcase, these have been enumerated in an assertion group and so are adequately described

by the assertion breadth coverage.

• API Signature Coverage

The CDI TCK covers 100% of all API public methods using the Java CTT Sig Test tool.

5.2. CDI TCK Coverage Report

A specification can be distilled into a collection of assertions that define the behavior of the soft-

ware. This section introduces the CDI TCK coverage report, which documents the relationship

between the assertions that have been identified in the Jakarta CDI specification document and

the tests in the TCK test suite.

The structure of this report is controlled by the assertion document, so we’ll start there.

5.2.1. CDK TCK Assertions

The CDI TCK developers have analyzed the Jakarta CDI specification document and identified

the assertions that are present in each chapter. Here’s an example of one such assertion found

in section 2.3.3:

Any bean may declare multiple qualifier types.

The assertions are listed in the XML file impl/src/main/resources/tck-audit.xml in the CDI TCK

distribution. Each assertion is identified by the section identifier of the specification document in

which it resides and assigned a unique paragraph identifier to narrow down the location of the

Chapter 5. Reporting

22

assertion further. To continue with the example, the assertion shown above is listed in the tck-

audit.xml file using this XML fragment:

 <section id="declaring_bean_qualifiers" title="Declaring the qualifiers

 of a bean">

 ...

 <assertion id="d">

 <text>Any bean may declare multiple qualifier types.</type>

 </assertion>

 ...

 </section>

The strategy of the CDI TCK is to write a test which validates this assertion when run against an

implementation. A test case (a method annotated with @Test in a test class) is correlated with an

assertion using the @org.jboss.test.audit.annotations.SpecAssertion annotation as follows:

@Test

@SpecAssertion(section = DECLARING_BEAN_QUALIFIERS, id = "d")

public void testMultipleQualifiers()

{

 Bean<?> model = getBeans(Cod.class, new ChunkyBinding(true), new WhitefishBinding()).iterator().next();

 assert model.getBindings().size() == 3;

}

Note

Section identifiers are not used directly. Instead automatically generated constants

are applied.

To help evaluate the distribution of coverage for these assertions, the TCK provides a detailed

coverage report. This report is also useful to help implementors match tests with the language in

the specification that supports the behavior being tested.

5.2.2. Producing the Coverage Report

The coverage report is an HTML report generated as part of the TCK project build. Specifically,

it is generated by an annotation processor that attaches to the compilation of the classes in the

TCK test suite, another tool from the JBoss Test Utils project. The report is only generated when

using Java 6 or above, as it requires the annotation processor.

mvn clean install

TestNG Reports

23

Note

You must run clean first because the annotation processor performs it’s work when

the test class is being compiled. If compilation is unnecessary, then the assertions

referenced in that class will not be discovered.

The report is written to the file target/coverage.html in the same project. The report has five sec-

tions:

1. Chapter Summary - Lists the chapters (that contain assertions) in the specification document

along with total assertions, tests and coverage percentage.

2. Section Summary - Lists the sections (that contain assertions) in the specification document

along with total assertions, tests and coverage percentage.

3. Coverage Detail - Each assertion and the test that covers it, if any.

4. Unmatched Tests - A list of tests for which there is no matching assertion (useful during TCK

development).

5. Unversioned Tests - A list of tests for which there is no @SpecVersion annotation on the test

class (useful during TCK development).

The coverage report is color coded to indicate the status of an assertion, or group of assertions.

The status codes are as follows:

• Covered - a test exists for this assertion

• Not covered - no test exists for this assertion

• Problematic - a test exists but is currently disabled. For example, this may be because the test

is under development

• Untestable - the assertion has been deemed untestable; a note, explaining why, is normally

provided

For reasons provided in the tck-audit.xml document and presented in the coverage report, some

assertions are not testable.

The coverage report does not give any indication as to whether the tests are passing. That’s where

the TestNG reports come in.

5.2.3. TestNG Reports

The CDI TCK test suite is really just a TestNG test suite. That means an execution of the CDI

TCK test suite produces the same reports as TestNG does. This section will go over those reports

and show you where to find each of them.

Chapter 5. Reporting

24

5.2.3.1. Maven, Surefire and TestNG

When the CDI TCK test suite is executed during the Maven test phase of the TCK runner project,

TestNG is invoked indirectly through the Maven Surefire plugin. Surefire is a test execution ab-

straction layer capable of executing a mix of tests written for JUnit, TestNG, and other supported

test frameworks.

Why is this relevant? It means two things. First, it means that you are going to get a summary

of the test run on the commandline. Here’s the output generated when the tests are run using

standalone mode.

