?
—

Reference Guide

Axon Framework 0.5
Allard Buijze

Jettro Coenradie

Table of Contents

R 1 11 oo LB (o1 o o PSPPSR 1
1.1. Axon Framework BackgroUndeeeeiiiieiiiiiiieiee ettt e e e e 1
111 A BIEF NISIONY oo 1

O VAV o= o F Ao 1 1SR 2

1.1.3. WHEN 10 USE AXON? ...eeiiiiiiiiiie ettt ettt ettt e e sttt e e e et e e s et e e e s anbee e e e annreeas 2

I = 1o S = (= o [P OPPRSURR 3
2 I B Ta 11 o o= o (o] o PRSP 3

1.2.2. CONFIQUIE IMIBVEN ...ttt e et e e e e e e e s et te e e e e e e e eaennneneeeeeas 4

1.3. Contributing t0 AXON FrameWOrKcoocuiiiiiiiiiiieeiiiee e 5

R I o= TS g1 0] = 4 o o PRSP 5

2. ATCIITECIUINE OVEIVIBIW ...ttt ettt e ettt e e ettt e e et e e e e b be e e e s aabb e e e e e nnbb e e e e enbeeeeeane 6
G @o .0109T=a (o [l o F=1 o | oo U PEPRR 9
3.1. Creating @ Command HandIEruuuiuiiiiiiiiiiiiiii e raraenrarnnneannnnnas 9

3.2. Configuring the CommanNd BUSuueiiiiiiiiiiiiie et e e e e s eneeeeeeeas 10

3.3. Command Handler INTErCEPLOIScoiiiiiiieiiiie et 10
3.3.1. Managing traNSACLIONScuuvreeeiiirieee ittt ee et e e st e e s st e e s abn e e e e s aanre e e s snnreeeeane 11

4. DOMEIN MOUEIING ittt e e ettt e e s e abb e e e e abe e e e e sabn e e e e annbeee s 12
AL BEVENES oo 12
I R B o 0 1 B V= | PRSP 12

4.1.2. Application EVENLS ..., 13

4.1.3. SYSIEM EVENLS ..ot e 13

o o = 0 = (TP PP PPPP PP PPPR 14
4.2.1. Basic aggregate implementalionsoooiuurereriiieeee e ee e e s e 14

4.2.2. EVeNnt SOUICING A0OrEJAEESuvvirieieeeeeiieiiiiieree e e e s s eeatier e e e e e e s s ssaananae e e e e e e s s enntbnneeeeans 15

5. REPOSITONiEs and EVENE SLOTESccoiiiiiiiiiecie e ettt e e st e e e e e s et e e e e e e e s e e sanbbreeeeeeeeeeaans 18
5.1, Standard rePOSITONIEScccovviiiiiiieie e 18

5.2. Event SOUICING rEPOSITOMESccoiuireieiiiiiieeaitee e sttt e st e e e et e e e s e e s e e e e s 19

5.3. Event Store implementalionscoeoiurireiiiiiie et 19

5.4. USING SNGPSNOt EVENESooiiiiiiiiiiie ettt 21

B. EVENE PrOCESSING ...eeiiiiiiiiieiit e e e e e e ettt e e e e e e et e e e e e e e s ettt e e e e e eee e e s e snttbeseeeaeeesassntsaneeeaeessannnrrees 23
B.1. EVENE BUS ... 23

B.2. EVENE LISIENEIS ...eeiiiiiiie ettt ettt e e e e e ettt e e e e e e e s s ne bt e e e e e e e e e aannneaeeeeaeeeeaane 23
6.2.1. BASIC CONFIQUIBLIONeeiiiiiiiie et e ettt e e e e e e 23

6.2.2. ASYyNChroNOUS EVENT PrOCESSING ...c.uvvreeeiirrreesiitreeeassrreesssssreeesasssneessssrreessnnrneeesans 24

6.2.3. Managing transactions in asynchronous event handlingcccooccvvveeiiiieeeiiiieeenns 26

A £ o TS o T oo USROS PPRPRR 29
7.1 Wiring event hanIErsc..uuieiiiiie e e e s e e e e e s eaneees 29

7.2. Wiring the eVent DUSccooiiiiiiiiccc e 30

7.3. Wiring the command BUSoiiiiiiii e 30

7.4. Wiring the REPOSITONYveeiiiiiiiiie ettt e e e e as 31

Axon Framework 0.5 Reference Guide i

7.5. Wiring the event store

Axon Framework 0.5

Reference Guide

1. Introduction

Axon is a lightweight framework that helps developers build scalable and extensible applications by
addressing these concerns directly in the architecture. This reference guide explains what Axon is, how it
can help you and how you can use it. Next to this reference guide, the sources and javadoc, we also have
a sample application that shows how you can leverage the provided features to quickly build a dynamic
and extensible application.

If you want to know more about Axon and its background, continue reading in Section 1.1, “Axon
Framework Background”. If you're eager to get started building your own application using Axon, go
quickly to Section 1.2, “Getting started”. All help is welcome. If you're interested in helping out building
the Axon Framework, Section 1.3, “Contributing to Axon Framework” will contain the information you
require. Finally, this chapter covers some legal concernsin Section 1.4, “License information”.

1.1. Axon Framework Background

1.1.1. A brief history

The demands on software projects increase rapidly, as time progresses. Companies no longer accept a
brochure-like homepage to promote their business; they want their (web)applications to evolve together
with their business. That means that not only projects and code bases become more comple, it also means
that functionality isconstantly added, changed and (unfortunately not enough) removed. It can befrustrating
to find out that a seemingly easy-to-implement feature can require development teams to take apart an
entire application. Furthermore, today's webapplicationstarget an audience of potentialy billions of people,
making scalability a bare necessity.

Although there are many applications and frameworks around that deal with scalability issues, such as
GigaSpaces and Terracotta, they share one fundamental flaw. These stackstry to solve the scalability issues
while letting devel opers devel op application using the layered architecture they are used to. In some cases,
they even prevent or severely limit the use of areal domain model, forcing all domain logic into services.
Although that is faster to start building an application, eventually this approach will cause complexity to
increase and devel opment to slow down.

Greg Young, initiator of the Command Query Responsiblity Segregation (CQRS) pattern addressed these
issues by drastically changing the way applications are architected. Instead of separating logic into separate
layers, logic is separated based on whether it is changing an applition's state or querying it. That means
that executing commands (actions that potentially change an application's state) are executed by completely
different components than those that query for the application's state. The most important reason for this
separation is the fact that there are different technical and non-technical requirements for each of them.
When commands are executed, the query components are (a)synchronously updated using events. This
mechanism of updates through events, iswhat makes this architecture is extensible, scalable and ultimately
more maintainable.

Axon Framework 0.5 Reference Guide 1

ey

Note

Ipte |

A full explanation of CQRS is not within the scope of this document. If you would like
to have more background information about CQRS, visit the Axon Framework website:
www.axonframework.org. It contains links to background information.

Since CQRS is so fundamentally different than the layered-architecture which dominates the software
landscape nowadays, it is quite hard to grasp. It is not uncommon for developers to walk into a few traps
whiletrying to find their way around this architecture. That'swhy Axon Framework was conceived: to help
developers implement CQRS applications while focussing on the businesslogic.

1.1.2. What is Axon?

Axon Framework helps build scalable, extensible and maintainable applications by supporting devel opers
apply the Command Query Responsiblity Segregation (CQRS) architectural pattern. It does so by providing
implementations, sometimes complete, sometimes abstract, of the most important building blocks, such
as aggregates, repositories and event busses (the dispatching mechanism for events). Furthermore, Axon
provides annotation support, which allows you to build aggregates and event listeners withouth tying your
code to Axon specific logic. This allows you to focus on your business logic, instead of the plumbing, and
helps you makes your code easier to test in isolation.

Axon does not, in any way, try to hide the CQRS architecture or any of its components from devel opers.
Therefore, depending on team size, it is till advisable to have one or more developers with a thorough
understanding of CQRS on each team. However, Axon does help when it comes to guaranteeing delivering
events to the right event listeners and processing them concurrently and in the correct order. These multi-
threading concerns are typically hard to deal with, leading to hard-to-trace bugs and sometimes complete
application failure. When you have a tight deadline, you probably don't even want to care about these
concerns. Axon's code is thoroughly tested to prevent these types of bugs.

