Metro User Guide

Metro User Guide

Table of Contents

PIE AR . et eaaas X
1. INrOdUCTION TO MEITOeetiee et ettt e et e et e e e 1
1.1, REQUITEA SOFtWAIE .. .eeetieeieii ettt ettt e ettt e e e e e e e eab e e 1
1.2, WAL 1S WSI T2 it e et e e et e e e et eeees 1
1.2.1. Bootstrapping and Configuralionoveieuuiieieiieiei e 2
1.2.2. Message Optimization TEChNOIOGYccuuueiiiiiiieeiiiii e 3

1.2.3. Reliable Messaging TeChNolOgycccouuiieiiiiiiieiii e 4
1.2.4. Security TEChNOIOQYuiieeiiieiiii et 4

1.3. How Metro Relates to .NET Windows Communication Foundation (WCF) 5
1.4, MELro SPECITICAIIONS ... eieeeti i eeeeit ettt ettt ettt e e e et e e e nb e eeeees 5
1.4.1. Bootstrapping and Configuration SPecifiCationsccc.uiieiiiiinieiiiiineeeiiien. 7
1.4.2. Message Optimization SPeCifiCatioNScoeuvuieiiiiiieiiii e 8
1.4.3. Reliable Messaging SPeCifiCatioNnSc..uuvieeiiieiiiii e 10
1.4.4. Security SPECITICAIIONS iieeieieieiii e 11

1.5. How the Metro Technologies WOFKociiiiiiiiiiii e 12
1.5.1. How Message Optimization WOrKScouuiiiiiiiniiiiiii e 12
1.5.2. How Reliable MeSsaging WOIKSuiiiiiiieiiiiiieeeii e 13
1.5.3. HOW SECUNLY WOIKSceeiieiiiii ettt 14

2. USING IMBITO ..ttt ettt et ettt e e eaaas 18
2.1 IMELTO TOOIS ...ttt ettt et e e s 18
2.1.1. Useful tools for your t00IBO0Xveiiiiiiieiiii e 19

2.2. Using Mavenized MEtro BiNAIESeveuuiieiiiiie ettt 19
2.2.1. Using Metro in a Maven ProJECEeieeruneieiiiieieiii et e e e 19
2.2.2. Using Metro in anon-Maven ProjECEuveveeiiieiiiiiieeeeeiie e e e 20

2.3. Developing With NEtBEANScceuiiiiiiiii e 21
2.3.1. Registering GlassFish With the IDEcc.ooiiiiiiiiii e 21
2.3.2. Creating a WED ServiCeo oo 21
2.3.3. Configuring Metro's WSIT Featuresin the Web Servicecoovveiiiiiiiiiinnnnnnn. 23
2.3.4. Deploying and Testing aWeb SErVICeocvvvviiiiiiiieeiei e 25
2.3.5. Creating a Client to Consume a WSIT-Enabled Web Servicecooceeveennnn. 25

2.4. Developing WIth ECHPSE ...ttt 28
240, SEIUD oottt enaan 28
2.4.2. Create a Metro Web Services ENdPOintoveviiiiiieiiiiiieeiiiieeeceie e 29
2.4.3. Creating Web Service Client using WsSimport CLIooveiiiiiiiiiiiiiieiiieees 29
2.4.4. Creating Web Service Client using Wsimport Ant Taskcccoevevviiinieiiiinnnnn. 30
2.4.5. Creating Web Service Client using SOAP Ul PIuginocooviiieiiiiinneeiininnnn. 30

S o [0 1 o PSP P PP UPPPTTR 33
2.5.1. Dynamic tube-based MeSsage 10ggiNgocvevruieiiiiieeiiie e 33
2.5.2. Dumping SOAP mMeSssages 0N CHENEviiiiiiieeiiii e 36
2.5.3. DUMping SOAP MESSAgES ON SEIVEYciiiiieeiiiiiieeeeita e eest e eeni e eeniaaaaeens 38

2.6. Using Eclipse implementation of Jakarta XML Web Services/ Metro with Java SE 38
2.6.1. Using Eclipse implementation of Jakarta XML Web Services with Java SE 38
2.6.2. Using Metro with Java SEc..iiiiiiii e 39

2.7. Deploying MEro €NAPOINTccoeuuieiiiii et e et e e enr e eees 39
2.7.1. The WAR CONLENES ..ottt et e e ea e e eeanas 40
2.7.2. USING SUN-JAXWS.XIMI L.ttt ettt e e e e eeena e eees 40

2.8. Handlers and MeSSAgECONTEXLccuuuurieiiiiieteeii et e et e e e et e eeeaanns 44
2.8.1. Efficient HANAIErS in MELIOuiiiiiiiiciii e 44

2.9. Deploying MEro WIthcooouuniii e 44
290 WEDLOGIC 12 ..ottt et e et e e et e e e e e e a4

2.10. Developing client application with locally packaged WSDLccccooiveiiiiiiieiiinnnnen. 57

Metro User Guide

2.10.1. Service API to pass the WSDL informationccoeeviviiiineiiineciineeceeeenne, 57
2.10.2. XMl CALAIOQ +rvvvveenieeeeeieeeiie s e e e e et e et s e e e e e e e e et e e e e e e eaeaaaaaaaeeaaaaaarea 58
2.10.3. Using -wsdIL0oCation SWItChcocuniiiiiiii e 58

2.11. How to invoke and endpoint by overriding endpoint addressin the WSDL 60
2.11.1. BindingProvider. ENDPOINT_ADDRESS PROPERTYcccovvvvviiiiiiieeennnnnns 60
2.11.2. Create Service using updated WSDLccuoviiiiiiiiiieiiin e ea e 60

2.12. Maintaining State iN WED SEIVICESuuiiiiiiiii e e e e e e e aens 60
T = g0 PSPPI 61
2.13.1. USING FastiNfOSEL .. .ovvniiiici e 61

2.14. High Availability SUPPOrt in MEITOcovvniiiiiicc e 62
G @) a1 o1 [T aTo IRYAY A I | P 63
3.1. Compiling multiple WSDLs that share acommon schema..........c.cccoeveiieeiiieciiieeiins 63
3.2. Dedling with schemas that are not referencedcccocoiviiiiieiii i 64
3.3. Customizing XML Schema bindingccooeiiiiiiiiiicii e 64
3.3.1. How to get simple and better typed bindingccoooeeiiiiiiiiiii e, 64

3.4. Generating Javadocs from WSDL documentationccoeevviveiiiieiiiieeiiieeceeeieeeannn, 65
3.5. Passing Java Compiler options to WSIMPOITccouiiiiiiiiiiiciieccn e 67
S 69
4.1, SOAP NBAOEI'S ...ttt 69
4.1.1. Adding SOAP headers when sending reqQUESEScccuvevviiiiiiieeiiiieciieeieeeennn 69
4.1.2. Accessing SOAP headers for incoming MESSAJESccvvevvinieiinieiiiieeiieeeiieenn, 70
4.1.3. Adding SOAP headers when sending repliesccooeeiveiiiiiiiieciiiccie e, 70
4.1.4. Mapping additional WSDL headers to method parametersccoovevvveeennnnnn. 70

4.2, SChema Validationuiiiiiiiieie e e e a e e aaens 71
4.2.1. Server Side Schema Validationcccuuiiieiiiiiiieiie e 72
4.2.2. Client Side Schema Validationcooouieiiiieiiiiiiieeine e e 72

ST I 1 PSSP 74
ST o I 4= o [74
5.1.1. Sending HTTP headers 0N reqUESEcovvuieiinieiiiieee e e e e 74
5.1.2. Accessing HTTP headers of the reSponseooevvvieiiiiiiiiii e 74

I o I w04 (=S Lo o 75
5.3 HTTP COOKIES ..ottt e e e e e e e e e e et e e e e aan s 75
5.3.1. Enabling coOKi@ SUPPOIuiiiiiiii e 75
5.3.2. Accessing HTTP cookies in the reSPONSEcvviiiiiieeiii e 76
5.3.3. Accessing HTTP cookies 0N the SEIVErcouvveiiiiiiiiicii e 76

5.4. HTTP client Streaming SUPPOITuoieuueeiieeeiieeeieeeeie e et e eeaeesat e saaeeeaeestnseeaneenens 76
5.5. Access HTTP headers in a Handleroooviiiiiiiiiiiiiie e 76
5.5.1. From Client side handlerccooveuiiiiiiiiiii e 76
5.5.2. From Server Side handleruiiiiiiiiiiii e 77

oIS T o I I 1010 £ SPRRN 78
5.7. HTTP Persistent Connections (KEEP-aliVE)oeeeuiiiiiiiiiiiceie e, 78
5.8. HTTPS HOStNAMEV EFTTIEN ...iiiviieeiii et 78
5.9, HTTPS SSLSOCKEIFACIONY ...covvvviiiiiieieeee ettt e e e e e e e e e e e aeaane s 79
5.10. HTTP address in soap:address and import 10CationScccvvviiiiiiiiieiiie e, 79
6. ProCeSSING Large Dalalccuuiiiiiiii e e e 80
6.1. Recaiving 1arge SOAP FEQUESESivieeii e ee e e e e e e e e e e e e e e e e e e anas 80
6.1.1. Provider<IMESSAgES . .c.vuiiii i ciiii e et et 80

6.2. Binary Attachments (MTOM)uiiiniiiiii e e e e e e e een 80
&3228 T Y L 1 PSPPI 80
6.2.2. ENabling MTOM ON SEIVEYcoviiiiieiii et e e e e e e e e e eees 83
6.2.3. Enabling MTOM 0N ClIENEcivviiiicee e e 83
6.2.4. MTOM thresholdcoovvviiiiiie e e e e e e 83
6.2.5. .NET interoperabilitycccouiiiiiiiiii e 84

6.3, Large AaCMENES ... e e 84

Metro User Guide

LT I I O 1T s o L PP 85

B.3.2. SEIVEN SIUE ..iiiiiiiii i e e e e et e e e e e e e aaaaaaae 85

LSRG T @]y o 11! o) o [86

6.3.4. Large Attachments SUMMArYc.oiiiiiiiiiie e 86

7. Bootstrapping and CONfiQUIAtioNccuuieiiiieiiieiii e e e e e e e e e et e e e e e e e e e eanees 87
7.1. What is a Server-Side ENdPOiNt?ooviiiiiicii e e e e e e 87

7.2. Creating a Client from WSDLoiiiiiiii e e e e e e e e e e 87

7.3. Client From WSDL EXGMPIES ... ccuuiiiiiiiiiicii e e e e e e e e 87

8. MeSSAgE OPLIMIZALIONu.iiiii i e e e e e e e e e e e e et e e et e e et eeaneeees 89
8.1. Creating a MTOM WED SEIVICEcovviiiiii it e e 89

8.2. Configuring Message Optimization in aWeb SErviCecoveviiiiiiiiiiiieeeee e, 89

8.3. Deploying and Testing a Web Service with Message Optimization Enabled 90

8.4. Creating a Client to Consume a Message Optimization-enabled Web Service 91

8.5. Message Optimization and Secure CONVErSAtioNc.cccuveiiieeiiiieiiineeieeeeee e eeannns 93

9. SOAPITCP WED SarviCe tranSPOIu.ceeeieiiiie e e e e e e e e e e e e e e e e e e st e e et e e eaneees 94
9.1 What i8S SOAPITCP? ...ttt e e e e e e e e e e e e et s e e aeeaeaenes 94

9.2. Creating a SOAP/TCP enabled WED SErVIiCecuuviiiniiiiiiiiece e 94

9.3. Configuring Web Service to be able to operate over SOAP/TCP transport 94

9.4. Deploying and Testing a Web Service with SOAP/TCP Transport Enabled 95

9.5. Creating a Client to Consume a SOAP/TCP-enabled Web Servicec.oeevvvevivieeinnn, 96

9.6. Configuring Web Service client to operate over SOAP/TCP transportccoeeevnneennnn. 96

10. USing REiable MESSAGINGcvvniiiiieiii e e e e e e e e e e e e et eeaneeeees 98
10.1. Introduction to Reliable MESSAgINGuuiiiuniiiiieiie e e e e 98