 T E S T S

Running TestSuite

[XmlMethodSelector]

 CLASSNAME:org.jboss.testharness.impl.testng.DisableIntegrationTestsMethodSelector

[XmlMethodSelector] SETTING PRIORITY:0

[XmlMethodSelector]

 CLASSNAME:org.jboss.testharness.impl.testng.ExcludeIncontainerUnderInvestigationMethodSelector

[XmlMethodSelector] SETTING PRIORITY:0

Tests run: 441, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 22.816 sec

Results :

Tests run: 441, Failures: 0, Errors: 0, Skipped: 0

Note

The number of tests executed, the execution time, and the output will differ when

you run the tests using in-container mode as the CDI TCK requires.

If the Maven reporting plugin that complements Surefire is configured properly, Maven will also

generate a generic HTML test result report. That report is written to the file test-report.html in the

target/surefire-reports directory of the TCK runner project. It shows how many tests were run, how

many failed and the success rate of the test run.

The one drawback of the Maven Surefire report plugin is that it buffers the test failures and puts

them in the HTML report rather than outputting them to the commandline. If you are running the

test suite to determine if there are any failures, it may be more useful to get this information in the

foreground. You can prevent the failures from being redirected to the report using the following

commandline switch:

TestNG Reports

25

mvn test -Dsurefire.useFile=false

The information that the Surefire provides is fairly basic and the detail pales in comparison to what

the native TestNG reports provide.

5.2.3.2. TestNG HTML Reports

TestNG produces several HTML reports for a given test run. All the reports can be found in the

target/surefire-reports directory in the TCK runner project. Below is a list of the three types of

reports:

• Test Summary Report

• Test Suite Detail Report

• Emailable Report

The first report, the test summary report, shown below, is written to the file index.html. It produces

the same information as the generic Surefire report.

The summary report links to the test suite detail report, which has a wealth of information. It shows

a complete list of test groups along with the classes in each group, which groups were included

and excluded, and any exceptions that were raised, whether from a passed or failed test. A partial

view of the test suite detail report is shown below.

Chapter 5. Reporting

26

The test suite detail report is very useful, but it borderlines on complex. As an alternative, you can

have a look at the emailable report, which is a single HTML document that shows much of the

same information as the test suite detail report in a more compact layout. A partial view of the

emailable report is shown below.

TestNG Reports

27

Now that you have seen two ways to get test results from the Maven test execution, let’s switch

over to the IDE, specifically Eclipse, and see how it presents TestNG test results.

5.2.3.3. Test Results in the TestNG Plugin View

After running a test in Eclipse, the test results are displayed in the TestNG plugin view, as shown

below.

Chapter 5. Reporting

28

TestNG Reports

29

The view offers two lists. The first is a list of all methods (tests) in the class flagged as either

passed or failed. The second is a list of methods (tests) in the class that failed. If there is a test

failure, you can click on the method name to get the stacktrace leading up to the failure to display

in the lower frame.

You can also find the raw output of the TestNG execution in the IDE console view. In that view,

you can click on a test in the stacktrace to open it in the editor pane.

One of the nice features of TestNG is that it can keep track of which tests failed and offer to run

only those tests again. You can also rerun the entire class. Buttons are available for both functions

at the top of the view.

30

Part II. Executing

and Debugging Tests
In this part you learn how to execute the CDI TCK on the Wled compatible implementation. First,

you are walked through the steps necessary to execute the test suite on Weld. Then you discover

how to modify the TCK runner to execute the test suite on your own implementation. Finally, you

learn how to debug tests from the test suite in Eclipse.

Chapter 6.

33

Chapter 6. Running the Signature

Test
One of the requirements of an implementation passing the TCK is for it to pass the CDI signature

test. This section describes how the signature file is generated and how to run it against your

implementation.

6.1. Obtaining the sigtest plugin

The source for the sigtest plugin can be found here: https://github.com/emilianbold/net-

beans-apitest.git

6.2. Running the signature test

To run the signature test, use a pom file like that found in https://github.com/eclipse-ee4j/cdi-tck/

blob/master/impl/src/main/resources/sigtest-pom.xml and shown here:

<?xml version="1.0"?>

<!-- Sample maven pom to verify signatures -->

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>jakarta.enterprise</groupId>