Most of the concerns Axon addresses arelocated inside the VM. However, for an application to be scalable,
asingle VM isnot enough. Therefore, Axon providestheaxon- i nt r egr at i on module, which allows
events to be sent to a Spring Integration channel. From there, you can use Spring Integration to dispatch
events to application components on different machines. In the near future, Axon will provide more ways
to dispatch events between JVM's and physical machines.

1.1.3. When to use Axon?

Will each application benefit from Axon? Unfortunately not. Simple CRUD (Create, Read, Update, Delete)
applications which are not expected to scale will probably not benefit from CQRS or Axon. Fortunately,
thereis awide variety of applications that does benefit from Axon.

Applications that will most likely benefit from CQRS and Axon are those that show one or more of the
following characteristics:

Axon Framework 0.5 Reference Guide 2

http://www.axonframework.org/

» Theapplicationislikely to be extended with new functionality during along period of time. For example,
an online store might start off with a system that tracks progress of Orders. At alater stage, this could be
extended with Inventory information, to make sure stocks are updated when items are sold. Even later,
accounting can require financial statistics of salesto be recorded, etc. Although it is hard to predict how
software projects will evolve in the future, the majority of this type of application is clearly presented
as such.

» Theapplication has ahigh read-to-writeratio. That means dataisonly written afew times, and read many
times more. Since data sources for queries are different to those that are used for command validation,
it is possible to optimize these data sources for fast querying. Duplicate datais no longer an issue, since
events are published when data changes.

» The application presents data in many different formats. Many applications nowadays don't stop when
showing information on aweb page. Some applications, for example, send monthly emailsto notify users
of changes that occured that might be relevant to them. Search engines are another example. They use
the same data your application does, but in away that is optimized for quick searching. Reporting tools
aggregate information into reports that show data evolution over time. This, again, is a different format
of the same data. Using Axon, each data source can be updated independently of each other on areal-
time or scheduled basis.

» When an application hasclearly separated componentswith different audiences, it can benefit from Axon,
too. An example of such application is the online store. Employees will update product information and
availability on the website, while customer place orders and query for their order status. With Axon,
these components can be deployed on separate machines and scaled completely differently. They are
kept up-to-date using the events, which Axon will dispatch to all subscribed components, regardles of
the machine they are deployed on.

* Integration with other applications can be cumbersone work. The strict definition of an application's AP
using commands and events makes it easier to integrate with external applications. Any application can
send commands or listen to events generated by the application.

1.2. Getting started

This section will explain how you can obtain the binaries for Axon to get started. There are currently two
ways: either download the binaries from our website, or (if you use maven) configure you pom.xml file to
include the Axon binariesin your build.

1.2.1. Download Axon

Y ou can download the Axon Framework from our downloads page: axonframework.org/download.

Thispage offersanumber of downloads. Typically, youwould want to usethelatest stablerelease. However,
if you're eager to get started using the latest and greatest features, you could consider using the snapshot

Axon Framework 0.5 Reference Guide 3

http://www.axonframework.org/download

releasesinstead. The downloads page contains a number of assemblies for you to download. Some of them
only provide the Axon library itself, while others also provide the libraries that Axon depends on. There
isaso a"full" zip file, which contains Axon, its dependencies, the sources and the documentation, al in
asingle download.

If you really want to stay on the bleeding edge of development, you can aso checkout the sources from the
subversion repository: htt p: / / axonf r amewor k. googl ecode. conf svn/ t runk/ .

1.2.2. Configure Maven

If you use maven as your build tool, you need to configure the correct dependencies for your project. Add
the following code in your dependencies section:

<dependency>
<gr oupl d>or g. axonf r amewor k</ gr oupl d>
<artifactld>axon-core</artifactld>
<ver si on>0. 5</ ver si on>

</ dependency>

Most of the features provided by the Axon Framework are optional and require additional dependencies.
We have chosen not to add these dependencies by default, as they would potentioly clutter your project
with artifacts you don't need. This section discusses these dependecies and describes in what scenarios you
need them.

Event Sourcing

The event sourcing repository that is provided in Axon (XSt r eanti | eSyst enEvent St or e) uses
X Stream by default. Y ou need to add the following maven dependency to your project to use thisrepository
implementation if you would like to use these defaults. If you provide your own serialization strategy based
on another library, then you do not have to include this dependency.

<dependency>
<gr oupl d>com t hought wor ks. xst r eanx/ gr oupl d>
<artifactld>xstreanx/artifactld
<versi on>1. 3. 1</ ver si on>

</ dependency>

Spring Integration

The Axon Framework provides connectorsthat allow you to publish events on a Spring I ntegration channel.
These connectors require Spring Integration on the classpath. Y ou need the following maven dependency
to use these connectors.

<dependency>
<groupl d>or g. spri ngf ramewor k. i nt egr ati on</ gr oupl d>
<artifactld>spring-integration-core</artifactld>
<versi on>1. 0. 3. RELEASE</ ver si on>

</ dependency>

Axon Framework 0.5 Reference Guide 4

1.3. Contributing to Axon Framework

Development on the Axon Framework is never finished. There will always be more features that we like to
include in our framework to continue making development of scalabale and extensible application easier.
This means we are constantly looking for help in devel oping our framework.

There is a number of ways in which you can contribute to the Axon Framework:

* You can report any bugs, feature requests or ideas about improvemens on our issue page:
axonframework.org/issues. All ideas are welcome. Please be as exact as possible when reporting bugs.
Thiswill help us reproduce and thus solve the problem faster.

« If you have created acomponent for your own application that you think might be useful to includein the
framework, send us a patch or azip containing the source code. We will evaluate it and try to fit it in the
framework. Please make sure code is properly documented using javadoc. This helps us to understand
what is going on.

* If you know of any other way you think you can help us, please do not hesitate to contact us.

1.4. License information

The Axon Framework and its documentation are licensed under the Apache License, Version 2.0. Y ou may
obtain a copy of the License at http://www.apache.org/licenses/L I CENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS1S" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

Axon Framework 0.5 Reference Guide 5

http://www.axonframework.org/issues
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

2. Architecture Overview

COQRSonitself isavery simple pattern. It only describesthat the component of an application that processes
commands should be separated from the component that processes queries. Although this separation is
very simple on itself, it provides a number of very powerful features when combined with other patterns.
Axon provides the building block that make it easier to implement the different patterns that can be used
in combination with CQRS.

The diagram below shows an example of an extended layout of a CQRS architecture. The Ul component,
displayed on the left, interacts with the rest of the application in two ways: it sends commands to the
application (shown in the top section), and it queries the application for information (shown in the bottom
section).

Q .
e} Domain
g <aggregate - <-event
D 3
o 8_ Event Store
3 O Z
(]
command=Jm- 2 " aggregate =
@ events
Event Handler event

<

A

Analysis

Database
N

S <

S
Database email

Messaging

sql

JaAeT ejeq Uiy
I3|pueH jusAg

Figure 2.1. Architecture overview of a CQRS application
Command Handling

Commands are represented by simple and straightforward objects that contain all data necessary for a
command handler to executeit. Typically, acommand expresses someintent by itsname. In Javaterms, that
means the class hame is used to figure out what needs to be done, and the fields of the command provide
the information required to do it.

Axon Framework 0.5 Reference Guide 6

The Command Bus receives commands and routes them to the Command Handlers. Each command handler
responds to a specific type of command and execute logic based on their contents. In some cases, however,
you would also want to do things regardless of the actual type of command, such aslogging or authorization.

Axon provides building blocks to help you implement a command handling infrastructure with these
features. These buidling block are thorougly described in Chapter 3, Command Handling.

Domain Modeling

The command handler retrieves domain objects (Aggregates) from arepository and executes methods on
them to change their state. These aggregates typically contain the actual business logic and are therefore
responsible for guarding their own invariants. The state changes of aggregates result in the generation
of Domain Events. Both the Domain Events and the Aggregates form the domain model. Axon provides
supporting classes to help you build adomain model. They are described in Chapter 4, Domain Modeling.