10.2. Configuring Web Service Endpointccouiiiiiiiiiii e 98

10.3. Configuring Web Service ClIentociviiiiii e 102

10.4. Configurable fEatUreS SUMMEIYuueiiieiiiieeiiee e e e e e e e e e e e e e e e aenas 103

10.5. Creating Web Service Providers and Clients that use Reliable Messaging 107

10.6. Using Secure Conversation With Reliable Messagingcccoeeviviiiiiiiiiniciiinecies 108

10.7. High Availahility Support in Reliable MeSsagingcccccuvvviiiiiiiiiiiiiiecii e 108

11. WS-MaKeCONNECHION SUPPOITieeieiiiieiiiee et e et e e et e e et s e et e e st e e st s e et e e an e eatneesanaesennes 109
11.1. Introduction t0 WS-MaKeCONNECHIONccvvvvieeiiiiieeeeii e e i 109

11.2. Configuring Web Service Endpointccovviiiiiiiiiiiiciin e 109
11.2.1. Configuration via an WS-PoliCy EXPreSSiONcccevueeiinieiiiieeinieeineesineennnnns 109

11.2.2. Configuration via a Java annotationcceceuuieeiiieiiiieeiiieeeiee e e eeaenns 110

11.3. Configuring Web Service ClIentooviiiiiiiii e e 111

12, USING WSIT SECUMLY ©vvvuuniiieeeiititiiie s et e e et e et s s s e e e e e e ettt s e e e e e e eaattt s e e e e e eeeasarnnnaeaaeeees 112
12.1. Configuring Security Using NetBeans IDEccovviiiiiiiiiiccincce e 112

12.2. Summary of Configuration REQUITEMENESccuueiinieiiiieeei e eiee e e e e eeanns 117
12.2.1. Summary of Service-Side Configuration Requirementscccoeevvvveeennnnn. 117

12.2.2. Summary of Client-Side Configuration Requirementsccoceeevevinnennnnn. 118

12.3. Security MEChaNISIMSiiiiiiii e e e e e 124
12.3.1. Username Authentication with Symmetric Keyccooeviiiiiiiiiiiiiieccee, 124

12.3.2. Username Authentication with Password Derived Keyscoccovveivneennnnnns 124

12.3.3. Mutual CertifiCates SECUNLYueivvniiiiii i e e e e 125

12.3.4. Symmetric Binding with Kerberos Tokenscccccoeviiiiiiiciiieee, 125

12.3.5. Transport SECUMtY (SSL) .vvuiiiniiiiii i e e 125

12.3.6. Message Authentication Over SSLc.cceviiiiiiiiii e 127

12.3.7. SAML AUthOrization OVEr SSLociiviiiiiiiiii e 127

12.3.8. ENdOrsing CertifiCateuuiiiiiieiiiciiie e e e e e 127

12.3.9. SAML Sender Vouches with CertificateSovvvviiiiiiiiiiiiiieiii e 127

12.3.10. SAML Holder Of K&Y ...oociiiiiiiiiie et 128

12.3.11. STSISSUEH TOKEN ..cevvvviiiiie e e e ettt e e e e e e et s e e e e e e e e s e e e e e e aeneeenn s 128

12.3.12. STS Issued Token with Service Certificateovvevviviiiiiiiiiieeiiiieeeeenn, 128

12.3.13. STS Issued ENdorsing TOKENcccuuviiiieiiiieiie e e e 129

Metro User Guide

12.4. Configuring SSL and AUthorized USErSc..oeviiiiiiiicii e 129
12.4.1. Configuring SSL For Your AppliCationScccceuuieiiiiiiiiiiiiineeie e 130
12.4.2. Adding Users to GIassFiSnevuiiiiiiiiiiie e 133

12.5. Configuring Keystores and TIUSESLOrEScc.uueviunieiiieiiiieeii e e e ee e e e e e e eaens 134
12.5.1. Specifying Aliases with the Updated StOresccoocevvviviiiiiiiiciiinecie e, 136
12.5.2. Configuring the Keystore and TrUSIStOreccovveiiinieiiiiecie e, 137
12.5.3. Configuring Validatorsc.ueeiuiiiiiiciie e e e e e 142

12.6. Configuring Kerberos for GlassFish and TOMCatccoeevviiiiieiiiiciie e, 143
12.6.1. FOr GlaSSFISN ..vuiieiiieiie e 143
12.6.2. FOI TOMCALeeneeeete ettt e e e e e e aeenns 144

12.7. Securing Operations and MESSA0ESuueiinieiiiieeiieeeeie e e e e e e e e e e eanas 144
12.7.1. Supporting TOKEN OPLIONSccvuiiiiieeii e e e e e e e e e e aaas 149

12.8. Configuring A Secure ToKen Service (STS) covviiiiiiiii i 149

12.9. EXample APPlICAHIONSciiiciii e 156
12.9.1. Example: Username Authentication with Symmetric Key (UA)ccocovvneenn.. 156
12.9.2. Example: Username with Digest Passwordscocceveviiiiiiiiiciiiiecieeeieees 158
12.9.3. Example: Mutual Certificates Security (MCS)oevvvieviiiiiiiiicci e, 159
12.9.4. Example: Transport SECUNtY (SSL) .uvvvnieiiieiiiieiii e e e 160
12.9.5. Example: SAML Authorization over SSL (SA) ..uvvviiiiiiiiii e 162
12.9.6. Example: SAML Sender Vouches with Certificates (SV)coevvvveviiieiiiieiinnnnns 166
12.9.7. Example: STS Issued TOKEN (STS) ..ovvuiiiiiiiii i 169
12.9.8. Example: Broker Trust STS (BT) .vcvuiiiiiieiiieiii e e e e 173
12.9.9. Example: STS Issued Token With SecureConversation (STS+SC) 181
12.9.10. Example: Kerberos Token (Kerb)ccovvviiiiiiiiiii e 182

13. WSIT Security Features: AAvanCed: TOPICSuuvvuniiiiiieiiieeeiiieeeie e e esi e e e e s eeaneeannens 187

13.1. Using Security MEChANISIMIS .. .c.uuiiiieiiii e e e e e e e e e e e e e et e e e e e e e e aaeees 187

13.2. Understanding WSIT Configuration Fil€Scc.oeiiiiiiiiiiii e, 188
13.2.1. Service-Side WSIT Configuration Filesccooeviiiiiiiiiiiici e, 188
13.2.2. Client-Side WSIT Configuration FIleSccoiiviiiiiiiiiiii e 191

13.3. Security Mechanism Configuration OptionSccccuiiiiiiieiiiieiie e e 193

13.4. BUIlding CUSIOM STS ...ttt e e e e e e et e e e e e eeas 197
13.4.1. Handling Claims with MEtro STScc.oiiiiiiiiii e 198

13.5. Handling Token and Key Requirements at RUN TiMEccocvvviiiiiiiiiiniciii e 199

13.6. Advanced Usages of STS N SECUMLY ...uvvvniiiii e e e e e 202
13.6.1. Token Caching and Sharingccoveiiiiiiiiiii e 202
13.6.2. ActAs and Identity DElegationcoouieiiiiiiiiiicie e 203

14. WSIT Example Using a Web Container Without NetBeansS IDEcccooevviiiiiiiiiiieeinnnnns 206

14.1. Environment Configuration SEttiNGSuveiiieiiiieiiii e e 206
14.1.1. Setting the Web Container Listener POrtccoooviiiiiiiiiin e, 206
14.1.2. Setting the Web Container HOme DIreCtoryccoveiviiiiiieeiinieiiieeeieeeeenn, 207

14.2. WSIT Configuration and WS-Policy ASSErtionSc.cccvveeiiiiiiiiieiiiieeiin e, 207

14.3. Creating a Web Service without NEtBEaNSoiiiiiiiiiieiiii e, 207
14.3.1. Creating a Web Service FrOmM JAVAccovuieiiiiiiii e e 208
14.3.2. Creating a Web Service FFoOm WSDL ...c.oiiiiiiiiiiciecceeeeee e 210

14.4. Building and Deploying the Web SErviCecooviiiiiiiiiiicie e 212
14.4.1. Building and Deploying a Web Service Created From Javacccvvveen.. 212
14.4.2. Building and Deploying a Web Service Created From WSDL 213
14.4.3. Deploying the Web Service to aWeb Containerccooevvieviiiiiiiiieeinnennnnn. 213
14.4.4. Verifying DEPIOYMENTc.vuiiiiiiii e e e e e e e e e e 214

14.5. Creating a Webh Service ClIENTcovvniiiii e 214
14.5.1. Creating a Client from JAVAcccviiiiiiiiii e 215
14.5.2. Creating a Client from WSDLooiiiiiiiiiciii e 216

14.6. Building and Deploying a Clientcooviiiiiiiii e 217

14.7. Running aWeb Service ClIENEcoovniiiiicii e e 217

Vi

Metro User Guide

14.8. Undeploying @ WED SEIVICEcuuiiiiii i e e e 218

15. Accessing Metro Services USiNg WCF CHENESiiiiiiii e v e 219
15.1. Creating @ WECF ClIENEiiii e e e e e e e e e an s 219
15.1.1. Prerequisites to Creating the WCF Clientcccoooiieiiiiiiiiie e, 219

15.1.2. Examining the CHent Classcooviiiiiiecii e 219

15.1.3. Building and Running the Clientccocoiiiiiiiiiin e, 220

O BT = O] [= o1 PP 223
16.1. Web Service - Start from JaVAooovvviiieiii e 223
G N I D - = Y o=~ PSP 223

16.1.2. Fields and Properti€Sc...civiiiiii e 235

T N = - W O - = PN 238

16.1.4. OPEN CONMLENL ..vueniiiiie e e e e e e e e e aaanas 241

T R =l 0 T Y o< PPN 242

16.1.6. Package-level ANNOALiONSuivuiiiiiii e e e 243

16.2. Web Service - Start from WSDLccuuuiiiiiiiiiceei et 243

16.3. Customizations for WCF Service WSDLcccvviiiiiiiiiieiiiii e 244
16.3.1. generateElementProperty Attributec.oiiiiiiiii 244

16.4. Developing a Microsoft .NET CHENEcvviiiiiiic e e 247

16.5. BP 1.1 CONFOIMMANCE .. .ceuiiiiieiii ettt ettt e e e e e e e e eanns 248

17. Using AtOMIC TraNSACHIONSuiiiineeiieiii et e e e et e e e e e e e e e e e et e e e e et e e et e eeanaees 249
17.1. Using Web Services AtOmIC TranSaCtionSeevvieiiiieiiiieiiiieeiiee e e e e e eaen 249
17.1.1. Overview of Web Services Atomic TranSaCtionSovvvvvviiieeiiiineeeeiinnnnn 249

17.1.2. Enabling Web Services Atomic Transactions on Web Service Endpoint 251

17.1.3. Enabling Web Services Atomic Transactions on Web Service Clients 257

17.1.4. System Level Configurationccuveiiiieiiiiiiiii e e e 262

17.1.5. ComMPEDIITY ooeveieeiii e 262

17.2. About the basicCWSTX EXaMPIEoiiiiiiiiii e 263

17.3. Building, Deploying and Running the basicWSTX Examplecccceevvviieiiieeinnnnnn, 266

18. Managing POIICIESuuiiiii e e e e 273
18.1. Managing POIICIESuuiiii e e e e e e e e 273
S35 0 O 1 11 oo (1 1 o o PSP 273

18.1.2. POlICY REFEIENCESui it e 273

18.1.3. WSDL IMPOIT ..ttt e e e e e e e et e e e e 275

18.1.4. External Policy REFEIENCESuviiviiiiii e 277

19. Monitoring and ManagEMENTccuueiiiieiie e e e e e e e e e e e e e e e et e e et e et e aaneeaens 280
19.1. Introduction to Metro IMX MONITONNGuuuivuneiiieiiiieei e e e e e e 280