 <artifactId>cdi-tck-sigtest</artifactId>

 <version>{revnumber}</version>

 <name>CDI TCK Signature Tests</name>

 <description>CDI TCK Signature test validation of CDI dependent API jars</

description>

 <properties>

 <!-- Set the api jar artifact versions here -->

 <annotation.api.version>2.0.0</annotation.api.version>

 <atinject.api.version>2.0.0</atinject.api.version>

 <interceptor.api.version>2.0.0</interceptor.api.version>

 <el.api.version>4.0.0</el.api.version>

 <cdi.api.version>3.0.0</cdi.api.version>

 </properties>

 <!-- Set the api jar artifact dependencies here -->

 <dependencies>

 <dependency>

 <groupId>jakarta.annotation</groupId>

 <artifactId>jakarta.annotation-api</artifactId>

 <version>${annotation.api.version}</version>

 </dependency>

https://github.com/emilianbold/netbeans-apitest.git
https://github.com/emilianbold/netbeans-apitest.git
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/sigtest-pom.xml
https://github.com/eclipse-ee4j/cdi-tck/blob/master/impl/src/main/resources/sigtest-pom.xml

Chapter 6. Running the Signat...

34

 <dependency>

 <groupId>jakarta.el</groupId>

 <artifactId>jakarta.el-api</artifactId>

 <version>${el.api.version}</version>

 </dependency>

 <dependency>

 <groupId>jakarta.interceptor</groupId>

 <artifactId>jakarta.interceptor-api</artifactId>

 <version>${interceptor.api.version}</version>

 </dependency>

 <dependency>

 <groupId>jakarta.inject</groupId>

 <artifactId>jakarta.inject-api</artifactId>

 <version>${atinject.api.version}</version>

 </dependency>

 <dependency>

 <groupId>jakarta.enterprise</groupId>

 <artifactId>jakarta.enterprise.cdi-api</artifactId>

 <version>${cdi.api.version}</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-dependency-plugin</artifactId>

 <executions>

 <execution>

 <id>unpack-dependencies</id>

 <phase>package</phase>

 <goals>

 <goal>unpack-dependencies</goal>

 </goals>

 <configuration>

 <stripVersion>true</stripVersion>

 <overWriteReleases>true</overWriteReleases>

 <outputDirectory>target/classes</outputDirectory>

 </configuration>

 </execution>

 </executions>

 </plugin>

 <plugin>

 <groupId>org.netbeans.tools</groupId>

 <artifactId>sigtest-maven-plugin</artifactId>

 <version>1.2</version>

 <executions>

 <execution>

 <id>sigtest</id>

Running the signature test

35

 <phase>verify</phase>

 <goals>

 <goal>check</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <sigfile>cdi-api-jdk8.sig</sigfile>

 <packages>jakarta.decorator,jakarta.enterprise</packages>

 <classes>target/classes</classes>

 <report>cdi-sig-report.txt</report>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Scotts-iMacPro:resources starksm$ mvn -f sigtest-pom.xml ver

ify[INFO] Scanning for projects...[INFO][INFO] -----------------

< jakarta.enterprise:cdi-tck-sigtest >-----------------[INFO] Building

 CDI TCK Signature Tests 3.0[INFO] --------------------------------

[jar]---------------------------------[INFO]...[INFO] --- sigtest-

maven-plugin:1.2:check (sigtest) @ cdi-tck-sigtest ---[INFO]

 Packages: jakarta.decorator,jakarta.enterprise[INFO] SignatureTest reportBase

 version: 3.0.0-SNAPSHOTTested version: 3.0Check mode: bin

 [throws removed]Constant checking: onWarning: The return type

 java.lang.reflect.Member can't be resolvedWarning: The return type

 java.lang.reflect.Member can't be resolvedWarning: The return type

 java.lang.reflect.Member can't be resolved[INFO] /Users/starksm/Dev/

JBoss/Jakarta/cdi-tck/impl/src/main/resources/cdi-sig-report.txt: 0 failures

 in /Users/starksm/Dev/JBoss/Jakarta/cdi-tck/impl/src/main/resources/cdi-api-

jdk8.sig[INFO]

 --[INFO]

 BUILD SUCCESS[INFO]

 --[INFO]

 Total time: 1.887 s[INFO] Finished at: 2020-05-27T15:55:18-05:00[INFO]

 --

ify[INFO] Scanning for

projects...[INFO][INFO] -----------------< jakarta.enterprise:cdi-tck-sigtest

 >-----------------[INFO] Building CDI TCK Signature Tests

 3.0[INFO] --------------------------------[jar

]---------------------------------

[INFO]...[INFO] --- sigtest-maven-plugin:1.2:check (sigtest) @ cdi-tck-sigtest

 ---[INFO] Packages:

 jakarta.decorator,jakarta.enterprise[INFO] SignatureTest

Chapter 6. Running the Signat...