Repositories and Event Stores

Once the command execution is complete, the command handler saves the aggregate's state by handing it
over to the repository. The repository does two things when it saves an aggregate. It persists the aggregate's
state for future commands that need to execute on this aggregate. Furthermore, events are handed over to
the event bus, which is reposonsible for dispatching them to all interested listeners.

Axon provides support for both the direct way of persisting aggregates (using object-relational-mapping,
for example) and for event sourcing. More about repositories and event stores can be found in Chapter 5,
Repositories and Event Stores.

Event Processing

The event bus dispatches events to al interested event listeners. This can either be done synchronously or
asynchronously. Asynchronous event dispatching allows the command execution to return and hand over
control to the user, while the events are being dispatched and processed in the background. Not having to
wait for event processing to compl ete makes an application more responsive. Synchronous event processing,
on the other hand, is simpler and is a sensible default. Synchronous processing also allows several event
listeners to process events within the same transaction.

Event listeners receive events and handle them. Some handlers might issue commands to update other
aggregates, based on information in the event. An example of thisis the placement of an order in an online
store. When an order comes in, you might want to update stock information for all ordered items. The
listener would listen to events regarding placed orders and send stock update commands to the inventory.
Other event listeners will update data sources used for querying or send messages to external systems.

As you might notice, the command handlers are completely unaware of the components that are interested
in the changes they make. This means that it is very non-intrusive to extend the application with new
functionality. All you need to do is add another event listener. The events loosely couple all components
in your application together.

Axon Framework 0.5 Reference Guide 7

The building blocksrelated to event handling and dispatching are explained in Chapter 6, Event Processing.

Querying for data

Some event handlers will update data in data sources, such as tables in a database. The thin data layer
in between the user interface and the data sources provides a clearly defined interface to the actual query
implementation used. This data layer typically returns read-only DTO objects containing query results.

Axon does not provide any building blocks for this part of the application. The main reason is that thisis
very straightforward and doesn't differ from the layered architecture.

Axon Framework 0.5 Reference Guide 8

3. Command Handling

A state change within an application starts with a Command. A Command is a combination of expressed
intent (which describes what you want done) as well as the information required to undertake action based
on that intent. A Command Handler is responsible for receiving commands of a certain type and taking
action based on the information contained inside it.

The use of an explicit command dispatching mechanism has a number of advantages. First of al, thereis
asingle object that clearly describes the intent of the client. By logging the command, you store both the
intent and related datafor future reference. Command handling also makesit easy to expose your command
processing components to remote clients, viaweb services for example. Testing also becomes alot easier,
you could define test scripts by just defining the starting situation (given), command to execute (when) and
expected results (then) by listing a number of events and commands. The last major advantage isthat it is
very easy to switch between synchronous and asynchronous command processing.

The next sections provide an overview of the tasks related to creating a Command Handling infrastructure
with the Axon Framework.

3.1. Creating a Command Handler

The Command Handler is the object that receives a Command of a pre-defined type and takes action
based on its contents. In Axon, a Command may be any object. There is no predefined type that needs
to be implemented. The Command Handler, however, must implement the CormandHandl er interface.
This interface declares only a single method: Cbj ect handl e(T conmand), where T is the type
of Command this Handler can process. It is not recommended to use return values, but they are allowed.
Always consider using a"fire and forget" style of command handlers, where a client does not have to wait
for aresponse. As return value in such a case, you are recommended to use either nul | or Voi d. TYPE.
The latter being the official representation of the voi dkeyword.

@ Note

Note that Command Handlers need to be explicitly subscribed to the Command Bus for the
specific types of Command they can handle. See Section 3.2, “ Configuring the Command Bus’.

Annotation support

Comparabl e to the annotation support for Event Listeners, you can also use any POJO as command handler.
The added advantage isthat you can configure asingle classto process several typesof (related) commands.
Just add the @ConmandHandl er annotated to your methods to turn them into acommand handler. These
methods may only accept a single parameter, which isthe command to process. Note that for each command
type, there may only be one handler! Thisrestriction countsfor all handlersregistered to the same command
bus.

Axon Framework 0.5 Reference Guide 9

You can use the Annot at i onCommandHandl er Adapt er to turn your annotated class into a
ConmandHandl er . The adapter aso needs the CommandBusinstance. Usethesubscri be() method
on the adapter to subscribe the annotated handlers to the command bus using the correct command type.

If you use Spring, you may aso define an Annot at i onConmmandHandl er BeanPost Pr ocessor.
This post processor detects any beans that have an @onmmandHandl er annotated method in them
and wrap them in an Annot at i onConmandHandl er Adapt er automatically. They will also be
automatically subscribed to the CormandBus.

@@ Note

Note that you need to be careful when mixing manual wrapping and the use of the post
processor. This might result in command handler being subscribed twice. This does not have
to be a problem for most command handlers, since only a single command handler can be
subscribed to aspecific type of command at any onetime. Their subscriptionswill just overwrite
each other.

3.2. Configuring the Command Bus

The Command Bus is the mechanism that dispatches commands to their respective Command Handler.
Though similar to the Event Bus, thereisavery clear distinction to be made between the command bus and
the event bus. Where Events are published to all registered listeners, commands are sent to only one (and
exactly one) command handler. If no command handler isavailable for adispatched command, an exception
(NoHandl er For CommandExcept i on) isthrown. Subscribing multiple command handlersto the same
command type will result in subscriptions replacing each other. In that case, the last subscription wins.

Axon provides a single implementation of the Command Bus: Si npl eComandBus. Y ou can subscribe
and unsubscribe command handlers using the subscri be and unsubscri be methods, respectively.
They both take two parameters: the type of command to (un)subscribe the handler to, and the handler to
(un)subscribe. An unsubscription will only be done if the handler passed as the second parameter was
currently assigned to handle that type of command. If another command was subscribed to that type of
command, nothing happens.

3.3. Command Handler Interceptors

One of the advantages of using a command bus is the ability to undertake action based on all incoming
commands, such as logging or authentication. The Si npl eCommandBus provides the ability to register
interceptors. Theseinterceptors provide the ability to take action both before and after command processing.

Interceptors must implement the CommandHandl| er | nt er cept or interface. This interface declares
two methods, bef or eConmandHandl i ng() and af t er ConmandHandl i ng() , that both take two
parameters. a ConmandCont ext and a ConmandHandl er. The first contains the actual command
and provides the possiblity to add meta-data to the command. This meta-data is not forwarded to the

Axon Framework 0.5 Reference Guide 10

command handler, but is intended for the command handler interceptor itself. You could, for example,
store transactional information in the context if your transactional boundary is at the command handling.
The second parameter, the ConmmandHandl er isthe command handler that will process or has processed
the command. Y ou could, for example, base authorization requirements on information in the command
handler.

If you use annotation support, the Annot ati onCommandHandl er Adapt er is passed as the
command handler. You may cal get Target () on it to obtain the actual annotated command
handler. To obtain a reference to the method that handles the command, you can use the
fi ndCormandHandl er Met hodFor (Gbj ect comrand) method. You could, for example, use the
reference to this method to find security-related annotations and perform authorization on them.

3.3.1. Managing transactions

In some cases, it is desirable to set a transaction scope around the command handling process. For example
when using synchronous event handling with event handlersthat update tablesin adatabase in combintation
with the JpaEvent St or e. By setting the transaction scope in the command dispatching process, al
changes can be performed within a single transaction. This provides full consistency guarantees.

Axon provides the SpringTransactionallnterceptor, which uses Spring's
Pl at f or nilr ansact i onManager to manage the actual transactions. A transaction is committed when
command handling is successful, or rolled back if the command handler (or one of the downstream
interceptors) threw an exception.

Axon Framework 0.5 Reference Guide 11

4. Domain Modeling

In aCQRS-based application, aDomain Model (as defined by Eric Evans and Martin Fowler) can be avery
powerful mechanism to harness the complexity involved in the validation and execution of state changes.
Although atypical Domain Model has a great number of building blocks, two of them play a major role
when applied to CQRS: the Event and the Aggregate.