19.2. Enabling and Disabling MONITONNGocvuuiiiiieiiieee e e e e e e 280
19.2.1. Enabling and disabling Metro monitoring via system properties...................... 281

19.2.2. Enabling and disabling endpoint monitoring via poliCycccocvvvvveiiieeinnnnns 281

19.2.3. Enabling and disabling client monitoring Via poliCyccooeevviieiiineeinnnennnn. 281

19.3. MONItoring TAENLIFIENSvuiiiei e 282
19.3.1. Endpoint Monitoring 1dentifiersccccoeiiiiiii i 282

19.3.2. Client monitoring identifierscooouiiiiiiiii e 283

19.3.3. Identifier Character Mappingcc.viviiiieiiiieiie e e e e e 283

19.3.4. Resolving Monitoring Root Name ConflictSccocevvviiiiiiiiiiiiii e, 283

19.4. Available Monitoring INfOrmMationcc.viiiiiiiii e 284
19.4.1. WSClient INfOrMELIONccuunieiiiiiieieii e eeei e e e e e eeaees 286

19.4.2. WSENdpoint INfOrMationccuiiiiiiiii i ee e e e e e 287

19.4.3. WSNonceManager INformationoevvuiiiiiieiiie e ieceiee e ee e e e 288

19.4.4. WSRMSCSessionManager INformationcoeevueeiiiiiiiiiieiiieecieeeeieeeenn 289

19.4.5. WSRM SequenceManager Informationcccoveviieiiiieiiiieeci e e, 290

ST L=~ PP 291

20. FUrther INfOrMIBLIONuueiiei e et e e e et eeaeaa e 292
20.1. Links to MOre infOrMEtionuieeiiuinieeeeiie et e e et e et e e et e e e e e e e e 292

Vii

List of Figures

1.1. Metro's WSIT WED ServiCes FEALUINESu ittt 2
1.2. Bootstrapping and CONFIQUIELIONuueiertieeiiiiiie ettt eeeanns 3
1.3. Bootstrapping and Configuration SPeCifiCatioNSiveieriiieiiiiiie e 8
1.4. Message Optimization SPECITiCaIIONSccuuuiiiiiiie it 9
1.5. Reliable Messaging SPeCifiCatioNSocieeueieiiii e e 10
1.6. Web Services Security SPeCifiCatioNSvevieiiiieiiiiiee e 11
1.7. Application Message Exchange Without Reliable MeSsagingoevvvviiieiiiiiiieiiiiineecciinn, 13
1.8. Application Message Exchange with Reliable Messaging Enabledcccooooeiiiiiiiiiiiinnenes 14
1.9. Security POlICY EXChaNGEccuuuiiiiiiie e 14
1.10. Trust and SECUre CONVEISALIONcuuueiiiitn ettt ettt e e et e e et e eeena e e enae e eennens 16
1,11, SECUrE CONVEISAION ...cevuieiiii ettt ettt ettt ettt e et ettt e e e e et e e e eba e e eenan s 16
2.1. Editing Web Service AtIDULESooiiiie e 24
2.2. Reliable Messaging Configuration WINAOWoooiiiiiieiiiiieciii e 24
2.3. SOAP Ul - JAX-WS AFITACES ..eeetiiiiiiii et e e e eees 31
2.4, SOAP UL = PrEf@IEINCES .. .oeitiieieii ettt et e ettt e e e et e eeeab e eees 32
8.1. ENADIING MTOM .ttt ettt e e ettt e e e s 90
9.1. ENADIING SOAPITCP ...ttt e et ettt et et e e eent e aees 95
9.2. Enabling SOAP/TCP for a Web Service Clientoooieiiiiiiiii e 96
10.1. Quality Of SErvice (NEIBEANS)coeereieiiiit ettt e e e e e e e eees 99
10.2. Quality of Service - Advanced (NEtBEaNS)ccoevuiiiiiiiiiiiii e 100
10.3. Advanced Reliable Messaging Attributes (N&tBeans)cccuuvviiiiiiiiiiiiiicci e 101
12.1. Web Service Attributes Editor Pageoviiiiiiiiiiiiiece e 114
12.2. Web Service References Attributes Editor Page for Web Service ClientS...........ccooeeveeveneeens 116
12.3. Quality Of Service - ClIent = SECUMLYcceuvuriiiiiii et e e e 121
12.4. Deployment DESCIIPIOr PaOEuueiiiiiieeeiii ettt 132
12.5. Keystore Configuration DIdlOguueeeuriieiiii et 138
12.6. Web Service Attributes Editor Page: Operation Levelocoovviiiiiiiiiiiiiieeci 146
12.7. Web Service Attributes Editor Page: MeSsage Partsccoevviiveiiiiiiiiiii e 147
12.8. Kerberos Configuration AttribUES - SEIVICEccivviiiiiii e 183
12.9. Kerberos Configuration Attributes - ClIeNntooeiiiiiiiiii e 185
13.1. ActAs and Identity DEl@QELIONccuuuiiiiitieeeiii ettt e et e et e e e e e 204
17.1. Web Services Atomic Transactions Frameworkoooveeuiiiiiiinieiiii e 250
17.2. Atomic Transaction - Interaction between tWo SEIVEr'Scoouviieiiiiiiieeii e 250
17.3. WS-Coordination and WS-AtomicTransaction Protocols in Two GlassFish Domains 264
17.4. Components in the basicWSTX EXaMPIeuiiiiiiiiiiiii e 265
17.5. DBSICWSTX RESUITS ...ttt et e e et e eeenb e e 272
19.1. Monitoring - One client and two services running inside the same instance of GlassFish 284
19.2. Monitoring - top-level information available for each clientccoooiiiiii e, 286
19.3. Monitoring - WSENdPOint infOrMaLionuieieeiieiiii e e 287
19.4. Monitoring - WSRM SequenceManager Informationccovveiiiiiieiiiinieiiiineeeeeieeees 290

viii

List of Tables

1.1. Metro SPeCIfiCalioN VEISIONSccouuuiiiiii ettt e et ettt e et e e e et e eeena e eeens 6
2.1 Endpoint @rIDULESiieie e 42
3.1. wsdl : documnent ati on to JavadoC MAPPINGceevruneririieeeiiire et e et e et eeenees 65
6.1. JAXB MapPING RUIESiiiiiiiiiii ettt e e e 82
10.1. Reliable Messaging Configuration Options for Service ENdpointcccvvvveviiiinneiinnnnnn. 101
10.2. Reliable Messaging Configuration Options for Service CHentccovevvvviiieiiiiiineiiiinnn. 102
10.3. Namespaces used within Metro Reliable Messaging WS-Policy Assertionscoeeeveveennn. 103
10.4. Reliable Messaging Configuration Features - LayOutooevevuenieiiiiinieiiiiieeceiieeeeeen 103
10.5. Enable Reliable MeSSaging + VEISION ...cc.uuuiiiiiiieieiie ettt e e 103
10.6. Sequence INACLIVITY TIMEOULcouuuiiiiti ettt ettt et e e e e e eeanns 104
10.7. AcKnowledgement INTEIVALi it 104
10.8. RetransmMiSSION INLEIVALuuiiiiiiie e 104
10.9. Retransmission Interval Adjustment Algorithmcooooiiiiiii e, 104
10.10. Maximum RetranSMiSSION COUNMLceeuuueeiitieeeeii e eeeti e e et eeee e e eee e e enne e eennens 104
10.11. ClOSE SEQUENCE TIMEOUL ... ceiertieeeiite ettt e e ettt e ettt e e ettt e e et et e e e eeb i aeeeentn s e eeentnaaeees 105
10.12. Acknowledgement reqUuESE iNTEIValoovevuiiiiiii e 105
10.13. Bind RM sequence to SECUNtY TOKENiiiiieieiiiii e 105
10.14. Bind RM sequence to SECUred tranSPONTuu.eeereneeeeiii ettt e e e e e eeeens 105
10.15. EXaACtY ONCE EIIVEIYiiiiii e ettt e e e 105
10.16. At MOSE ONCE AEIIVENY ...ttt 106
10.17. At LEBSt ONCE AEIIVEIY ..eieeieieei et e e 106
10.18. INOIAEr EIIVEY ittt et e e e e e eeees 106
10.19. FIOW CONIOL ...eeeiiteeeett ettt ettt ettt e e ettt e et et e et et s e et et aeeeebbneeeenaaeeees 106
10.20. Maximum Flow Control BUffer SIZe ... 107
10.21. Maximum CONCUITENt RM SESSIONSuuuiiiiiiieieiii ettt ettt e et e e e e ae s 107
10.22. Reliable MeSSaging PErSISIENCEuuiiiiiiie ettt e 107
10.23. Sequence manager maintenace task exeCution PEriodcceuuveiiiiiiieeiiiiiee e 107
12.1. Summary of Service-Side Configuration REQUIFEMENTSccevvuieiiiiiieeiiii e 117
12.2. Summary of Client-Side Configuration ReQUIFEMENtSivveeiiniiieiiieeeeiiie e 118
12.3. Keystore and TrustSIore AlIBSEScveiiiiiiiii et 136
12.4. Keystore and Truststore AliaseS fOr STS ... e 137
13.1. Security Mechanism Configuration OPLIONScceuruieiiiiiieeiiiie e 193
16.1. CLR to XML Schema TYPe MapPiNg ... ceeeuuueeieiieeeeiiae ettt e e e e e e e 246
17.1. Components of Web Services Atomic TranSaCtionsoveeveviieeiiiiiieeiiiieeeeee e 250
17.2. Web Services Atomic Transactions Configuration OPtioNSuvveeeiiieeiiiiiieeeiiineeeens 251
17.3. FIOW TYPES VAIUES ...ttt ettt ettt e e et e e 252
17.4. Web Services Atomic Transaction Policy Assertion Values (WS-AtomicTransaction 1.2) 257

Preface

This document explains various interesting/complex/tricky aspects of Metro, based on questions posted
on the Metro mailing list [https://accounts.eclipse.org/mailing-list/metro-dev] and answers provided. This
is still awork-in-progress. Any feedback [mailto:metro-dev@eclipse.org] is appreciated.

https://accounts.eclipse.org/mailing-list/metro-dev
https://accounts.eclipse.org/mailing-list/metro-dev
mailto:metro-dev@eclipse.org
mailto:metro-dev@eclipse.org

Chapter 1. Introduction to Metro

Table of Contents

O = o 0= o IS o A1 (= 1
ARV 4 = YA I 1
1.2.1. Bootstrapping and Configurationcceuiiiiieiiiei e e e e e e e eeees 2
1.2.2. Message Optimization TEChNOIOGY .. .cuuuiveerieeiiiei e e e e e e e e 3
1.2.3. Reliable Messaging TeChNOIOgYccvuiiieiiiiiei e 4
< ot U1 VA =" o o YN 4
1.3. How Metro Relates to .NET Windows Communication Foundation (WCF)cccovevvvneennnnn. 5
1.4, MELrO SPECITICAIIONSvuieii et e et e e e e e e e e e e e et e e et e ean e eaen 5
1.4.1. Bootstrapping and Configuration SpecCifiCationscocvuveviiieviiiieiiieee e, 7
1.4.2. Message Optimization SPeCifiCalioNSoovvviiiiieiii e 8
1.4.3. Reliable Messaging SPeCifiCationSccvuuiiiiiiiii e e 10
1.4.4. SecUrity SPECITICAIONSuiiie i e e e 11
1.5. How the Metro TeChNolOGIES WOTKoivueiri e e e e aaeees 12
1.5.1. How Message Optimization WOIKSc..uiiiunieiii e e e e e e 12
1.5.2. How Reliable Messaging WOrIKSccouuiiiiiiii et 13
1.5.3. HOW SECUNLY WOIKS ... iiiiiiici e e e e e e e e e e eanas 14

1.1. Required Software

To use this guide, download and install the following software:

* Oracle Java SE 8 Runtime or Development Kit [https.//www.oracle.com/javaltechnol ogies/javase-
downloads.html]

» Container (note: Metro can be run on any Servlet container)
¢ GlassFish Server [https://eclipse-eedj.github.io/glassfish/]
* Tomcat Servlet Container [http://tomcat.apache.org/]

* Metro [https://eclipse-eedj.github.io/metro-wsit/] binary. Seethe particular release page for instructions
about downloading and installing Metro in a servlet container.