36

 reportBase version:

3.0.0-SNAPSHOTTested version:

 3.0Check mode: bin [throws

 removed]Constant checking:

 onWarning: The return type java.lang.reflect.Member can't be

 resolvedWarning: The return type java.lang.reflect.Member can't be

 resolvedWarning: The return type java.lang.reflect.Member can't be

 resolved[INFO] /Users/starksm/Dev/JBoss/Jakarta/cdi-tck/impl/src/main/

resources/cdi-sig-report.txt: 0 failures in /Users/starksm/Dev/JBoss/Jakarta/cdi-tck/

impl/src/main/resources/cdi-

api-jdk8.sig[INFO]

 --[INFO] BUILD

 SUCCESS[INFO]

 --[INFO] Total time: 1.887

 s[INFO] Finished at:

 2020-05-27T15:55:18-05:00[INFO]

You can ignore the following warnings: "The return type java.lang.reflect.Member can't be re-

solved"

The important thing is that the mvn version shows "BUILD SUCCESS".

6.3. Forcing a signature test failure

Just for fun (and to confirm that the signature test is working correctly), you can try the following:

1) Edit cdi-api.sig

2) Modify one of the class signatures - in the following example we change one of the constructors

for BusyConversationException - here’s the original:

CLSS public jakarta.enterprise.context.BusyConversationExceptioncons public

 BusyConversationException()cons public

 BusyConversationException(java.lang.String)cons public

 BusyConversationException(java.lang.String,java.lang.Throwable)cons public

 BusyConversationException(java.lang.Throwable)supr

 jakarta.enterprise.context.ContextExceptionhfds serialVersionUID

jakarta.enterprise.context.BusyConversationExceptioncons public

BusyConversationException()cons public

BusyConversationException(java.lang.String)cons public

BusyConversationException(java.lang.String,java.lang.Throwable)cons public

BusyConversationException(java.lang.Throwable)supr

jakarta.enterprise.context.ContextExceptionhfds

Forcing a signature test failure

37

Let’s change the default (empty) constructor parameter to one with a java.lang.Integer parameter

instead:

CLSS public jakarta.enterprise.context.BusyConversationExceptioncons

 public BusyConversationException(java.lang.Integer)cons public

 BusyConversationException(java.lang.String)cons public

 BusyConversationException(java.lang.String,java.lang.Throwable)cons public

 BusyConversationException(java.lang.Throwable)supr

 jakarta.enterprise.context.ContextExceptionhfds serialVersionUID

jakarta.enterprise.context.BusyConversationExceptioncons public

BusyConversationException(java.lang.Integer)cons public

BusyConversationException(java.lang.String)cons public

BusyConversationException(java.lang.String,java.lang.Throwable)cons public

BusyConversationException(java.lang.Throwable)supr

jakarta.enterprise.context.ContextExceptionhfds

3) Now when we run the signature test using the above command, we should get the following

errors:

Missing Construc

tors--------------------jakarta.enterprise.context.BusyConversationException:

 constructor public

 jakarta.enterprise.context.BusyConversationException.BusyConversationException(java.lang.Integer)Added

 Constructors------------------jakarta.enterprise.context.BusyConversationException:

 constructor public

 jakarta.enterprise.context.BusyConversationException.BusyConversationException()STATUS:Failed.2

 errors

Con

structors--------------------jakarta.enterprise.context.BusyConversationException:

constructor

public jakarta.enterprise.context.BusyConversationException.BusyConversationException(java.lang.Integer)

Added

 Constructors------------------jakarta.enterprise.context.BusyConversationException:

constructor

public jakarta.enterprise.context.BusyConversationException.BusyConversationException()

38

Chapter 7.

39

Chapter 7. Executing the Test Suite
This chapter explains how to run the TCK on Weld as well as your own implementation. The CDI

TCK uses the Maven Surefire plugin and the Arquillian test platform to execute the test suite.

Learning to execute the test suite from Maven is prerequisite knowledge for running the tests in

an IDE, such as Eclipse.

7.1. The Test Suite Runner

The test suite is executed by the Maven Surefire plugin during the test phase of the Maven life

cycle. The execution happens within a TCK runner project (as opposed to the TCK project itself).

Weld includes a TCK runner project that executes the CDI TCK on Weld running inside WildFly

22.x. To execute the CDI TCK on your own CDI implementation, you could modify the TCK runner

project included with Weld to use your CDI implementation.