The following sections will explain the role of these building blocks and how to implement them using the
Axon Framework.

4.1. Events

The Axon Framework makes a distinction between three types of events, each with a clear use and type of
origin. Regardless of their type, all events must implement the Event interface or one of the more specific
sub-types, Domain Events, Application Events and System Events, each described in the sections below.

4.1.1. Domain Events

The most important type of event in any CQRS application is the domain event. It represents an event that
occurs inside your domain logic, such as a state change or special notification of a certain state. The latter
not being per definition a state change.

In the Axon Framework, al domain events should extend the abstract Domai nEvent class. This abstract
class keeps track of the aggregate they are generated by, and the sequence number of the event inside the
aggregate. This information is important for the Event Sourcing mechanism, as well as for event handlers
(see Section 6.2, “Event Listeners’) that need to know the origin of an event.

Although not enforced, it isgood practiceto make domain eventsimmutable, preferably by making all fields
final and by initializing the event within the constructor.

@ Note

Although Domain Events technically indicate a state change, you should try to capture the
intention of the state in the event, too. A good practice is to use an abstract implementation
of a domain event to capture the fact that certain state has changed, and use a concrete
sub-implementation of that abstract class that indicates the intention of the change. For
example, you could have an abstract Addr essChangedEvent , and two implementations
Cont act MovedEvent and Addr essCor r ect edEvent that capturetheintent of the state
change. Some listeners will care about the intent (e.g. to send an address change confirmation
email to the customer), while others don't (e.g. database updating event listeners). The latter
will listen to events of the abstract type, while the former will listen to the concrete subtypes.

Axon Framework 0.5 Reference Guide 12

<<abstract>>
AddressChangedEvent

State change

Intent

[ContactMovedEvent J (AddressCorrectedEvent j

Figure 4.1. Adding intent to events

Thereisaspecial typeof Domai nEvent , which hasaspecial meaning: theAggr egat eDel et edEvent .
This event can be extended to indicate that the event indicates a migration to a "deleted" state of the
aggregate. Repositories must consider aggregates that have applied such an event as deleted. L oading such
an aggregate in again resultsin an exception.

Snapshot events are instances of Domai nEvent with a specia intent. They are typically not dispatched
viathe event bus, but are used to summarize an arbitrary number of events from the past into asingle entry.
This can drastically improve performance when initializing an aggregate's state from a series of events. See
Section 5.4, “Using Snapshot Events’ for more information about snapshot events and their use.

4.1.2. Application Events

Application events are events that cannot be categorized as domain events, but do have a significant
importance for the application. When using application events, check if the event is actually adomain event
that you over looked. Examples of application events are the expiry of a user session, or the notification
of an email being successfully send. The usefulness of these events depend on the type of application you
are creating.

In the Axon Framework, you can extend the abtract Appl i cati onEvent class for application events.
This class will generate a unique identifier and a time stamp for the current event. Optionally, you can
attach an object that acts as the source of the event. This source is loosely attached, which means that if
the garbage collector cleans up the source, or when the event is serialized and deserialized, the origina
source class is not available anymore. Instead, you will have access to the type of source and the value of
itst oStri ng() method.

4.1.3. System Events

Thethird type of event identified by Axon Framework isthe System Event. These events typically provide
notifications of the status of the system. These events could, for example, indicate that a subsystem is non-
responsive or has raised an exception.

All system events extend the abstract Sy st emEvent class. Upon construction of this event, you may pass
an exception, defining the cause of the event, and a source object which is considered the source of the
event. This object is loosely referenced from the event.

Axon Framework 0.5 Reference Guide 13

4.2. Aggregate

An Aggregateis an entity or group of entitiesthat is always kept in a consistent state. The aggregate root is
the object on top of the aggregate tree that is responsible for maintaining this consistent state.

@ Note
Theterm "Aggregate” refersto the aggregate as defined by Evansin Domain Driven Design:

“A cluster of associated objects that are treated as a unit for the purpose of data changes.
External references are restricted to one member of the Aggregate, designated astheroot. A set
of consistency rules applies within the Aggregate's boundaries. ”

A more extensive definition can be found on: http://domaindrivendesign.org/freelinking/
Aqggregate.

For example, a "Contact" aggregate will contain two entities. contact and address. To keep the entire
aggregate in a consistent state, adding an address to a contact should be done via the contact entity. In this
case, the Contact entity is the appointed aggregate root.

4.2.1. Basic aggregate implementations

Aggr egat eRoot

In Axon, all aggregate roots must implement the Aggr egat eRoot interface. Thisinterface describes the
basi ¢ operations needed by the Repository to store and publish the generated domain events. However, Axon
Framework provides a number of abstract implementations that help you writing your own aggregates.

@ Note

Notethat only the aggregate root needsto implement the AggregateRoot interface or implement
one of the abstract classes mentioned below. The other entities that are part of the aggregate
do not have to implement any interfaces.

Ver si onedAggr egat eRoot

The Ver si onedAggr egat eRoot interface provides the information needed by repositories
to perform optimistic locking. The only method added to the Aggr egat eRoot interface is
get Last Comni t t edEvent SequenceNunber , which returns the sequence number of the event that
was last committed. See the section called “Locki ngReposi t ory” for more information about the
abstract Locki ngReposi t or y implementation.

Abst r act Aggr egat eRoot

The Abstract Aggr egat eRoot is a basic implementation that provides a
regi st er Event (Domai nEvent) method that you can call in your business logic method to have an

Axon Framework 0.5 Reference Guide 14

http://domaindrivendesign.org/freelinking/Aggregate
http://domaindrivendesign.org/freelinking/Aggregate

event added to the list of uncommitted events. The Abst r act Aggr egat eRoot will keep track of all
uncommitted registered events and make sure they are forwarded to the event bus when the aggregate is
saved to arepository.

4.2.2. Event sourcing aggregates

Axon framework provides a few repository implementations that can use event sourcing
as dtorage method for aggregates. These repositories require that aggregates implement the
Event Sour cedAggr egat eRoot interface. As with most interfaces in Axon, we aso provide one or
more abstract implementation to help you on your way.

Event Sour cedAggr egat eRoot

TheEvent Sour cedAggr egat eRoot definesan extramethod,i niti al i zeSt at e(), ontop of the
Ver si onedAggr egat eRoot interface. This method initializes an aggregate's state based on an event
stream.

Abst r act Event Sour cedAggr egat eRoot

The Abstract Event Sour cedAggr egat eRoot implements al methods on the
Event Sour cedAggr egat eRoot interface. It defines an abstract handl e() method, which you need
to implement with the actual logic to apply state changes based on domain events. When you extend
the Abst ract Event Sour cedAggr egat eRoot , you can register new events using the appl y()
method. This method will register the event to be committed when the aggregate is saved, and will call the
handl e() method with the event as parameter.

public class MyAggregat eRoot extends Abstract Event Sour cedAggr egat eRoot {
private String someProperty;

publ i c MyAggr egat eRoot () {
appl y(new MyAggr egat eCr eat edEvent ()) ;
}

publ i c MyAggregat eRoot (UUI D identifier) {
super (i dentifier);

}

publ i c voi d handl e(Domai nEvent event) {
if (event instanceof MyAggregateCreatedEvent) {
/] do sonething with sonmeProperty

}

/'l and nore if-else-if logic here

}

Abst ract Annot at edAggr egat eRoot

As you see in the example above, the implementation of the handl e() method can become
quite verbose and hard to read. The Abstract Annot at edAggr egat eRoot can help. The

Axon Framework 0.5 Reference Guide 15

Abst r act Annot at edAggr egat eRoot isaspeciaization of the Abst r act Aggr egat eRoot that
provides @vent Handl er annotation support to your aggregate. Instead of asinglehandl e() method,
you can split the logic in separate methods, with names that you may define yourself. Just annotate the
event handler methods with @vent Handl er , and the Abst r act Annot at edAggr egat eRoot will
invoke the right method for you.

public class MyAggregat eRoot extends Abstract Event Sour cedAggr egat eRoot {
private String soneProperty;

publ i c MyAggr egat eRoot () {
appl y(new MyAggr egat eCr eat edEvent ()) ;

}

publ i c MyAggregat eRoot (UUID identifier) {
super (i dentifier);

}

@tvent Handl er
private voi d handl eM/Aggr egat eCr eat edEvent (MyAggr egat eCr eat edEvent event) {
/] do sonething with soneProperty
}
}

In al circumstances, exactly one event handler method is invoked. The
Abst r act Annot at edAggr egat eRoot will search the most specific method to invoke, in the
following order:

1. Onthe actual instance level of the class hierarchy (asreturned by t hi s. get Cl ass()), al annotated
methods are evaluated

2. If one or more methods are found of which the parameter is of the event type or a super type, the method
with the most specific class (the subclass) is chosen and invoked

3. If no methods are found on this level of the class hierarchy, the super type is evaluated the same way

4. When the level of the Abst r act Annot at edAggr egat eRoot is reached, and no suitable event
handler isfound, an Unhandl edEvent Except i on isthrown.