» NetBeans IDE [http://netbeans.org/downloads/index.html] (Java version)

1.2. What is WSIT?

For three years (and continuing) Sun has worked closely with Microsoft to ensure interoperability of web
services enterprise technol ogies such as security , reliable messaging, and atomic transactions. That portion
of Metro isknown asWSIT (Web Service Interoperability Technologies). Metro's WSIT subsystem isan
implementation of anumber of open web services specifications to support enterprise features. In addition
to security, reliable messaging, and atomic transactions, Metro includes a bootstrapping and configuration
technology. Metro's WSIT Web Services Features shows the underlying services that were implemented
for each technology.

https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
http://tomcat.apache.org/
http://tomcat.apache.org/
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/
http://netbeans.org/downloads/index.html
http://netbeans.org/downloads/index.html

Introduction to Metro

1.2.1.

Figurel.l. Metro'sWSIT Web Services Features

Core XML
(XML)
Optimization (XML Namespace) Reliability
(soap) (L infoset) \ ((WS-ReliableMessaging)
[MTOM) (XML Schema) [Wws-Coordination]
[ws-Addressing) [ws-AtomicTransactions |
Bootstrapping ot

[WS-Secu rity Policy]

[ws-security |

[wsTust |
(Ws-SecureConversation |

(WSDL)
[ws-Policy]
(WS-MetadataExchange

Starting with the core XML support currently built into the Java platform, Metro uses or extends existing
features and adds new support for interoperable web services. See the following sections for an overview
of each feature:

 Bootstrapping and Configuration

» Message Optimization Technology

Reliable Messaging Technology

 Security Technology

Bootstrapping and Configuration

Bootstrapping and configuration consists of using a URL to access a web service, retrieving its WSDL
file, and using the WSDL file to create a web service client that can access and consume a web service.
The process consists of the following steps, which are shown in Bootstrapping and Configuration.

Introduction to Metro

1.2.2.

Figure 1.2. Bootstrapping and Configuration

[)
Client
Application
1 GatimL Web Service
Get URL -}
[4 Registry)
[) MetadataExchange Request b[.
wsimport .
[_]1”&; < WSDL (Includes Policy)
: -: Access and Consume the Web Service
Web Service | g Web Service
Client
N ¥y >

1. Client acquires the URL for aweb service that it wants to access and consume. How you acquire the
URL isoutside the scope of thistutorial. For example, you might look up the URL in a Web Services

registry.

2. Theclient uses the URL and thewsi nport tool to send a WS-MetadataExchange Request to access
the web service and retrieve the WSDL file. The WSDL file contains a description of the web service
endpoint, including WS-Policy assertions that describe the security, reliability, transactional, etc., ca
pabilities and requirements of the service. The description describes the requirements that must be sat-
isfied to access and consume the web service.

3. Theclient usesthe WSDL file to create the web service client.
4. The web service client accesses and consumes the web service.

Bootstrapping and Configuration explains how to bootstrap and configure aweb service client and aweb
service endpoint that use the Metro's WSIT technologies.

Message Optimization Technology

A primary function of web services applicationsisto share data among applications over the Internet. The
data shared can vary in format and include large binary payloads, such as documents, images, music files,
and so on. When large binary objects are encoded into XML format for inclusion in SOAP messages, even
larger files are produced. When a web service processes and transmits these large files over the network,
the performance of the web service application and the network are negatively affected. In the worst case
scenario the effects are as follows:

» The performance of the web service application degrades to a point that it is no longer useful.

» The network gets bogged down with more traffic than the all otted bandwidth can handle.

Introduction to Metro

1.2.3.

1.2.4.

One way to deal with this problem is to encode the binary objects so as to optimize both the SOAP appli-
cation processing time and the bandwidth required to transmit the SOAP message over the network. In
short, XML needs to be optimized for web services. This is the exactly what the Message Optimization
technology does. It ensures that web services messages are transmitted over the Internet in the most effi-
cient manner.

Sun recommends that you use message optimization if your web service client or web service endpoint
will be required to process binary encoded XML documents larger than 1KB.

For instructions on how to use the M essage Optimization technology, see Message Optimization.

Reliable Messaging Technology

Reliable Messaging is a Quality of Service (QoS) technology for building more reliable web services.
Reliability (in terms of what is provided by WS-ReliableM essaging) is measured by a system'’s ability to
deliver messages from point A to point B. The primary purpose of Reliable Messaging is to ensure the
delivery of application messages to web service endpoints.

The reliable messaging technology ensures that messages in a given message sequence are delivered at
least once and not more than once and optionally in the correct order. When messages in agiven sequence
arelost in transit or delivered out of order, this technology enables systems to recover from such failures.
If amessageislost in transit, the sending system retransmits the message until its receipt is acknowledged
by the receiving system. If messages are received out of order, the receiving system may re-order the
messages into the correct order.

Y ou should consider using reliable messaging if the web service is experiencing the following types of
problems:

» Communication failures are occurring that result in the network being unavailable or connections being
dropped

 Application messages are being lost in transit
» Application messages are arriving at their destination out of order and ordered delivery isarequirement

To help decide whether or not to use reliable messaging, weigh the following advantages and disadvan-
tages:

» Enabling reliable messaging ensures that messages are delivered exactly once from the source to the
destination and, if the ordered-delivery option is enabled, ensures that messages are delivered in order.

 Enabling reliable messaging uses more memory (especialy if the ordered delivery option is enabled)
since messages must be stored (even after they are sent) until receipt is acknowledged.

» Non-reliable messaging clients cannot interoperate with web services that have reliable messaging en-
abled.

For instructions on how to use the Reliable Messaging technology, see Using Reliable Messaging.

Security Technology

Until now, web services have relied on transport-based security such as SSL to provide point-to-point
security. Metro implements WS-Security so as to provide interoperable message content integrity and
confidentiality, even when messages pass through intermediary nodes before reaching their destination
endpoint. WS-Security as provided by Metro isin addition to existing transport-level security, which may
still be used.

Introduction to Metro

Metro also enhances security by implementing WS-Secure Conversation, which enables a consumer and
provider to establish a shared security context when a multiple-message-exchange sequence is first initi-
ated. Subsequent messages use derived session keys that increase the overall security while reducing the
security processing overhead for each message.

Further, Metro implements two additional features to improve security in web services:

» Web Services Trust: Enablesweb service applications to use SOAP messages to request security tokens
that can then be used to establish trusted communications between a client and aweb service.

» Web Services Security Policy: Enables web services to use security assertionsto clearly represent secu-
rity preferences and requirements for web service endpoints.

Metro implementsthese featuresin such away asto ensure that web service binding security requirements,
as defined in the WSDL file, can interoperate with and be consumed by Metro and WCF endpoints.

For instructions on how to use the WS-Security technology, see Using WS T Security.

1.3. How Metro Relates to .NET Windows Com-
munication Foundation (WCF)

Web servicesinteroperability isan initiative of Sun and Microsoft. Wetest and deliver products to market
that interoperate across different platforms.

Metro is the product of Sun's web services interoperability initiative. Windows Communication Founda-
tion (WCF) in .NET is Microsoft's unified programming model for building connected systems. WCF,
which is available as part of the .NET Framework 3.x product, includes application programming inter-
faces (APIs) for building secure, reliable, transacted web services that interoperate with non-Microsoft
platforms.

Sun Microsystems and Microsoft jointly test Metro against WCF to ensure that Sun web service clients
(consumers) and web services (producers) do in fact interoperate with WCF web services applications and
vice versa. Thistesting ensures that the following interoperability goals are realized:

» Metro web services clients can access and consume WCF web services.
* WCF web services clients can access and consume Metro web services.

Sun provides Metro on the Java platform and Microsoft provides WCF onthe .NET 3.0 and .NET 3.5 plat-
forms. The sections that follow describe the web services specifications implemented by Sun Microsys-
tems in Web Services Interoperability Technologies (WSIT) and provide high-level descriptions of how
each WSIT technology works.

Note

Because Metro-based clients and services are interoperable, you can gain the benefits of Metro
without using WCF-.

1.4. Metro Specifications

The specifications for bootstrapping and configuration, message optimization, reliable messaging, and
security technologies are discussed in the following sections:

 Bootstrapping and Configuration Specifications

Introduction to Metro

» Message Optimization Specifications
* Reliable Messaging Specifications

» Security Specifications

Metro implements the following WS-* specifications.

Table 1.1. Metro Specification Versions

Technology Metro Version

Bootstrapping since v1.0 WS-MetadataExchange
v11l [http://specs.xmlsoap.org/ws/2004/09/mex/
WS-M etadataExchange.pdf]

Policy (W3C standards)

since v1.0 : WS-Policy v1.2 [http://www.w3.org/
Submission/WS-Policy/]

since v1.0 : WS-PolicyAttachment v1.2 [http://
www.w3.0rg/Submission/WS-PolicyAttachment/]
since v1.3 : WS-Policy v1.5 [http://www.w3.org/
TR/2007/PR-ws-policy-20070706/]

since v1.3 : WS-PolicyAttachment
vl5 [http://www.w3.0rg/ TR/2007/PR-ws-poli-
cy-attach-20070706/]

Reliable Messaging (OASIS standards)

since v1.0 WS-ReliableMessaging
v1.0 [http://specs.xmlsoap.org/ws/2005/02/rm/ws-
reliablemessaging.pdf]

since v1.0 WS-ReliableMessaging Policy
v1.0 [http://specs.xmlsoap.org/ws/2005/02/rm/WS-

RMPolicy.pdf]
since v1.3 WS-ReliableM essag-
ing v11 [http://www.oasis-open.org/commit-

tees/documents.php?wg_abbrev=ws-rx]

sincev1.3 : WS-ReliableMessaging Policy v1.1
since v2.0 : WS-ReliableMessaging v1.2 [http://
docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html]
since v2.0 WS-ReliableMessaging Policy
v1.2 [http://docs.oasis-open.org/ws-rx/wsrmp/v1.2/
wsrmp.html]

since v2.0 : WS-MakeConnection v1.1 [http://
docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.htmi]

Atomic Transactions (OASI S standards)

since v2.1 WS-AtomicTransac-
tion v1.2 [http://docs.oasis-open.org/ws-tx/wstx-
wsat-1.2-spec-0s.pdf]

since v2.1 WS-Coordination v1.2 [http://
docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-
0s.pdf]

Security (OASIS standards)

since v1.0 : WS-Security v1.0 [http://docs.oasis-
open.org/wss/2004/01/oasi s-200401-wss-soap-
message-security-1.0.pdf]

since v1.0 : WS-Security v1.1 [http://www.oasis-
open.org/committees/downl oad.php/16790/wss-
v1.1-spec-0s-SOAPM essageSecurity . pdf]

http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/Submission/WS-PolicyAttachment/
http://www.w3.org/Submission/WS-PolicyAttachment/
http://www.w3.org/Submission/WS-PolicyAttachment/
http://www.w3.org/TR/2007/PR-ws-policy-20070706/
http://www.w3.org/TR/2007/PR-ws-policy-20070706/
http://www.w3.org/TR/2007/PR-ws-policy-20070706/
http://www.w3.org/TR/2007/PR-ws-policy-attach-20070706/
http://www.w3.org/TR/2007/PR-ws-policy-attach-20070706/
http://www.w3.org/TR/2007/PR-ws-policy-attach-20070706/
http://www.w3.org/TR/2007/PR-ws-policy-attach-20070706/
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ws-rx
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ws-rx
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ws-rx
http://www.oasis-open.org/committees/documents.php?wg_abbrev=ws-rx
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html
http://docs.oasis-open.org/ws-rx/wsrm/v1.2/wsrm.html
http://docs.oasis-open.org/ws-rx/wsrmp/v1.2/wsrmp.html
http://docs.oasis-open.org/ws-rx/wsrmp/v1.2/wsrmp.html
http://docs.oasis-open.org/ws-rx/wsrmp/v1.2/wsrmp.html
http://docs.oasis-open.org/ws-rx/wsrmp/v1.2/wsrmp.html
http://docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.html
http://docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.html
http://docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

Introduction to Metro

1.4.1.