7.2. Running the Tests In Standalone Mode

To execute the TCK test suite against Weld, first switch to the jboss-tck-runner directory in the

extracted TCK distribution:

cd jakartacdi/tck/weld/jboss-tck-runner

Note

These instructions assume you have extracted the Jakarta CDI TCK software ac-

cording to the recommendation given in Section 3.2, “The TCK Environment”.

Then execute the Maven life cycle through the test phase:

mvn test

Without any command-line flags, the test suite is run in standalone mode (activating weld-embed-

ded Maven profile), which means that any test within the integration, javaee-full and SE TestNG

group is excluded. This mode uses the Weld EE Embedded Arquillian container adapter to invoke

the test within a mock Jakarta EE life cycle and capture the results of the test. However, passing

the suite in this mode is not sufficient to pass the TCK as a whole. The suite must be passed while

executing using the in-container mode.

Chapter 7. Executing the Test...

40

7.3. Running the Tests In the Container - Core and EE

parts

To execute tests within Core and EE parts of the specification you need to use in-container mode

with the JBoss TCK runner, you first have to setup WildFly as described in the Running the TCK

against Weld and WildFly callout.

Then, execute the TCK runner with Maven as follows:

mvn test -Dincontainer

The presence of the incontainer property activates an incontainer Maven profile. This time, all the

tests except the tests within SE TestNG group are executed.

In order to run tests appropriate to the Jakarta EE Web Profile execute:

mvn test -Dincontainer=webprofile

To specify particular TCK version:

mvn test -Dincontainer -Dcdi.tck.version=3.0.0-RC1

Note

In order to run the TCK Test Suite in the container an Arquillian container adapter

is required. See also Arqullian reference guide [https://docs.jboss.org/author/dis-

play/ARQ/Containers].

The Arquillian will also start and stop the application server automatically (provided a managed

Arqullian container adapter is used).

Since Arquillian in-container tests are executed in a remote JVM, the results of the test must be

communicated back to the runner over a container-supported protocol. The TCK utilizes servlet-

based protocol (communication over HTTP).

7.4. Running the Tests In the Container - SE part

To execute full TCK testsuite you have to run tests within SE group as well. SE tests make use

of Arquillian container SE [https://github.com/arquillian/arquillian-container-se]. This way the tests

are executed in a separate JVM instance with isolated and configurable classpath. The Arquillian

https://docs.jboss.org/author/display/ARQ/Containers
https://docs.jboss.org/author/display/ARQ/Containers
https://docs.jboss.org/author/display/ARQ/Containers
https://github.com/arquillian/arquillian-container-se
https://github.com/arquillian/arquillian-container-se

Dumping the Test Archives

41

container does not start CDI container in any way - this is still done directly in the tests using CDI

SE bootstrap API and jakarta.enterprise.inject.se.SeContainerInitializer. In order to

run SE TCK tests in Weld, you need to execute "weld-se" Maven profile from the JBoss TCK

runner POM file as follows:

mvn test -Dincontainer=se

The profile needs to provide RI dependencies as well as Arquillian settings (arquillian.xml).

These two need to be stored into a directory so that Arquillian container can then be

instructed to pick them up. In RI [https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-run-

ner/pom.xml#L424], this orchestration is done using maven-dependency-plugin along with

maven-surefire-plugin.

7.5. Dumping the Test Archives

As you have learned, when the test suite is executing using in-container mode, each test class

is packaged as a deployable archive and deployed to the container. The test is then executed

within the context of the deployed application. This leaves room for errors in packaging. When

investigating a test failure, you may find it helpful to inspect the archive after it’s generated. The

TCK (or Arquillian respectively) can accommodate this type of inspection by "dumping" the gen-

erated archive to disk.

The feature just described is activated in the Arquillian configuration file (Section 4.2, “Arquillian

settings”). In order to export the test archive you’ll have to add the deploymentExportPath property

element inside engine element and assign a relative or absolute directory where the test archive

should be exported, e.g.:

 <engine>

 <property name="deploymentExportPath">target/</property>

 </engine>

Arquillian will export the archive to that location for any test you run.

To enable the export for just a single test, use the VM argument arquillian.deploymentExportPath:

-Darquillian.deploymentExportPath=target/deployments/

https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-runner/pom.xml#L424
https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-runner/pom.xml#L424
https://github.com/weld/core/blob/3.0.0.Final/jboss-tck-runner/pom.xml#L424

42

Chapter 8.

43

Chapter 8. Running Tests in Eclipse
This chapter explains how to run individual tests using the Eclipse TestNG plugin. It covers running

non-integration tests in standalone mode and integration tests (as well as non-integration tests)

in in-container mode. You should be able to use the lessons learned here to debug tests in an

alternate IDE as well.