Event handler methods may be private, as long as the security settings of the JVM alow the Axon
Framework to change the accessibility of the method. This allows you to clearly separate the public API of
your aggregate, which exposes the methods that generate events, from the internal logic, which processes
the events.

Q) Tip

L

An Aggregate will only contain fields of properties it uses for validation or business
logic decisions. That means you will likely have some events that have no direct
effect on any fields in the aggregate. In that case you can choose to create a
handl et her Event s(Dormai nEvent event) method with an empty body. This

Axon Framework 0.5 Reference Guide 16

handler will be called for any event for which there is no specific handler, preventing any
exception being thrown. Do consider, however, that doing so may result in unexpected behavior
if an event handler for a specific type of event isforgotten.

Axon Framework 0.5 Reference Guide 17

5. Repositories and Event Stores

The repository is the mechanism that provides access to aggregates. The repository acts as a gateway to
the actual storage mechanism used to persist the data. In CQRS, the repositories only need to be able to
find aggregates based on their unique identifier. Any other types of queries should be performed against
the query database, not the Repository.

In the Axon Framework, all repositories must implement the Reposi t ory interface. This interface
prescribes two methods: | oad(i dentifi er) andsave(aggregate).

Depending on your underlying persistence storage and auditing needs, there are a number of base
implementations that provide basic functionality needed by most repositories. Axon Framework makes a
distinction between repositories that save the current state of the aggregate (see Section 5.1, “ Standard
repositories’), and those that store the events of an aggregate (see Section 5.2, “Event Sourcing
repositories’).

5.1. Standard repositories

Standard repositories store the actual state of an Aggregate. Upon each change, the new state will overwrite
the old. Thismakes it possible for the query components of the application to use the same information the
command component also uses. This could, depending on the type of application you are creating, be the
simplest solution. If that is the case, Axon provides some building blocks that help you implement such
arepository.

Note that the Repository interface does not prescribe adel et e(i denti fi er) method. Thisis because
not al types of repositories use that functionality. Of course, nothing witholds you from adding it to your
repository implementation.

Abstract Repository

The most basic implementation of the repository is AbstractRepository. It takes care of the event
publishing when an aggregate is saved. The actual persistence mechanism must still be implemented. This
implementation doesn't provide any locking mechanism and expects the underlying data storage mechanism
to provideit.

Locki ngReposi tory

If the underlying data store does not provide any |ocking mechanism to prevent concurrent modifications of
aggregates, consider using the abstract Locki ngReposi t or y implementation. Besides providing event
dispatching logic, it will also ensure that aggregates are not concurrently modified.

Y ou can configurethe Locki ngReposi t or y to use an optimistic locking strategy, or a pessimistic one.
When the optimistic lock detects concurrent access, the second thread saving an aggregate will receive

Axon Framework 0.5 Reference Guide 18

a ConcurrencyExcepti on. The pessimistic lock will prevent concurrent access to the aggregate
alltogether.

5.2. Event Sourcing repositories

Aggregaterootsthat implement the Event Sour cedAggr egat eRoot interface can bestoredin an event
sourcing repository. Those repositories do not store the aggregate itself, but the series of events generated
by the aggregate. Based on these events, the state of an aggregate can be restored at any time.

Event Sour ci ngRepository

The abstract Event Sour ci ngReposi t or y implementation provides the basic functionality needed by
any event sourcing repository in the AxonFramework. It depends on an Event St or e, which abstractsthe
actual storage mechanism for the events. See Section 5.3, “ Event store implementations”.

The EventSourcingRepository has two abstract methods: get Typel dentifier() and
i nstanti at eAggregat e(i dentifier). Thefirstisavalue passed to the event store that provides
information about the type of aggregate that the events relate to. A good starting point to use as return
value is the simple name of a class (i.e. the fully qualified class name withouth the package name). The
second method requires you to create an uninitialized instance of the aggregate using the given identifier.
The repository will initialize this instance with the events obtained from the event store.

Cachi ngEvent Sour ci ngRepository

Initializing aggregates based on the events can be atime-consuming effort, compared to the direct aggregate
loading of the simple repository implementations. The Cachi ngEvent Sour ci ngReposi tory
provides a cache from which aggregates can be loaded if available. You can configure any jcache
implementation with this repository. Note that this implementation can only use caching in combination
with apessimistic locking strategy.

5.3. Event store implementations

Event Sourcing repositories need an event store to store and |oad events from aggregates. Typically, event
stores are capable of storing events from multiple types of aggregates, but it is not a requirement.

Axon provides two implementations of event stores, both are capable of storing al domain events (those
that extend the Domai nEvent class). These event stores use an Event Seri al i zer to serialize and
deserialize the event. By default, Axon provides an implementation of the Event Serializer that serializes
eventsto XML: the XSt r eanEvent Seri al i zer.

Fi | eSyst enEvent St ore

TheFi | eSyst enEvent St or e storestheeventsinafileonthefile system. It providesgood performance
and easy configuration. The only downside of this event storeisthat is does not provide transaction support
and doesn't cluster very well. The only configuration needed isthe location where the event store may store

Axon Framework 0.5 Reference Guide 19

its files and the serializer to use to actually serialize and deserialize the events. Note that the provided url
must end on adash. Thisis dueto the way Spring's Resour ce implementations work.

JpaEvent Store

The JpaEvent St or e stores events in a JPA-compatible data source. Unlike the XStream version,
the JPAEvent St or e supports transactions. The JPA event store can aso load events based on their
timestamps.

TousetheJpaEvent St or e, you must havethej avax. per si st ence annotations on your classpath.
Furthermore, you should configureyour persistence context (definedin META- | NF/ per si st ence. xm
file) to contain the classes or g. axonf r anmewor k. event st or e. j pa. Donai nEvent Entry and
or g. axonf ramewor k. event st ore. j pa. Snapshot Event Entry.

Below is an example configuration of a persistence context configuration:

<persi stence xm ns="http://java. sun. com xm / ns/ persi stence" versi on="1.0">
<persi stence-unit nanme="event Store"[transaction-type="RESOURCE LOCAL">
<cl ass>org...eventstore.jpa. Domai nEvent Entry</cl ass> [
<cl ass>org...eventstore.]jpa. Snapshot Event Entry</ cl ass>
</ per si stence-unit>
</ persi st ence>

O Inthissample, thereisis specific persistence unit for the event store. Y ou may, however, choose to
add the third line to any other persistence unit configuration.

O Thisline registers the Domai nEvent Ent ry (the class used by the JpaEvent St or e) with the
persistence context.

Implementing your own event store

If you have specific requirements for an event store, it is quite easy to implement one using different
underlying data sources. Reading and appending events is done using a Dormai nEvent St r eam which
is quite similar to iterator implementations.

Q) Tip

The Si npl eDomai nEvent St r eamclass will make the contents of a sequence (Li st or
arr ay) of Domai nEvent instances accessible as event stream.

Influencing the serialization process

Event Stores need a way to serialize the Domain Event to prepare it for storage. By default, Axon uses
the XSt r eanEvent Seri al i zer , which uses X Stream (see xstream.codehaus.org) to serialize Domain
Events into XML and vice versa. XStream is very fast and is more flexible than Java Serialization. For
example, if you remove afield from a class, you can still deserialize instances from that class using the
old XML. XStream will simply ignore that field. Furthermore, the result of X Stream serialization is human
readable. Quite useful for logging and debugging purposes.