Technology Metro Version

since v1.0 : WS-SecurityPolicy v1.1 [http://
specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-
securitypolicy.pdf]

since v1.3 : WS-SecurityPolicy v1.2 [http://
docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/ws-securitypolicy-1.2-spec-
cs.htmi]

since v10 : WSTrust v12 [http//
specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf]
since v1.3 : WSTrust v1.3 [http://docs.0asis
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-
os.html]

since v20 : WSTrust v1.4 [http://docs.oasis
open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-
os.html]

since v1.0 : WS-SecureConversation
v1.2 [http://specs.xmlsoap.org/ws/2005/02/sc/WS-
SecureConversation.pdf]

since v1l.3 : WS-SecureConversation
v1.3 [http://docs.0asis-open.org/ws-sx/ws-secure-
conversation/200512/ws-
secureconversation-1.3-0s.html]

since v2.0 : WS-SecureConversation
v1.4 [http://docs.0asis-open.org/ws-sx/ws-secure-
conversation/v1l.4/osws-
secureconversation-1.4-spec-o0s.html]

Security Profiles (OASIS standards) snce v13 Al 10 ad 11 pro-
files listed here [http://www.oasis-open.org/
committees/tc_home.phpawg_abbrev=wss] except
Web Services Security REL Token Profile
V1.0 [http://docs.0asi s-open.org/wss/oasis-wss-rel-

token-profile-1.0.pdf]

Metro 1.3 + and WCF in .NET 3.5 implement the same specifications.

Metro 1.0 - 1.2 and WCF in .NET 3.0 implement the same specifications.

Bootstrapping and Configuration Specifications

Bootstrapping and configuring involves a client getting a web service URL (perhaps from a service reg-
istry) and obtaining the information needed to build a web services client that is capable of accessing
and consuming a web service over the Internet. This information is usually obtained from a WSDL file.
Bootstrapping and Configuration Specifications shows the specifications that were implemented to sup-
port bootstrapping and configuration.

http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-1.4-spec-os.html
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/os/ws-secureconversation-1.4-spec-os.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-rel-token-profile-1.0.pdf

Introduction to Metro

1.4.2.

Figure 1.3. Bootstrapping and Configur ation Specifications

i WSI:- SeEr:é?_las
etadata ange
Bootstrappin r 9 $
an .
. ; Web Services
Configuration =
Standards Policy
WsDL*
Core XML
Standards Infoset

* Previously implemented in JAX-Web Services

In addition to the Core XML specifications, bootstrapping and configuration was implemented using the
following specifications:

WSDL: WSDL isastandardized XML format for describing network services. The description includes
the name of the service, the location of the service, and ways to communicate with the service, that is,
what transport to use. WSDL descriptions can be stored in service registries, published on the Internet,
or both.

Web Services Policy: This specification provides a flexible and extensible grammar for expressing the
capabilities, requirements, and general characteristics of a web service. It provides the mechanisms
needed to enable web services applications to specify policy information in a standardized way. How-
ever, this specification does not provide a protocol that constitutes a negotiation or message exchange
solution for web Services. Rather, it specifies a building block that is used in conjunction with the WS-
Metadata Exchange protocol. When applied in the web services model, policy is used to convey con-
ditions on interactions between two web service endpoints. Typically, the provider of a web service
exposes a policy to convey conditions under which it provides the service. A requester might use the
policy to decide whether or not to use the service.

Web Services Metadata Exchange: This specification defines a protocol to enable a consumer to obtain
aweb service's metadata, that is, its WSDL and policies. It can be thought of as a bootstrap mechanism
for communication.

Message Optimization Specifications

M essage optimization is the process of transmitting web services messages in the most efficient manner.
It is achieved in web services communication by encoding messages prior to transmission and then de-
encoding them when they reach their final destination.

Message Optimization Specifications shows the specifications that were implemented to optimize com-
munication between two web service endpoints.

Introduction to Metro

Figure 1.4. Message Optimization Specifications

i N

SOAP MTOM
W o

Optimization Web Services
Standards i Secure Conversation)
I N

Web Services

Addressing
Supporting Standard — SOAP*

Core XML
Standards Infoset

* Previously implemented in JAX-Web Services

In addition to the Core XML specifications, optimization was implemented using the following specifi-
cations:

» SOAP: With SOAP implementations, client requests and web service responses are most often trans-
mitted as SOAP messages over HTTP to enable a completely interoperable exchange between clients
and web services, all running on different platforms and at various locations on the Internet. HTTPisa
familiar request-and response standard for sending messages over the Internet, and SOAP isan XML-
based protocol that follows the HTTP request-and-response model. In SOAP 1.1, the SOAP portion of
atransported message handles the following:

» Definesan XML-based envel ope to describe what isin the message and how to process the message.

* Includes XML -based encoding rulesto express instances of application-defined data typeswithin the
message.

» Definesan XML-based convention for representing the request to the remote service and the resulting
response.

In SOAP 1.2 implementations, web service endpoint addresses can be included in the XML-based
SOAP envelope, rather than in the transport header (for examplein the HTTP transport header), thus
enabling SOAP messages to be transport independent.

» Web Services Addressing: This specification defines a endpoint reference representation. A web service
endpoint is an entity, processor, or resource that can be referenced and to which web services messages
can be addressed. Endpoint references convey the information needed to address aweb service endpoint.
The specification defines two constructs: message addressing properties and endpoint references, that
normalize the information typically provided by transport protocols and messaging systems in a way
that is independent of any particular transport or messaging system. This is accomplished by defining
XML tags for including web service addresses in the SOAP message, instead of the HTTP header.
The implementation of these features enables messaging systems to support message transmissionin a
transport-neutral manner through networks that include processing nodes such as endpoint managers,
firewalls, and gateways.

Introduction to Metro

1.4.3.

» Web Services Secure Conversation: This specification provides better message-level security and effi-
ciency in multiple-message exchanges in a standardized way. It defines basic mechanisms on top of
which secure messaging semantics can be defined for multiple-message exchanges and allows for con-
textsto be established and potentially more efficient keys or new key material to be exchanged, thereby
increasing the overall performance and security of the subsequent exchanges.

* SOAP MTOM: The SOAP Message Transmission Optimization Mechanism (MTOM), paired with the
XML-binary Optimized Packaging (XOP), provides standard mechanisms for optimizing the transmis-
sion format of SOAP messages by selectively encoding portions of the SOAP message, while till pre-
senting an XML Infoset to the SOAP application. This mechanism enables the definition of a hop-by-
hop contract between a SOAP node and the next SOAP node in the SOAP message path so asto facili-
tate the efficient pass-through of optimized data contained within headers or bodies of SOAP messages
that are relayed by an intermediary. Further, it enables message optimization to be done in a binding
independent way.

Reliable Messaging Specifications

Reliability (in terms of WS-ReliableM essaging) ismeasured by asystem'sability to deliver messagesfrom
point A to point B regardless of network errors. Reliable M essaging Specifications showsthe specifications
that were implemented to ensure reliable delivery of messages between two web services endpoints.

Figure 1.5. Reliable M essaging Specifications

Web Services
Reliability Atomic Transactions
Standards 4
Web Services Web Services
Reliable Messaging Coordination

Supporting Web Services Web Services Web Services
Standards Security | Policy _ Addressing

Core XML
Standards Schema

In addition to the Core XML specifications and supporting standards (Web Services Security and Web
Services Policy, which are required building blocks), the reliability feature is implemented using the fol-
lowing specifications:

» Web Services Reliable Messaging: This specification defines a standardized way to identify, track, and
manage the reliable delivery of messages between exactly two parties, a source and a destination, so
as to recover from failures caused by messages being lost or received out of order. The specification
is also extensible so it allows additional functionality, such as security, to be tightly integrated. The
implementation of this specification integrates with and complements the Web Services Security, and
the Web Services Policy implementations.

» Web Services Coordination: This specification defines a framework for providing protocols that coor-
dinate the actions of distributed applications. This framework is used by Web Services Atomic Trans-
actions. The implementation of this specification enables the following capabilities:

« Enables an application service to create the context needed to propagate an activity to other services
and to register for coordination protocols.

10

Introduction to Metro

» Enables existing transaction processing, workflow, and other coordination systemsto hide their pro-
prietary protocols and to operate in a heterogeneous environment.

» Defines the structure of context and the requirements so that context can be propagated between
cooperating services.

» Web Services Atomic Transactions: This specification defines a standardized way to support two-phase
commit semantics such that either all operations invoked within an atomic transaction succeed or are

all rolled back. Implementations of this specification require the implementation of the Web Services
Coordination specification.

1.4.4. Security Specifications

Web Services Security Specifications shows the specifications implemented to secure communication
between two web service endpoints and across intermediate endpoints.

Figure 1.6. Web Services Security Specifications

Web Services Web Services Web Services
Security Security Secure Conversation Trust
Standards Web Services
Security Policy
Supporting Web Services | Web Services
Standards Policy Addressing
Core
Standards

In addition to the Core XML specifications, the security feature isimplemented using the following spec-
ifications:

» Web Services Security: This specification defines a standard set of SOAP extensions that can be used
when building secure web services to implement message content integrity and confidentiality. The
implementation provides message content integrity and confidentiality even when communication tra-
verses intermediate nodes, thus overcoming a short coming of SSL. The implementation can be used
within a wide variety of security models including PKI, Kerberos, and SSL and provides support for
multiple security token formats, multiple trust domains, multiple signature formats, and multiple en-
cryption technologies.

» Web Services Palicy: This specification provides a flexible and extensible grammar for expressing the
capabilities, requirements, and general characteristics of a web service. It provides a framework and
a model for the expression of these properties as policies and is a building block for Web Services
Security policy.

» Web Services Trust: This specification supports the following capabilitiesin a standardized way:

» Defines extensions to Web Services Security that provide methods for issuing, renewing, and vali-
dating security tokens used by Web services security.

* Establishes, assesses the presence of, and brokers trust relationships.

11

Introduction to Metro

» Web Services Secure Conversation: This specification defines a standardized way to provide better mes-
sage-level security and efficiency in multiple-message exchanges. The Metro implementation provides
basic mechanisms on top of which secure messaging semantics can be defined for multiple-message
exchanges and allows for contexts to be established along with more efficient keys or new key material.
This approach increases the overall performance and security of the subsequent exchanges. While the
Web Services Security specification, described above, focuses on the message authentication model, it
does leave openings for several forms of attacks. The Secure Conversation authentication specification
defines a standardized way to authenticate a series of messages, thereby addressing the short comings of
Web Services Security. With the Web Services Security Conversation model, the security context is de-
fined as anew Web Services security token type that is obtained using a binding of Web Services Trust.

» Web Services Security Policy: This specification defines a standard set of patterns or sets of assertions
that represent common ways to describe how messages are secured on a communications path. The
Metro implementation allows flexibility in terms of tokens, cryptography, and mechanisms used, in-
cluding leveraging transport security, but is specific enough to ensure interoperability based on assertion
matching by web service clients and web services providers.

1.5. How the Metro Technologies Work

1.5.1.

The following sections provide a high-level description of how the message optimization, reliable mes-
saging, and security technologies work.

How Message Optimization Works

Message optimization ensures that web services messages are transmitted over the Internet in the most
efficient manner. Because XML is atextual format, binary files must be represented using character se-
guences before they can be embedded in an XML document. A popular encoding that permits this embed-
ding is known as base64 encoding, which corresponds to the XML Schema data type xsd:base64Binary.
In aweb services toolkit that supports a binding framework, a value of this type must be encoded before
transmission and decoded before binding. The encoding and decoding process is expensive and the costs
increase linearly as the size of the hinary object increases.