8.1. Leveraging Eclipse’s plugin ecosystem

Using an existing test harness (TestNG) allows the tests to be executed and debugged in an Inte-

grated Development Environment (IDE) using available plugins. Using an IDE is also the easiest

way to execute a test class in isolation.

The TCK can be executed in any IDE for which there is a TestNG plugin [http://testng.org/doc/

index.html] available. Running a test from the CDI TCK test suite using the Eclipse TestNG plugin

is almost as simple as running any other TestNG test. You can also use the plugin to debug a

test, which is described in the next chapter.

Before running a test from the TCK test suite in Eclipse, you must have the Eclipse TestNG plu-

gin and either the m2e plugin or an Eclipse project generated using the Maven 2 Eclipse plug-

in (maven-eclipse-plugin). Refer to Section 3.3, “Eclipse Plugins” for more information on these

plugins.

Note

In order to run the TCK tests in Eclipse you must have CDI TCK and Weld JBoss

TCK runner projects imported. Get the source from GitHub repositories https://

github.com/eclipse-ee4j/cdi-tck and https://github.com/weld/core.

With the m2e plugin installed, Eclipse should recognize the CDI TCK projects as valid Eclipse

projects (or any Weld project for that matter). Import them into the Eclipse workspace at this time.

You should also import the Weld projects if you want to debug into that code, which is covered

later.

Tip

If you choose to use the Maven 2 Eclipse plugin (maven-eclipse-plugin), you should

execute the plugin in both the tck and weld projects:

cd tck

mvn clean eclipse:clean eclipse:eclipse -DdownloadSources -

DdownloadJavadocs

cd ../weld

http://testng.org/doc/index.html
http://testng.org/doc/index.html
http://testng.org/doc/index.html
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/eclipse-ee4j/cdi-tck
https://github.com/weld/core

Chapter 8. Running Tests in E...

44

mvn clean eclipse:clean eclipse:eclipse -DdownloadSources -

DdownloadJavadocs

8.2. Readying the Eclipse workspace

When setting up your Eclipse workspace, we recommended creating three workings sets:

Weld - Groups the CDI API and the Weld projects CDI TCK - Groups the CDI TCK API and the test

suite projects Weld JBoss TCK Runner - Groups the porting package implementation and TCK

runner projects The dependencies between the projects will either be established automatically

by the m2e plugin, based on the dependency information in the pom.xml files, or as generated

by the mvn eclipse:eclipse command.

Your workspace should appear as follows:

Weld

 cdi-api

 weld-core

 ...

CDI TCK

 cdi-tck-api

 cdi-tck-impl

 cdi-tck-parent

Weld JBoss TCK Runner

 weld-jboss-runner-tck

 weld-porting-package-tck

The tests in the TCK test suite are located in the cdi-tck-impl project. You’ll be working within

this project in Eclipse when you are developing tests. However, as you learned earlier, there are

no references to a CDI implementation in the TCK. So how can you execute an individual test

in Eclipse? The secret is that you need to establish a link in Eclipse (not in Maven) between the

cdi-tck-impl project and your TCK runner project, which in this case is weld-jboss-runner-tck (the

project in the jboss-tck-runner directory).

Here are the steps to establish the link:

1. Right click on the cdi-tck-impl project

2. Select Build Path > Configure Build Path…

3. Click on the Projects tab

4. Click the Add… button on the right

5. Check the TCK runner project (e.g., weld-jboss-runner-tck)

Running a test in standalone mode

45

6. Click the OK button on the Required Project Selection dialog window

7. Click the OK button on the Java Build Path window

Of course, the weld-jboss-runner-tck also depends on the cdi-tck-impl at runtime (so it can actu-

ally find the tests to execute). But m2e plugin doesn’t distinguish between build-time and runtime

dependencies. As a result, we’ve created a circular dependency between the projects. In all like-

lihood, Eclipse will struggle (if not fail) to compile one or more projects. How can we break this

cycle?

As it turns out, the TCK runner doesn’t need to access the tests to build. It only needs its classes,

configurations and other dependencies at runtime (when the TestNG plugin executes). Therefore,

we can disable Resolve dependencies from workspace projects setting on weld-jboss-runner-tck

project:

1. Right click on the weld-jboss-runner-tck project

2. Select Maven

3. Uncheck Resolve dependencies from workspace projects option

4. Click the OK button on the Properties window

As you have learned, the TCK determines how to behave based on the values of system properties

or properties defined in META-INF/cdi-tck.properties classpath resources. In order to run the tests,

you need to add a properties file to the classpath or define corresponding system properties.