Axon Framework 0.5 Reference Guide 20

http://xstream.codehaus.org/

The XStreamEventSerializer can be configured. Y ou can define aliases it should use for certain packages,
classes or even fields. Besides being a nice way to shorten potentially long names, aliases can also be used
when class definitions of event change. For more information about aliases, visit the XStream website:
xstream.codehaus.org.

You may aso implement your own Event Seridizer, simply by creating a class that implements
Event Seri al i zer, and configuring the Event Store to use that implementation instead of the defaullt.

5.4. Using Snapshot Events

When aggregateslivefor along time, and their state constantly change, they will generate alarge amount of
events. Having to load all these eventsin to rebuild an aggregate's state may have abig performance impact.
The snapshot event is a domain event with a special purpose: it summarises an arbitrary amount of events
into asingle one. By regularly creating and storing a snapshot event, the event store does not have to return
long lists of events. Just the last snapshot events and all events that occurred after the snapshot was made.

For example, itemsin stock tend to change quite often. Each time an item is sold, an event reduces the stock
by one. Every time a shipment of new items comes in, the stock is incremented by some larger number.
If you sell a hundred items each day, you will produce at least 100 events per day. After a few days,
your system will spend too much time reading in all these events just to find out wheter it should raise an
"ItemOutOfStockEvent”. A single snapshot event could replace a lot of these events, just by storing the
current number of itemsin stock.

Storing Snapshot Events

Boththe JpaEvent St or e andthe Fi | eSyst enEvent St or e are capable of storing snapshot events.
They provide a special method that allows a Dormai nEvent to be stored as a snapshot event. Y ou haveto
initialize the snapshot event completely, including the aggregate identifier and the sequence number. There
isaspecial constructor on the Dormai nEvent for this purpose. The sequence number must be equal to the
segquence number of the last event that was included in the state that the snapshot represents. In most cases,
you can usethe get Last Commi tt edEvent SequenceNunber () ontheVer si onedAggr egat e
(which each event sourced aggregate implements) to obtain the sequence number to use in the snapshot
event.

When a snapshot is stored in the Event Store, it will automatically use that snapshot to summarize al
prior events and return it in their place. Both event store implementations allow for concurrent creation of
snapshots. Thismeansthey allow snapshotsto be stored while another processisadding Eventsfor the same
aggregate. This allows the snapshotting process to run as a separate process alltogether.

@ Note

Normally, you can archive al events once they are part of asnapshot event. Snapshotted events
will never beread in again by the event storein regular operational scenario's. However, if you

Axon Framework 0.5 Reference Guide 21

http://xstream.codehaus.org/

want to be able to reconstruct aggregate state prior to the moment the snapshot was created,
you must keep the events up to that date.

Triggering snapshot creation

Snapshot creation can be triggered by a number of factors, for example the number of events created since
the last snapshot, the time to initialize an aggregate exceeds a certain threshold, time-based, etc. Currently,
Axon does not provide a triggering mechanism (yet).

However, Axon does provide an interface that instances that produce snapshots should implement:
Snapshot Pr oducer . Typicaly, thisinterfaceisimplemented by an aggregateroot, sincethat istypically
the only object that has full access to the aggregate's full state information.

Initializing an aggregate based on a Snapshot Event

A snapshot event is just a regular Domai nEvent . That means a snapshot event is handled just like any
other domain event. When using annotations to demarcate event handers (@vent Handl er), you can
annotate a method that initializes full aggregate state based on a snapshot event. The code sample below
shows how snapshot events are treated like any other domain event within the aggregate.

public class MyAggregate extends Abstract Annot at edAggr egat eRoot {
/] ... code onmitted for brevity

@tvent Handl er
protected voi d handl eSoneSt at eChangeEvent (MyDomai nEvent event) {
...

}

@Event Handl er

protected voi d appl ySnapshot (MySnapshot Event event) {
/'l the snapshot event should contain all relevant state
this.soneState = event. soneStat e;
this.otherState = event. ot her State;

Axon Framework 0.5 Reference Guide 22

6. Event Processing

The Events generated by the application need to be dispatched to the components that update the query
databases, search enginesor any other resourcesthat need them: the Event Listeners. Thisisthereponsibility
of the Event Bus. Axon Framework provides an Event Bus and some abstract classes to help you implement
Event Listeners.

6.1. Event Bus

The Event Bus isthe mechanism that dispatches events to the subsribed event listeners. Axon Framework
provides an implementation of the event bus. Si npl eEvent Bus. . The Si npl eEvent Bus manages
subscribed Event Li st ener s and forwards all incoming events to all subscribed listeners. This means
that Event Listeners must be explicitly registered with the Event Busin order for them to receive events.

6.2. Event Listeners

Event listeners are the component that act on incoming events. These events may be of any type of the
events mentioned in Section 4.1, “Events”. In the Axon Framework, all event listeners must implement the
Event Li st ener interface.

6.2.1. Basic configuration

Event listeners need to be registered with an event bus (see Section 6.1, “Event Bus’) to be notified of
events. Axon, however, provides a base implementation that take care of this, and other things, for you.

Annot at i onEvent Li st ener Adapt er

The Annot at i onEvent Li st ener Adapt er can wrap any object into an event listener. The adapter
will invoke the most appropriate event handler method available. These event handler methods must be
annotated with the @Event Handl er annotation and are resolved according to the same rules that count
for annotated aggregate roots (see the section called “ Abst r act Annot at edAggr egat eRoot).

The constructor of the Annot at i onEvent Li st ener Adapt er takes two parameters: the annotated
bean, and the Event Bus, to which the listener should subscribe. Y ou can subscribe and unsubscribe the
event listener using thesubscri be() andunsubscri be() methods on the adapter.

Q Tip

If you wuse Spring, you can automatically wrap al annotated event
listeners with an adapter automatically by configuring a bean of
type Annot ati onEvent Li st ener BeanPost Processor. This post processor
will automatically find and wrap annotated event listeners inside an
Annot at i onEvent Li st ener Adapt er and register them with an event bus.

Axon Framework 0.5 Reference Guide 23

6.2.2. Asynchronous event processing

By default, event listeners process events in the thread that dispatches them. This means that the thread
that executes the command will have to wait untill all event handling has finished. For some types of event
listenersthisis not the optimal form of processing. Asynchronous event processing improves the scalability
of the application, with the penalty of added complexity to deal with "eventual consistency"”. With the Axon
Framework, you can easily convert any event handler into an asynchronous event handler by wrapping
it in an Asynchr onousEvent Handl er W apper or, when using annotations, adding the type-level
Asynchr onousEvent Li st ener annotation.

The Asynchr onousEvent Handl er W apper needs some extra configuration to make an event
handler asynchronous. The first thing that the wrapper needs is an Execut or, for example a
Thr eadPool Execut or . The second is the Sequenci ngPol i cy, adefinition of which events may
be processed in parallel, and which sequentially. The last one is optional: the Tr ansact i onManager ,
which enablesyou to run event processing within atransaction. The next pragraphswill provide moredetails
about the configuration options.

The Execut or isresponsible for executing the event processing. The actual implementation most likely
depends on the environment that the application runs in and the SLA of the event handler. An example
is the Thr eadPool Execut or, which maintains a pool of threads for the event handlers to use to
process events. The AsynchonousEvent Handl er W apper will manage the processing of incoming
eventsin the provided executor. If aninstance of aSchedul edThr eadPool Execut or isprovided, the
Asynchr onousEvent Handl er W apper will automatically leverageitsability to schedule processing
in the cases of delayed retries. See Section 6.2.3, “Managing transactions in asynchronous event handling”
for more information about transactions.

The Sequenci ngPol i cy defines whether events must be handled sequentially, in paralel or a
combination of both. Palicies return a sequence identifier of a given event. If two events have the same
sequence identifier, this means that they must be handled sequentially be the event handler. A nul |
sequence identifier means the event may be processed in parallel with any other event.