M essage optimization enables web service endpoints to identify large binary message payloads, remove
the message payloadsfrom the body of the SOA P message, encode the message payloads using an efficient
encoding mechanism (effectively reducing the size of the payloads), re-insert the message payloads into
the SOAP message as attachments (the file is linked to the SOA P message body by means of an Include
tag). Thus, message optimization is achieved by encoding binary objects prior to transmission and then
de-encoding them when they reach there final destination.

The optimization process is really quite ssmple. To effect optimized message transmissions, the sending
endpoint checks the body of the SOAP message for XML encoded binary objects that exceed a predeter-
mined size and encodes those objects for efficient transmission over the Internet.

SOAP MTOM, paired with the XML-binary Optimized Packaging (XOP), addresses the inefficienciesre-
lated to the transmission of binary datain SOAP documents. Using MTOM and XOP, XML messages are
dissected in order to transmit binary files as MIME attachments in away that is transparent to the appli-
cation. Thistransformation is restricted to base64 content in canonical form as defined in XSD Datatypes
as specified in XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004.

Thus, the Metro technol ogy achieves message optimization through an implementation of the MTOM and
XOP specifications. With the message optimization feature enabled, small binary objects are sent in-line
inthe SOAP body. For large binary objects, this becomes quiteinefficient, so the binary object is separated
from the SOAP body, encoded, sent as an attachment to the SOA P message, and decoded when it reaches
its destination endpoint.

12

Introduction to Metro

1.5.2. How Reliable Messaging Works

When reliable messaging i senabled, messages are grouped i nto sequences, which are defined by theclient's
proxies. Each proxy corresponds to a message sequence, which consists of all of the request messages for
that proxy. Each message contains a sequence header. The header includes a sequence identifier that iden-
tifies the sequence and a unique message number that indicates the order of the message in the sequence.
The web service endpoint uses the sequence header information to group the messages and, if the Ordered
Delivery option is selected, to process them in the proper order. Additionally, if secure conversation is
enabled, each message sequence is assigned its own security context token. The security context token is
used to sign the handshake messages that initialize communication between two web service endpoints
and subsequent application messages.

Thus, using the Reliable Messaging technology, web service endpoints collaborate to determine which
messagesin a particular application message sequence arrived at the destination endpoint and which mes-
sagesrequire resending. The reliable messaging protocol requiresthat the destination endpoint return mes-
sage-recei pt acknowledgements that include the sequence identifier and the message number of each mes-
sage received. If the source determines that a message was not received by the destination, it resends the
message and requests an acknowledgement. Once the source has sent all messages for a given sequence
and their receipt has been acknowledged by the destination, the source terminates the sequence.

The web service destination endpoint in turn sends the application messages along to the application.
If ordered delivery is configured (optional), the destination endpoint reconstructs a complete stream of
messages for each sequencein the exact order in which the messages were sent and sendsthem along to the

destination application. Thus, through the use of the reliable messaging protocol, the destination endpoint
is able to provide the following delivery assurances to the web service application:

» Each message is delivered to the destination application at |east once.
» Each message is delivered to the destination application at most once.

» Sequences of messages are grouped by sequence identifiers and delivered to the destination application
in the order defined by the message numbers.

Application Message Exchange Without Reliable Messaging shows a simplified view of client and web
service application message exchanges when the Reliable Messaging protocol is not used.

Figure 1.7. Application M essage Exchange Without Reliable M essaging

Web Service Client Web Service Endpoint
r i -
JAX-WS Application Messages JAX-WS
Client - P Server
Runtime Runtime
L N _

When the Reliable Messaging protocol is not used, application messages flow over the HTTP connection
with no delivery assurances. If messages are lost in transit or delivered out of order, the communicating
endpoints have no way of knowing.

Application Message Exchange with Reliable Messaging Enabled shows a ssimplified view of client and
web service application message exchanges when reliable messaging is enabled.

13

Introduction to Metro

1.5.3.

Figure 1.8. Application M essage Exchange with Reliable M essaging Enabled

Web Service Endpoint

Web Service Client

i A JAX-WS
: JAX-WS Server
Client Runtime Auntime
HEE;L::;BE I Creale Sequence Handshake » -
[Proxy 1] ﬁppli%aggﬂgﬁggssaga " s
] Destination
[] Application Message Module
. " Acknowledgemenls
[me!"' n] Terminate
Sequence "‘
N > b = i o

With reliable messaging enabled, the Reliable Messaging source module is plugged into the Metro web
service client. The source module transmits the application messages and keeps copies of the messages
until their receipt is acknowledged by the destination module through the exchange of protocol messages.
The destination module acknowledges messages and optionally buffers them for ordered-delivery guar-
antee. After guaranteeing order, if configured, the destination module allows the messages to proceed
through the Metro dispatch for delivery to the endpoint or application destination.

How Security Works

The following sections describe how the Metro security technologies, security policy, trust, and secure
conversation work.

1.5.3.1. How Security Policy Works

The Metro Web Service Security Policy implementation builds on the features provided by the Web Ser-
vice Policy implementation in Metro. It enables usersto use XML elementsto specify the security require-
ments of a web service endpoint, that is, how messages are secured on the communication path between
the client and the web service. The web service endpoint specifies the security requirements to the client
as assertions (see Security Policy Exchange).

Figure 1.9. Security Policy Exchange

il N i -
Client Accassas Endpoint > Weh
Client Services
» Endpoint
Em:l_guini wplgt'lj':es
L y WS-Security Policy \ J
Assertions

14

Introduction to Metro

The security policy model usesthe policy specified in the WSDL file for associating policy assertionswith
web service communication. As aresult, whenever possible, the security policy assertions do not use pa-
rameters or attributes. This enables first-level, QName-based assertion matching to be done at the frame-
work level without security domain-specific knowledge. The first-level matching provides a narrowed set
of policy alternativesthat are shared by the client and web service endpoint when they attempt to establish
a secure communication path.

Note

A QNane isaqualified name, as specified by the XML Schema Part2: Datatypes specification
[http:/lwww.w3.0rg/ TR/xmlschema-2/#QName], Namespaces in XML [http://www.w3.org/TR/
REC-xml-names/#ns-qualnames|, and Namespaces in XML Errata [http://www.w3.org/XML/
xml-names-19990114-errata). A qualified name is made up of a namespace URI, alocal part,
and a prefix.

The benefit of representing security requirements as assertions is that QNae matching is sufficient to
find common security alternatives and that many aspects of security can be factored out and reused. For
example, it may be common that the security mechanism is constant for a web service endpoint, but that
the message parts that are protected, or secured, may vary by message action.

The following types of assertions are supported:

 Protection assertions: Define the scope of security protection. These assertions identify the message
parts that are to be protected and how they are to be protected, that is, whether data integrity and con-
fidentiality mechanisms are to be used.

 Conditional assertions: Define general aspects or preconditions of the security. These assertions define
the relationships within and the characteristics of the environment in which security is being applied,
such asthetokensthat can be used, which tokensarefor integrity or confidentiality protection, applicable
algorithms to use, and so on.

 Security binding assertions: Define the security mechanism that is used to provide security. These as-
sertions are a logical grouping that defines how the conditional assertions are used to protect the indi-
cated message parts. For example, the assertions might specify that an asymmetric token is to be used
with a digital signature to provide integrity protection, and that parts are to be encrypted with a sym-
metric key, which is then encrypted using the public key of the recipient. In their smplest form, the
security binding assertions restrict what can be placed in thewsse: Securi ty header and the asso-
ciated processing rules.

 Supporting token assertions; Define the token types and usage patterns that can be used to secure indi-
vidual operations and/or parts of messages.

» Web Services Security and Trust assertions: Define the token referencing and trust options that can be
used.

1.5.3.2. How Trust Works

Trust and Secure Conversation shows how the Web Services Trust technology establishes trust.

15

http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/REC-xml-names/#ns-qualnames
http://www.w3.org/TR/REC-xml-names/#ns-qualnames
http://www.w3.org/TR/REC-xml-names/#ns-qualnames
http://www.w3.org/XML/xml-names-19990114-errata
http://www.w3.org/XML/xml-names-19990114-errata
http://www.w3.org/XML/xml-names-19990114-errata

Introduction to Metro

Figure 1.10. Trust and Secure Conver sation

o Y

Establish HTTP Conneclion
@

»

To establish trust between aclient, a Security Token Service, and aweb service:

1. Theclient establishes an HTTPS connection with the Secure Token Service using one of the following

methods:

» Username Authentication and Transport Security: The client authenticates to the Security Token
Service using a username token. The Security Token Service uses a certificate to authenticate to the

Client. Transport security is used for message protection.

» Mutual Authentication: Both the client-side and server-side use X509 certificates to authenticate to
each other. The client request is signed using Client's X509 certificate, then signed using ephemeral
key. The web service signs the response using keys derived from the client's key.

2. The client sends a RequestSecurity Token message to the Security Token Service.

3. The Security Token Service sends a Security Assertion Markup Language (SAML) token to the Client.

; Security
R stS Toke
o equestSecunty loken ' TGI{?I"I
+° RequestSecurity TokenResponse Service
Client \
-
— 0 Client Authenfticates lo Service > Web
Service
b .

4. The client uses the SAML token to authenticate itself to the web service and trust is established.

All communication uses SOAP messages.

1.5.3.3. How Secure Conversation Works

Secure Conversation shows how the Web Services Secure Conversation technology establishes a secure

conversation when the Trust technology is not used.

Figure 1.11. Secure Conversation

f

Cllenl Authenticates to the Service

Client

>

e Sarvica Authanticates to Glient

Web
Service

16

Introduction to Metro

To establish a secure conversation between a Client and aweb service:
1. Theclient sends a X509 Certificate to authenticate itself to the web service.
2. The web service sends a X509 Certificate to authenticate itself to the client.

All communication uses SOAP messages.