The CDI TCK project conveniently provides the properties file src/test/resources/META-INF/cdi-

tck.properties that contains all of the necessary properties for testing in Eclipse. You have to tune

the org.jboss.cdi.tck.libraryDirectory and org.jboss.cdi.tck.testDataSource properties to point to

the relative location of the related projects and specify the name of test datasource. The properties

should be defined as follows:

org.jboss.cdi.tck.libraryDirectory - the path to the target/dependency/lib directory in the TCK run-

ner project org.jboss.cdi.tck.testDataSource - the JNDI name of the test datasource, e.g. WildFly

22:

org.jboss.cdi.tck.testDataSource=java:jboss/datasources/ExampleDS

You are now ready to execute an individual test class (or artifact). Let’s start with a test artifact

capable of running in standalone mode.

8.3. Running a test in standalone mode

Use weld-embedded Maven profile (active by default) in order to run a test in standalone mode.

Chapter 8. Running Tests in E...

46

Tip

If using m2e Eclipse plugin, you can activate/deactivate the profile in Maven section

of project properties.

Note

Note that all TestNG tests that are not included in integration and javaee-full test

groups are considered to be standalone artifacts.

Select a test class containing standalone tests and open it in the Eclipse editor. Now right click

in the editor view and select Run As > TestNG Test. The TestNG view should pop out and you

should see all the tests in that artifact pass (if all goes well).

Note

If the TCK complains that there is a property missing, close all the projects, open

them again, and rebuild. The m2e plugin can be finicky getting everything built

correctly the first time.

So far you have executed a test in standalone mode. That’s not sufficient to pass the TCK. The

test must be executed using in-container mode.

Let’s see what has to be done to execute an integration test. This will result in the artifact being

deployed to the container, which is WildFly if you are using the JBoss TCK runner.

8.4. Running integration tests

In order to run a test in the container you must explicitly specify following active Maven profiles in

JBoss TCK runner Eclipse project properties: incontainer,!weld-embedded.

Note

Note that all TestNG tests that are included in integration and javaee-full test

groups are considered to be integration tests and must be run in in-container mode.

javaee-full TestNG test group contains tests that require full Jakarta EE platform

(EAR packaging, JAX-WS, EJB timers, etc.).

Select an integration test (a class that extends org.jboss.cdi.tck.AbstractTest and open it in your

Eclipse editor. Right click in the editor view and select Run As > TestNG Test.

Running integration tests

47

You have now mastered running the CDI TCK against Weld using both Maven and within Eclipse.

Now you’re likely interested in how to debug a test so that you can efficiently investigate test

failures.

48

Chapter 9.

49

Chapter 9. Debugging Tests in

Eclipse
This chapter explains how to debug standalone and integration tests from the TCK test suite in

Eclipse. You should be able to use the lessons learned here to debug tests in an alternate IDE

as well.

9.1. Debugging a standalone test

There is almost no difference in how you debug a standalone test from how you run it. With the

test class open in the Eclipse editor, simply right click in the editor view and select Debug As >

TestNG Test. Eclipse will stop at any breakpoints you set just like it would with any other local

debug process.

If you plan to step into a class in the Weld implementation (or any other dependent library), you

must ensure that the source is properly associated with the library. Below are the steps to follow

to associate the source of Weld with the TestNG debug configuration:

1. Select the Run > Debug Configurations… menu from the main menubar

2. Select the name of the test class in the TestNG category

3. Select the Source tab

4. Click the Add… button on the right

5. Select Java Project

6. Check the project that contains the class you want to debug (e.g., weld-core)

7. Click OK on the Project Selection window

8. Click Close on the Debug Configurations window

You’ll have to complete those steps for any test class you are debugging, though you only have

to do it once (the debug configuration hangs around indefinitely).

Again, running a test in standalone mode isn’t enough to pass the TCK and cannot be used to

run or debug an integration test. Let’s look at how to debug a test running in the context of the

container.

9.2. Debugging an integration test

In order to debug an integration test, or any test run using in-container mode, the test must be

configured to run in-container, as described in Section 8.4, “Running integration tests”, and you

Chapter 9. Debugging Tests in...

50

must attach the IDE debugger to the container. That puts the debugger on both sides of the fence,

so to speak.

Since setting up a test to run in-container has already been covered, we’ll look at how to attach

the IDE debugger to the container, and then move on launching the test in debug mode.

9.2.1. Attaching the IDE debugger to the container

There are two ways to attach the IDE debugger to the container. You can either start the container

in debug mode from within the IDE, or you can attach the debugger over a socket connection to

a standalone container running with JPDA enabled.