Axon provides a number of common policies you can use:

* The Ful | ConcurrencyPol i cy will tell Axon that this event handler may handle al events
concurrently. Thismeansthat thereis no relationship between the eventsthat require them to be processed
inaparticular order.

» The Sequent i al Pol i cy tells Axon that all events must be processed sequentially. Handling of an
event will start when the handling of a previous event is finished. For annotated event handlers, thisis
the default policy.

» Sequent i al Per Aggr egat ePol i cy will force domain events that were raised from the same
aggregate to be handled sequentially. However, events from different aggregates may be handled
concurrently. This is typically a suitable policy to use for event listeners that update details from
aggregates in database tables.

Axon Framework 0.5 Reference Guide 24

Besides these provided policies, you can define your own. All policies must implement
the Event Sequenci ngPolicy interface. This interface defines a single method,
get Sequencel denti fi er For, that returns the identifier sequence identifier for a given event.
Events for which an equals sequence identifer is returned must be processed sequentially. Events that
produce a different sequence identifier may be processed concurrently. For performance reasons, policy
implementations should return nul | if the event may be processed in parallel to any other event. Thisis
faster, because Axon does not have to check for any restrictions on event processing.

A Transacti onManager can be assigned to a Asynchr onousEvent Handl er W apper to add
transactional processing of events. To optimize processing, events can be processed in small batchesinside
atransaction. The transaction manager has the ability to influence the size of these batches and can decide
to either commit, skip or retry event processing based on the result of abatch. See Section 6.2.3, “Managing
transactions in asynchronous event handling” for more information.

Annotation support for concurrent processing

If you use the Annot at i onEvent Li st ener Adapt er (or the
Annot ati onEvent Li st ener BeanPost Processor), the annotated bean will be
automatically wrapped in an AsynchronousEvent Handl er W apper if the bean is
annotated with @AsyncronousEvent Listener. In that case, an Executor must
have been configured on the the AnnotationEventListenerAdapter or the
Annot at i onEvent Li st ener BeanPost Processor . If no Execut or isprovided, an exceptionis
thrown.

Y ou can configure the event sequencing policy on the @Asynchr onousEvent Li st ener annotation.
Y ou then set the sequencePol i cyd ass to the type of policy you like to use. Note that you can only
choose palicy classes that provide a public no-arg constructor.

@synchronousEvent Li st ener (sequenci ngPol i cyd ass = MyCust onPol i cy. cl ass)
public class MyEventListener() {

@tvent Handl er
public voi d onSonel nport ant Event (MyEvent event) {
/| event Processing |ogic
}
}

public class MyCustonPolicy inplenents Event Sequenci ngPolicy {
public Object getSequenceldentifierFor(Event event) {
if (event instanceof MyEvent) ({
/'l let's assune that we do processing based on the soneProperty field.
return ((MyEvent) event).sonmeProperty();

}

return null;

Axon Framework 0.5 Reference Guide 25

With annotation support, the event handler bean must also act as a transaction manager in order to support
transactions. There is annotation support for transaction management, too (see Section 6.2.3, “Managing
transactions in asynchronous event handling”).

6.2.3. Managing transactions in asynchronous event handling

In some cases, your event handlers have to store data in systems that use transactions. Starting and
committing atransaction for each single event has abig performanceimpact. In Axon, events are processed
in batches. The batch size depends of the number of events that need to be processed and the settings
provided by the event handler. By default, the batch size is set to the number of events available in the
processing queue at the time a batch starts.

In most cases, event handling isdone using athread pool executor, or scheduler. The scheduler will schedule
batches of event processing as soon as event become available. When a batch is completed, the scheduler
will reschedule processing of the next batch, aslong as more events are available. The smaller a batch, the
more"fair" thedistribution of event handler processingis, but al so the more scheduling overhead you create.

When an event listener is wrapped with the Asynchr onousEvent Handl er W apper, you can
configureaTr ansact i onManager tohandletransactionsfor the event listener. The transaction manager
can, based on the information in the Tr ansact i onSt at us object, decide to start, commit or rollback
atransaction to an external system.

The bef or eTr ansact i on(Transact i onSt at us) method is invoked just before Axon will start
handling an event batch. Y ou can use the TransactionStatus object to configure the batch beforeit is started.
For example, you can change the maximum number of events that may run in the batch.

The af t er Transacti on(Transacti onSt at us) method is invoked after the batch has been
processed, but before the scheduler has scheduled the next batch. Based on the vaue of
i sSuccessful (), you can decide to commit or rollback the underlying transaction.

Configuring transactional batches
There are a number of settings you can use onthe Tr ansact i onSt at us object.

You can configure a yielding policy, which gives the scheduler an indication of that to do when a
batch has finished, but more events are available for processing. Use DO_NOT_YI ELD if you want the
scheduler to continue processing immediately as long as new events are available for processing. The
Yl ELD_AFTER _TRANSACTI ON policy will tell the scheduler to reschedule the next batch for processing
when athread is available. The first will make sure events are processed earlier, while the latter provides a
fairer execution of events, as yielding provides waiting thread a chance to start processing. The choice of
yielding policy should be driven by the SLA of the event listener.

You can set the maximum number of events to handle within a transaction using
set MaxTransacti onSi ze(i nt). The default of this value is the number of events ready for
processing at the moment the transaction started.

Axon Framework 0.5 Reference Guide 26

Error handling

When an event handler throws an exception, for example because a data source is not available, the
transaction is marked as failed. In that case, i sSuccessf ul () onthe Transacti onSt at us object
will return f al se and get Excepti on() will return the exception that the scheduler caught. It is the
responsibility of the event listener to rollback or commit any active underlying transactions, based on the
information provided by these methods.

The event handler can provide apolicy set Ret r yPol i cy(Ret ryPol i cy) to tell the scheduler what
to do in such case. There are three policies, each for a specific scenario:

 RETRY_TRANSACTI ONtellsthe event handler scheduler that the entire transaction should be retried. It
will reschedule al the events in the current transaction for processing. This policy is suitable when the
event listener processes eventsto atransactional data source that rolls back an entire transaction.

 RETRY_LAST_EVENT isthe policy that tellsthe scheduler to only retry the last event in the transaction.
This is suitable if the underlying data source does not support transactions or if the transaction was
committed without the last event.

» SKI P_FAI LED_EVENT will tell the scheduler to ignore the exception and continue processing with the
next event. The event listener can still try to commit the underlying transaction to persist any changed
made while processing other eventsin thistransaction. Thisisthe default policy.

Note that the SKI P_FAI LED EVENT is the default policy. For event handlers that use an underlying
mechanism to perform actions, this might not be a suitable policy. Exceptions resulting from errors in
these underlying systems (such as databases or email clients) would cause events to be ignored when the
underlying system is unavailable. In error situations, the event listener should inspect the exception (using
the get Except i on() method) and decide whether it makes sense to retry processing of this event. If
that isthe case, it should set the RETRY_LAST _EVENT or RETRY_TRANSACTI ON policy, depending on
the transactional behavior of the underlying system.

When the chosen policy forces a retry of event processing, the processing is delayed by the number of
milliseconds defined inther et ryl nt er val property. The default interval is 5 seconds.

Manipulating transactions during event processing

Y ou can change transaction semantics event during event processing. This can be done in one of two ways,
depending on the type of event handler you use.

If you use the @vent Handl er annotation to mark event handler methods, you may use a second
parameter of type Tr ansact i onSt at us. If such parameter is available on the annotated method, the
current Tr ansact i onSt at us object is passed as a parameter.

Alternatively, you can usethe static Tr ansact i onSt at us. current () accessor to gain accessto the
status of the current transaction. Note that this method returns nul | if there is no active transaction or if
the Event Bus does not support transactions.

Axon Framework 0.5 Reference Guide 27

With the current transaction status, you can use the requestlmedi ateYiel d() and
request | nredi at eComi t () methods to end the transaction after processing of the event. The
former will aso tell the scheduler to reschedule the remainder of the events for another batch. The
latter will use the yield policy to see what needs to be done. Since the default yielding policy is
Yl ELD_AFTER _TRANSACTI ON, the behavior of both methodsisidentical when using these defaults.

Annotation support

As with many of the other supported features in Axon, there is also annotation support for transaction
management. Y ou have several optionsto configure transactions.