17

Chapter 2. Using Metro

Table of Contents

2.1 IMELTO TOOIS ...ttt ettt et ettt et e e s 18
2.1.1. Useful tools for YOur t00ID0Xcoeeuuiiiiiiiee e 19
2.2. Using Mavenized MEtro BiNAIEScoeuuuiiiiiiiiei ettt 19
2.2.1. Using Metro in @ Maven PrOJECEeiieieneiiiii ittt e eeeens 19
2.2.2. Using Metro in a NON-Maven PrOJECEuuuiireruieieii et et 20
2.3. Developing With NEIBEENScoiiiiiieiiii et 21
2.3.1. Registering GlassFish With the IDE ..o 21
2.3.2. Creating 8 WED SEIVICEuiiiiiii e e 21
2.3.3. Configuring Metro's WSIT Features in the Web Servicecoeeiviiiiiiiiiiiiineecennnn, 23
2.3.4. Deploying and Testing aWED SEIVICEviiiiiiieiiiiie e 25
2.3.5. Creating a Client to Consume a WSIT-Enabled Web Serviceccoovveiiiiiiiiiinneennnn. 25
2.4, Developing WIth ECHPSE ... et 28
2L, SEIUD ettt ettt ettt e eaaas 28
2.4.2. Create a Metro Web ServiceS ENdPOintvieeiiiiiiiiiieeeii e 29
2.4.3. Creating Web Service Client using WSIMpPOrt CLIvovviiiiiiiiiiiieciieeceii e 29
2.4.4. Creating Web Service Client using Wsimport Ant Taskoveveeiiieieiiinieeiiiinieeeens 30
2.4.5. Creating Web Service Client using SOAP Ul PlUgiNcoovviiiiiiiiniciiiiccei e, 30
S o [0 1 o TP TSPPPT T 33
2.5.1. Dynamic tube-based MeSSAgE 10gGING ... eeterrmeiiiiie et e e 33
2.5.2. Dumping SOAP MeSSages 0N CHENEiiiiiiiiiiiiie e 36
2.5.3. DUMpiNg SOAP MESSAGES ON SEIVELcieiiieeeiiii e eeeii e eeti e eeai et eni e e e ene e eeenens 38
2.6. Using Eclipse implementation of Jakarta XML Web Services/ Metro with JavaSE 38
2.6.1. Using Eclipse implementation of Jakarta XML Web Serviceswith JavaSE 38
2.6.2. USINg MELro With JAVA SEcoouiiiiiiii e 39
2.7. DePloying MEr0 ENOPOINLccevutneeeiit ettt et e e et e e e et e e e et e e eennaeeeens 39
2.7.1. THE WAR CONLENES ...eevtneieeii ettt ettt e et e e e e e e ena s 40
2.7.2. USING SUN-JAXWSXIMI L.ttt ettt e e et e et e e e eba e e eees 40
2.8. Handlers and MeSSagECONTEXLceuuuniiiiiie ettt ettt e e e e e e e raa s 44
2.8.1. Efficient HANAIErS iN MELIOiiiiiiiieiii et 44
2.9. DePloying MELO WIthocooiiii et 44
290 WEDLOGIC 12 ..ottt ettt e et e e et e e e e e eee a4
2.10. Developing client application with locally packaged WSDLc.oiviiiiiniiiiiiiicceieeeeeen 57
2.10.1. Service API to pass the WSDL informationc..ooveveiiinieiiiinneieiieeeii e 57
2.10.2. XM CABIOQ ettt ettt et et e 58
2.10.3. Using -WsOILOCATON SWITCNceieeieiiii et 58
2.11. How to invoke and endpoint by overriding endpoint addressin the WSDL ... 60
2.11.1. BindingProvider. ENDPOINT_ADDRESS _PROPERTYccocviiiiiiiiiiiieiiiiieeeeeiieen 60
2.11.2. Create Service using updated WSDLcooouiiiiiiiiieiiii e 60
2.12. Maintaining State in WeD SErVIiCESuuiiiiiii e 60
2,13, FBSINFOSEL ...ttt eaaas 61
2.13.1. USING FASHINFOSAL ...ttt e e e e e 61
2.14. High Availability SUPPOIt iN IMELIOoiiiiiiieecii e e e 62

2.1. Metro Tools

Metro provides these tools to help develop Web services applications:

18

Using Metro

2.1.1.

1. Overview [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/docs/rel ease-documentati on.html#tool 5]

2. Wsimport CLI [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/docs/re-
| ease-documentation.html#tool s-wsimport]

3. Wsimport Ant Task [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/docs/re-
| ease-documentation.html#tool s-wsimport-ant-task]

4. Wsgen CLI [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/docs/rel ease-documentation.html#tool s-
wsgen]

5. Wsgen Ant Task [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/docs/re-
|ease-documentati on.html#tool s-wsgen-ant-task]

6. Apt [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/docs/rel ease-documentati on.html#tool s-apt]
7. Wsimport and Wsgen Maven2 plugin [http://eclipse-eedj .github.io/metro-jax-ws/jaxws-maven-plugin]

Note that these tools are located in the webser vi ces-t ool s. j ar fileinthel i b/ subdirectory of
Metro (standalone) download. In GlassFishthesetoolsarelocated inthewebser vi ces- osgi . j ar un-
der gl assfi sh/ nmodul es subdirectory. Shell script versionsthat of thetoolsarelocated under gl ass-
fish/bin.

Useful tools for your toolbox

Over the years, the Metro team has found the following tools to be useful for our users when working
with web services.

1. soapUl [http://www.soapui.org/] isagreat tool for manually sending SOAP messagesto test your web
services quickly, or even to automate those testing.

2. wsmonitor [http://wsmonitor.java.net/] and tcpmon [http://tcpmon.java.net/] are great tools to monitor
the communication between the client and the server.

2.2. Using Mavenized Metro Binaries

2.2.1.

Initially, all Metro releases were built using Ant-based infrastructure. As usual, this approach had some
advantages as well as some disadvantages. Perhaps the main disadvantage was that it was difficult to
manage the set of al the Metro dependencies. As aresult, we were not able to provide first class support
for our Maven-based users.

This has changed with Metro 2.1 release [https://eclipse-eedj.github.io/metro-wsit/2.1/]. Metro 2.1 has
brought asignificant changeto the Metro build process as one of themajor tasksin thereleasewasto switch
Metro build system from Ant to Maven. The main Metro build aswell asthe whole WSIT project [https:/
eclipse-eedj.github.io/metro-wsit/] modules have been fully mavenized and currently Metro is built, as-
sembled and installed using Maven. Metro releases are deployed to Maven central. The Metro modules
shareanew commonroot gr oupl d withavalueof or g. gl assfi sh. met r o and can bebrowsed at the
following location: https://search.maven.org/search?g=org.glassfish.metro. All Metro binaries, sources as
well as javadoc and samples are all available in the maven repository.

Using Metro in a Maven project

If you want to use Metro in a Maven project, you need to declare a dependency on the Metro runtime
bundle:

19

http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsimport
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsimport
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsimport
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsimport-ant-task
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsimport-ant-task
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsimport-ant-task
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsgen
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsgen
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsgen
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsgen-ant-task
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsgen-ant-task
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-wsgen-ant-task
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-apt
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#tools-apt
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin
http://www.soapui.org/
http://www.soapui.org/
http://wsmonitor.java.net/
http://wsmonitor.java.net/
http://tcpmon.java.net/
http://tcpmon.java.net/
https://eclipse-ee4j.github.io/metro-wsit/2.1/
https://eclipse-ee4j.github.io/metro-wsit/2.1/
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/
https://search.maven.org/search?q=org.glassfish.metro

Using Metro

Example 2.1. Declaring M etro non-OSGi dependencies
<proj ect >
<dependenci es>

<dependency>
<groupl d>or g. gl assfi sh. netro</ groupl d>
<artifactld>webservices-rt</artifactld>
<ver si on>3. 0. 2</ ver si on>

</ dependency>

</ dependenci es>
</ pr oj ect >

Specifying this dependency, Maven resolves all the transitive dependencies and gets all thejarsthat web-
servi ces-rt moduledependson. Should you want to use OSGi-fied Metro bundle, you need to declare
the following dependency instead:

Example 2.2. Declaring Metro OSGi dependencies
<proj ect >
;dépendencies>

<dependency>
<groupl d>or g. gl assfi sh. netro</ groupl d>
<artifact!| d>webservices-osgi </artifactld>
<ver si on>3. 0. 2</ ver si on>

</ dependency>

</ dependenci es>

</pr6j éct>
2.2.1.1. Using Metro Tools from Maven

Metro has Maven plugins for WSImport and WSGen tools and this snippet from pom.xml [http://eclipse-
eedj.github.io/metro-jax-ws/jaxws-maven-plugin/usage.html] shows the usage of these maven plugins.
More information on using these plugins is available at JAX-WS Maven Plugin Project [http://eclipse-
eedj.github.io/metro-jax-ws/jaxws-maven-plugin/] site.

2.2.2. Using Metro in a non-Maven project

Even though Metro is currently Maven-based and fully available from a Maven repository, you can, of
course, still useit in anon-Maven project or install it manually to your container. First, you need to go to
the Metro Standalone Bundle [https://search.maven.org/search?q=a:metro-standalone] root in the Maven
repository and download and unzip a version of your choice. For further instructions, please consult the
readne. ht m fileavailable under the unzipped et r o root directory.

20

http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin/usage.html
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin/usage.html
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin/usage.html
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin/
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin/
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin/
https://search.maven.org/search?q=a:metro-standalone
https://search.maven.org/search?q=a:metro-standalone

Using Metro

2.3. Developing with NetBeans

2.3.1.

2.3.2.

Registering GlassFish with the IDE

Before you create the web service, make sure Glasskish has been registered with the NetBeans IDE. The
registered server list can be viewed from the Tools - Servers menu item.

If necessary, to register GlassFish with the IDE:

1. StartthelDE. Choose Tools - Serversfrom the main menu.
The Servers window appears.

2. Click Add Server.

3. Select GlassFish, and click Next.
The platform folder location window displays.

4. Specify the platform location of the server instance and the domain to which you want to reg-
ister, then click Next.

The Servers window displays.

5. If requested, type the admin username and password that you supplied when you installed the
web container (the defaultsareadni n and admi nadnmi n), then click Finish.

Creating a Web Service

The starting point for developing a web service with Metro is a Java class file annotated with the
jakarta.jws. WebServi ce annotation. The WebSer vi ce annotation defines the class as a web
service endpoint. The following Java code shows a web service. The IDE will create most of this Java
code for you.

Example 2.3.
package org. ne. cal cul at or;

import jakarta.jws.WbService;
import jakarta.jws.WbMet hod;
import jakarta.jws.WbParam

@\ébServi ce()
public class Cal cul ator {
@\ebMet hod(acti on="sanpl e_operation")
public String operation(@ebPar anm nane="param nane")
String param {
/1 inmplenent the web service operation here
return param

}
@\éebMet hod(acti on="add")
public int add(@ebParan(nane = "i") int i,

21

Using Metro

@ebParamnamre = "j") int j) {
int k=1 +j;
return k;

}

Notice that thisweb service performsavery simple operation. It takestwo integers, adds them, and returns
the result.

To Createthe Web Service

Perform the following steps to use the IDE to create this web service.

1. Click the Servicestab in the left pane, expand the Servers node, and verify that GlassFish is
listed in theleft pane. If it isnot listed, register it by following the stepsin Registering GlassFish
with the IDE.

2. Choose File -~ New Project, select Java Web from Category, select Web Application from
Projects, and click Next.

3. Assign the project a name that is representative of services that will be provided by the web
service (for example, Calculator Application), set the Project Location to the location where

you'd liketo createthe project, and click Next. Verify that GlassFish isthe Server and that Java
EE Version isJava EE 5 or above. Click Finish.

Note

When you create the web service project, be sure to define a Project Location that does not

include spaces in the directory name. Spaces in the directory might cause the web service

and web service clients to fail to build and deploy properly. To avoid this problem, Sun

recommends that you create a directory, for example C: \ wor k, and put your project there.
4. Right-click the Calculator Application node and choose New - Web Service.

5. Typetheweb servicename(Cal cul at or WE) and the packagename(or g. me. cal cul at or)
in the Web Service Name and the Package fields respectively.

6. Select Create Web Service from Scratch and click Finish.

The IDE then creates a skeleton Cal cul at or W5. j ava file for the web service. Thisfile displays
in Source mode in the right pane.

7. Inthe Operationsbox of the Design view of CalculatorWS.java, click Add Operation.
8. Intheupper part of the Add Operation dialog box, type add in Name.
9. Typei nt intothe Return Typefield.

Inthe Return Typefield, you can either enter aprimitive datatype or select Browseto select acomplex
data type.

10. Inthelower part of the Add Operation dialog box, click Add and create a parameter named i
of typei nt . Click Add again and create a parameter named j of typei nt .

11. Click OK at the bottom of the Add Operation dialog box.

22

Using Metro

2.3.3.
vice

12. Noticethat the add method has been added in the Operations design box.

13. Click the Sourcetab for CalculatorWS.javain theright pane. Noticethat theadd method has
been added to the sour ce code.

Example 2.4.

@ebMet hod(oper ati onNane="add")

public int add(@ebParam(nanre = "i") int i, @¥bParam(nane = "j") int j) {
[/ TODO write your inplenentation code here
return O;

}

14. Changethe add method to thefollowing:

Example 2.5.

@ebMet hod(oper ati onNane="add")

public int add(@ebParam(namre = "i") int i, @¥bParam(nane = "j") int j) {
int k =1 +j;
return k;

}

15. SavetheCal cul at or W5. j ava file.

Configuring Metro's WSIT Features in the Web Ser-

Now that you have coded a web service, you can configure the web service to use Metro's WSIT tech-
nologies.