The Eclipse Server Tools, a subproject of the Eclipse Web Tools Project (WTP), has support for

launching most major application servers, including WildFly 22. However, if you are using Wild-

Fly, you should consider using JBoss Tools instead, which offers tighter integration with JBoss

technologies. See either the Server Tools documentation [http://www.eclipse.org/webtools/serv-

er/server.php] or the JBoss Tools documentation [http://docs.jboss.org/tools/] for how to setup a

container and start it in debug mode.

See this blog entry [http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-

and-eclipse/] to learn how to start WildFly with JPDA enabled and how to get the Eclipse debugger

to connect to the remote process.

9.2.2. Launching the test in the debugger

Once Eclipse is debugging the container, you can set a breakpoint in the test and debug it just

like a standalone test. Let’s give it a try.

Open a test in the Eclipse editor, right click in the editor view, and select Debug As > TestNG

Test (this works for the container started in debug mode from within the IDE) or run the TestNG

test and debug Remote Java Application (remote debug configuration) in the same time (when

attaching the debugger over a socket connection to a container). This time when the IDE hits the

breakpoint, it halts the JVM thread of the container rather than the thread that launched the test.

Remember that if you need to debug into dependent libraries, the source code for those libraries

will need to be registered with the TestNG debug configuration as described in the first section

in this chapter.

http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://docs.jboss.org/tools/
http://docs.jboss.org/tools/
http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-and-eclipse/
http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-and-eclipse/
http://justinjohnson.org/java/configuring-remote-debugging-in-jboss-as-7-and-eclipse/

	Technology Compatibility Kit Reference Guide for Jakarta Contexts and Dependency Injection
	Table of Contents
	Preface
	1. Who Should Use This Book
	2. Before You Read This Book
	3. How This Book Is Organized

	Part I. Getting Acquainted with the TCK
	Chapter 1. Introduction (CDI TCK)
	1.1. TCK Primer
	1.2. Compatibility Testing
	1.2.1. Why Compatibility Is Important

	1.3. Compatibility Requirements
	1.3.1. Definitions
	1.3.2. Rules for Jakarta Contexts and Dependency Injection Version 4.0 Products

	1.4. About the CDI TCK
	1.4.1. CDI TCK Specifications and Requirements
	1.4.2. CDI TCK Components

	1.5. Libraries for Jakarta Contexts and Dependency Injection Version 4.0

	Chapter 2. Appeals Process
	2.1. What challenges to the TCK may be submitted?
	2.2. How these challenges are submitted?
	2.3. How and by whom challenges are addressed?
	2.4. How accepted challenges to the TCK are managed?

	Chapter 3. Installation
	3.1. Obtaining the Software
	3.2. The TCK Environment
	3.3. Eclipse Plugins
	3.3.1. TestNG Plugin
	3.3.2. Maven Plugin (m2e)

	Chapter 4. Configuration
	4.1. TCK Properties
	4.2. Arquillian settings
	4.3. The Porting Package
	4.4. Using the CDI TCK with the Jakarta EE Web Profile
	4.5. Configuring TestNG to execute the TCK
	4.6. Configuring your build environment to execute the TCK
	4.7. Configuring your application server to execute the TCK

	Chapter 5. Reporting
	5.1. CDI TCK Coverage Metrics
	5.2. CDI TCK Coverage Report
	5.2.1. CDK TCK Assertions
	5.2.2. Producing the Coverage Report
	5.2.3. TestNG Reports
	5.2.3.1. Maven, Surefire and TestNG
	5.2.3.2. TestNG HTML Reports
	5.2.3.3. Test Results in the TestNG Plugin View

	Part II. Executing and Debugging Tests
	Chapter 6. Running the Signature Test
	6.1. Obtaining the sigtest plugin
	6.2. Running the signature test
	6.3. Forcing a signature test failure

	Chapter 7. Executing the Test Suite
	7.1. The Test Suite Runner
	7.2. Running the Tests In Standalone Mode
	7.3. Running the Tests In the Container - Core and EE parts
	7.4. Running the Tests In the Container - SE part
	7.5. Dumping the Test Archives

	Chapter 8. Running Tests in Eclipse
	8.1. Leveraging Eclipse’s plugin ecosystem
	8.2. Readying the Eclipse workspace
	8.3. Running a test in standalone mode
	8.4. Running integration tests

	Chapter 9. Debugging Tests in Eclipse
	9.1. Debugging a standalone test
	9.2. Debugging an integration test
	9.2.1. Attaching the IDE debugger to the container
	9.2.2. Launching the test in the debugger