The first is to annotate methods on your EventListener with @Bef or eTransacti on and
@\f t er Transact i on. These methods will be called before and after the execution of a transactional
batch, respectively. The annotated methods may accept asingle parameter of typeTr ansact i onSt at us,
which provides access to transaction details, such as current status and configuration.

Alternatively, you can use an external Transaction Manager, which you assign to afield. If you annotate
that field with @TransactionManager, Axon will autodetect it and use it as transaction manager for that
listener. The transaction manager may be either one that implements the TransactionManager interface, or
any other type that uses annotations.

Provided TransactionManager implementations

Currently, Axon Framework provides one TransactionManager implementation, the
SpringTransacti onManager . This implemenation uses Spring's
Pl at f or niTr ansact i onManager as underlying transaction mechanism. That means the
SpringTransacti onManager can manage any transactionsin resources that Spring supports.

Axon Framework 0.5 Reference Guide 28

7. Using Spring

The AxonFramework has many integration points with the Spring Framework. All major building blocksin
Axon are Spring configurable. Furthermore, there are some Bean Post Processors that scan the application
context for building blocks and automatically wires them.

Axon uses JSR 250 annotations (@Post Const r uct and @'r eDest r oy) to annotate lifecycle methods
of some of the building blocks. Spring doesn't always automatically evaluate these annotations. To force
Spring to do so, addthe<cont ext : annot at i on- conf i g/ > tagto your application context, as shown
in the example below:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: cont ext ="http: //ww. spri ngfranmewor k. or g/ schema/ cont ext " >

<cont ext : annot ati on-confi g/ >

</ beans>

7.1. Wiring event handlers

Using the annotated event listeners is very easy when you use Spring. All you need to do is configure
the Annot ati onEvent Li st ener BeanPost Processor in your application context. This post
processor will discover beanswith @vent Handl er annotated methods and automatically connect them
to the event bus.

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans" >
<bean cl ass="org. .. Annot ati onEvent Li st ener BeanPost Processor"> [
<property name="eventBus" ref="eventBus"/> O

</ bean>

<bean cl ass="or g. axonf ranmewor k. sanpl e. app. query. Addr essTabl eUpdater"/> 0O

</ beans>

0 This bean post processor will scan the application context for beans with an @vent Handl er
annotated method.

0 Thereference to the event busis optional, if only asingle Event Bus implementation is configured
in the application context. The bean postprocessor will automatically find and wireit. If thereis more
than one Event Bus in the context, you must specify the one to use in the postprocessor.

0 Thisevent listener will be automatically recognized and subscribed to the event bus.

You can also wire event listeners "manualy”, by explicitly defining them within a
Annot at i onEvent Li st ener Adapt er bean, as shown in the code sample below.

<beans xm ns="http://wwm. spri ngframework. or g/ schenma/ beans" >

Axon Framework 0.5 Reference Guide 29

<bean cl ass="org. axonfranmework. .. annot ati on. Annot ati onEvent Li st ener Adapter"> 0O
<constructor-arg>
<bean cl ass="org. axonframewor k. sanpl e. app. query. Addr essTabl eUpdat er"/ >
</ constructor-arg>
<property nanme="eventBus" ref="eventBus"/> O
</ bean>

</ beans>

[0 Theadapter turns any bean with @vent Handl er methodsinto an Event Li st ener
0 You need to explicitly reference the event bus to which you like to register the event listener

/y Warning

Be careful when wiring event listeners "manualy" while there is aso an
Annot at i onEvent Li st ener BeanPost Processor in the application context. This
will cause the event listener to be wired twice.

7.2. Wiring the event bus

In atypical Axon application, thereis only one event bus. Wiring it is just a matter of creating a bean of a
subtype of Event Bus. The Si npl eEvent Bus isthe provided implementation.

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans" >
<bean i d="eventBus" cl ass="org. axonfranmewor k. event handl i ng. Si npl eEvent Bus"/ >

</ beans>

7.3. Wiring the command bus

The command bus doesn't take any configuration to use. However, it allows you to configure a number of
interceptors that should take action based on each incoming command.

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans" >

<bean id="eventBus" cl ass="org. axonframewor k. commandhandl! i ng. CommandBus" >
<property nanme="interceptors">
<list>
<bean cl ass="org. axonframework. .. SpringTransacti onal | nterceptor">
<property name="transacti onManager" ref="transacti onManager"/>

</ bean>
<bean cl ass="ot her-interceptors"/>
</list>
</ property>
</ bean>
</ beans>

Axon Framework 0.5 Reference Guide 30

7.4. Wiring the Repository

Wiring a repository is very similar to any other bean you would use in a Spring application. Axon only
provides abstract implementations for repositories, which means you need to extend one of them. See
Chapter 5, Repositories and Event Stores for the available implementations.

Repository implementations that do support event sourcing just need the event busto be configured, aswell
as any dependencies that your own implementation has.

<bean i d="si npl eReposi tory" class="ny. package. Si npl eReposi tory">
<property name="event Bus" ref="eventBus"/>
</ bean>

Repositories that support event sourcing will also need an event store, which takes care of the actual storage
and retrieval of events. The example below shows a repository configuration of arepository that extends
the Event Sour ci ngReposi tory.

<bean i d="contact Reposi tory" cl ass="org. axonfranmework. sanpl e. app. command. Cont act Reposi tory" >
<property nanme="eventBus" ref="eventBus"/>
<property nanme="eventStore" ref="eventStore"/>

</ bean>

In many cases, you can usethe Gener i cEvent Sour ci ngReposi t or y. Below isan example of XML
application context configuration to wire such arepository.

<bean id="nyRepository" class="org.axonframework. event sour ci ng. Generi cEvent Sour ci ngReposi tory" >
<constructor-arg value="fully.qualified.class. Nane"/>
<property name="event Bus" ref="eventBus"/>
<property nanme="event Store" ref="eventStore"/>

</ bean>

The repository will delegate the storage of events to the configured event St or e, while these events are
dispatched using the provided event Bus.

7.5. Wiring the event store

All event sourcing repositorties need an event store. Wiring the JpaEvent Store and the
Fi | eSyst enEvent St or e isvery similar, but the JpaEvent St or e needsto run in a Spring managed
transaction. Unless you use the Spri ngTr ansacti onal | nt er cept or on your command bus, you
need to declare the annotation-driven transaction-manager as shown in the sample below.

<bean i d="event Store" cl ass="org. axonfranmewor k. event store. j pa. JpaEvent Store"/ >

<I-- enable the configuration of transactional behavior based on annotations -->
<t x:annotation-driven transaction-manager ="t xManager"/>

<I-- declare transacti on manager, data source, EntityMinagerFactoryBean, etc -->

Axon Framework 0.5 Reference Guide 31

	Reference Guide
	Table of Contents
	1. Introduction
	1.1. Axon Framework Background
	1.1.1. A brief history
	1.1.2. What is Axon?
	1.1.3. When to use Axon?

	1.2. Getting started
	1.2.1. Download Axon
	1.2.2. Configure Maven

	1.3. Contributing to Axon Framework
	1.4. License information

	2. Architecture Overview
	3. Command Handling
	3.1. Creating a Command Handler
	3.2. Configuring the Command Bus
	3.3. Command Handler Interceptors
	3.3.1. Managing transactions

	4. Domain Modeling
	4.1. Events
	4.1.1. Domain Events
	4.1.2. Application Events
	4.1.3. System Events

	4.2. Aggregate
	4.2.1. Basic aggregate implementations
	4.2.2. Event sourcing aggregates

	5. Repositories and Event Stores
	5.1. Standard repositories
	5.2. Event Sourcing repositories
	5.3. Event store implementations
	5.4. Using Snapshot Events

	6. Event Processing
	6.1. Event Bus
	6.2. Event Listeners
	6.2.1. Basic configuration
	6.2.2. Asynchronous event processing
	6.2.3. Managing transactions in asynchronous event handling

	7. Using Spring
	7.1. Wiring event handlers
	7.2. Wiring the event bus
	7.3. Wiring the command bus
	7.4. Wiring the Repository
	7.5. Wiring the event store