Y ou have a possibility to choose which .NET / METRO version you want your service to be compatible
with. There are two choices:

1. .NET35/METRO 1.3
2. NET 3.0/ METRO 1.0
Choosethe version appropriate for your web service development (Note the Metro 2.0 library provided by
the latest NetBeans and Glasskish products support either version.) .NET 3.5/ METRO 1.3 is selected by
default. There are several differencesin between the two versions. For .NET 3.0/ METRO 1.0 documen-

tation please follow thislink: Metro 1.0 documentation [http://wsit-docs.java.net/rel eases/1-0-FCY/].

This section describes just how to configure the Reliable Messaging. For a discussion of reliable messag-
ing, see Using Reliable Messaging. To see how to secure the web service, see Using WS T Security.

To ConfigureMetro'sWSIT Featuresin the Web Service
To configure aweb service to use Reliable Messaging, perform the following steps:
1. IntheProjectswindow, expand the Web Services node under the Calculator Application node,

right-click the Calculator WSService node, and choose Edit Web Service Attributes, as shown
in Editing Web Service Attributes.

23

http://wsit-docs.java.net/releases/1-0-FCS/
http://wsit-docs.java.net/releases/1-0-FCS/

Using Metro

Figure 2.1. Editing Web Service Attributes

v & CalculatorClientApp
» |3 Web Pages
¥ | @ Web Service References

P.W

» [& Configurati Open _
@ Server Resc Refresh Client

[_|:| Source Pack
» |2 Libraries

Edit Web Service Attributes

Configure Handlers...

Delete 30]

Properties

2. Select the Reliable M essage Delivery check box, asshown in Reliable M essaging Configuration
Window, and click OK.

Figure 2.2. Reliable M essaging Configuration Window

Configure security, reliability and other WS-* features in the 'Quality Of Service' tab. Press F1
on a header for details specific to its section.

[Quality Of Service |

T CalculatorwSPortBinding

Version Compatibility: | .NET 3.5 / METRO 1.3 %

[Optimize Transfer Of Binary Data (MTOM)

™ Reliable Message Delivery
[:] Deliver Messages In Exact Order

[Advanced...)

This setting ensures that the service sends an acknowledgement to the clientsfor each messagethat is
delivered, thus enabling clients to recognize message delivery failures and to retransmit the message.
This capability makes the web service a"reliable” web service.

24

Using Metro

In the left pane, expand the Web Pages node and the WEB-
INF node, and doubleclick the wsit-endpoint-classnane.xm (wsit-
org. ne. cal cul at or. Cal cul at or WB. xm) fileto view thisfile. Click the Sour ce tab.

The following tags enable reliable messaging:

<wsp: Pol i cy wsu: | d="Cal cul at or WsPor t Bi ndi ngPol i cy" >
<wsp: Exact | yOne>
<wsp: Al | >
<wsam Addr essi ng wsp: Opti onal ="fal se"/>
<wsr m RMAssertion/ >
</wsp: Al >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

2.3.4. Deploying and Testing a Web Service

Now that you have configured the web service to use Metro's WSIT technologies, you can deploy and
test it.

To Deploy and Test a Web Service

1

2.

Right-click Calculator Application in the Project node, and select Properties, then select Run.
Type/ Cal cul at or W5Ser vi ce?wsd| inthe Relative URL field and click OK.

Right-click the Project node and choose Run. The first time GlassFish is started, you will be
prompted for the admin password.

The IDE starts the web container, builds the application, and displays the WSDL file page in your
browser. Y ou have now successfully deployed a Metro-based web service.

2.3.5. Creating a Client to Consume a WSIT-Enabled Web

Service

Now that you have built and tested a web service that uses Metro's WSIT technologies, you can create a
client that accesses and consumes that web service. The client will use the web service's WSDL to create
the functionality necessary to satisfy the interoperability requirements of the web service.

To Createa Client to Consume a WS T-Enabled Web Service

To create a client to access and consume the web service, perform the following steps.

1

2.

ChooseFile . New Project, select Web Application from the Java Web category and click Next.
Namethe project, for example, Calculator WSServletClient, and click Next.

Verify that GlassFishisthe Server and that JavaEE VersionisJavaEE 5or above. Click Finish.
Right-click the Calculator W SServletClient node and select New - Web Service Client.

The New - Web Service Client window displays.

25

Using Metro

10.

11.

12.

13.

14.

Note

NetBeans submenus are dynamic, so the Web Service Client option may not appear. If you
do not see the Web Service Client option, select New - File\Folder - Webservices . Web
Service Client.

Select the WSDL URL option.

Cut and paste the URL of the web service that you want the client to consume into the WSDL
URL field.

For example, hereisthe URL for the Cal cul at or W5 web service:

Example 2.6.
http://1 ocal host: 8080/ Cal cul at or Appl i cati on/ Cal cul at or WsSer vi ce?wsdl

When Jakarta XML Web Services implementation generates the web service, it appends Ser vi ce
to the class name by default.

Click Finish.
Right-click the Calculator W SServletClient project node and choose New - Servlet.

Name the servlet CdientServlet, gpecify the package name, for example,
org. ne. cal cul ator. cli ent and click Finish.

To make the servlet the entry point to your application, right-click the Calculator W SSer viet-
Client project node, choose Properties, click Run,type/ O i ent Ser vl et intheRelative URL
field, and click OK.

If CientServlet.javaisnot aready open in the Source Editor, open it.

In the Source Editor, remove the line that comments out the body of the pr ocessRequest
method.

Thisisthe start-comment line that starts the section that comments out the code:
Example 2.7.

/* TODO out put your page here

Delete the end-comment line that endsthe section of commented out code:
Example 2.8.

*/

Add some empty lines after the following line:

Example 2.9.

out.println("<hl>Servlet CientServlet at " +
request. get ContextPath () + "</ hl1>");

26

Using Metro

15.

16.

Right-click in oneof the empty linesthat you added, then choose I nsert Code... action and select
Call Web Service Operation. Note that for older NetBeans releases, this action was present
under " Web Service Client Resour ces - Call Web Service Operation” .

Then Select Operation to Invoke dialog box appears.
Browseto the Add operation and click OK.

Thepr ocessRequest method is as follows, with bold indicating code added by the IDE:

Example 2.10.

protected voi d processRequest (Htt pServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | OException {
response. set Cont ent Type("text/htnl ; charset =UTF-8");
PrintWiter out = response.getWiter();
out.println("<htm >");
out. println("<head>");
out.println("<title>Servlet ClientServliet</title>");
out.println("</head>");
out. println("<body>");
out.println("<hl>Servlet dientServlet at " + request
.getContextPath() + "</ h1>");
try { // Call Wb Service Operation
org.ne.calculator.client.CalculatorWs port = service
. get Cal cul at or WsPort () ;
/1 TODO initialize W5 operation argunents here
int i =0;
int j =0;
/1 TODO process result here
int result = port.add(i, j);
out.printin("Result =" + result);
} catch (Exception ex) {
/1 TODO handl e custom exceptions here
}

out. println("</body>");
out.println("</htm>");
out.close();

}

17. Changethevaluesforint i andint j toother numbers, such as3and 4.

18. Add alinethat printsout an exception, if an exception isthrown.

Thetry/ cat ch block is as follows (new and changed lines from this step and the previous step
are highlighted in bold text):

Example 2.11.

try { // Call Web Service Operation

org.ne.calculator.client.CalculatorWs port =
servi ce. get Cal cul at or WsPor t () ;

/1 TODO initialize W5 operation argunents here
int i = 3;
int j = 4;
/1 TODO process result here
int result = port.add(i, j);
out.println("<p>Result: " + result);

27

Using Metro

} catch (Exception ex) {
out.println("<p>Exception: " + ex);

}

19. If Reliable Messaging isenabled, the client needsto close the port when done or the server log
will be overwhelmed with messages. To closethe port, first add thefollowing lineto theimport
statements at the top of thefile:

Example 2.12.
i mport com sun. xm . ws. Cl oseabl e;

Then add thelinein bold at the end of thet r y block, as shown below.

Example 2.13.

try { // Call Wb Service Operation

org.ne.cal culator.client. Cal cul atorWs port =
servi ce. get Cal cul at or WsPor t () ;

// TODO initialize W5 operation argunents here
int i =3
int j = 4;
/1 TODO process result here
int result = port.add(i, j);
out.println("<p>Result: " + result);
((C oseabl e) port).close();

} catch (Exception ex) {
out.println("<p>Exception: " + ex);

}

20. Saved i ent Servlet.java.
21. Right-click the project node and choose Run.

Theserver starts (if it was not running already), the application is built, deployed, and run. The brows-
er opens and displays the calculation result.

Note

For NetBeans 6.x and GlassFish v3, if you are getting GlassFish errors with a
"fava.lang. ||| egal StateException: Servlet [Conpletionlnitia-
torPort Typelnpl] and Servlet [ParticipantPortTypelnpl] have

the same url pattern" message, make surethe Metro 2.0 JARs were excluded from
the client serviet WAR file as explained in Step 19.

2.4. Developing with Eclipse

This document describes developing Metro WebServices on Eclipse. The instructions below are for
Eclipsefor JavaEE

2.4.1. Setup

Thisis onetime setup.

28

Using Metro

2.4.2.

2.4.3.

To setup the environment in Eclipse

1.

2.

After starting Eclipse, select the J2EE perspective: Windows - Open Perspective - Others - J2EE

In the lower window you should see a tab with label Servers. Select the tab and right click in the
window and select new - Server.

To download the GlassFish server, select Download additional server adapters. Accept the license
and wait for Eclipse to restart.

After Eclipse has restarted, you can create a new GlassFish Java EE 5 server.

In the creation dialog select Installed Runtimes and select the directory where your GlassFish instal-
lation resides.

Create a Metro Web Services Endpoint

Tocreatea Metro Web Services Endpoint

1

To createthe HellowWorld service, create anew dynamic Web project. Giveit aname (e.g. helloworld)
and select as target runtime GlassFish

Example 2.14. HelloWorld.java
package sanpl e;
i mport jakarta.jws.WbService;

@\ebService

public class Hellowrld {
public String hello(String param{
return param+ ", World";

}
}

Deploy the service by selecting the project and select Run as - Run on server.

Check in the server Window that the helloworld project has a status of Synchronized. If this is not
the case, right-click in the server window and select publish.

You can check that the GlassFish server is started and contains the Web service by going to the
GlassFish admin console (localhost:4848 [http://localhost:4848/1)

See Arun's screen cast [http://download.java.net/javaeeb/screencasts/glassfish-in-europal id=z108], it talks
about the above steps.

Creating Web Service Client using Wsimport CLI

Tocreatea Web Service Client ussng Wsimport CL |

1.

2.

Create anew project for the HelloWorld client (an ordinary Java project suffices).

Select Add GlassFish as Server Runtime in Build Path.

29

http://localhost:4848/
http://localhost:4848/
http://download.java.net/javaee5/screencasts/glassfish-in-europa/ id=zlo8
http://download.java.net/javaee5/screencasts/glassfish-in-europa/ id=zlo8

Using Metro

Open a command window and go into the source directory of that project in Eclipse. For example,
if the Eclipse workspaceisin path

Example 2.15.

c:\ hone\ vi vekp\ wor kspace
and the name of the project is HelloWorldClient, then you need to go to

Example 2.16.

c:\ hone\ vi vekp\ wor kspace\ hel | owor | d\src
In this directory execute

Example 2.17.

wsi nport -keep http://1ocal host: 8080/ hel | owor| d/ Hel | oWor | dSer vi ce?wsdl

On Linux or with Cygwin on Windows, you need to escape the ? by using \? instead.
Select refresh in the project view to see the generated files.
Now you can create the client class HelloWorldClient

Y ou can execute the client, by selecting the HelloworldClient in the package explorer of Eclipse and
selecting Run - Java Application. In the console window of Eclipse, you should see "Hello World".

2.4.4. Creating Web Service Client using Wsimport Ant

Task

2.4.5.

Y ou can pretty much avoid steps 3 - 5 above by using an Ant build.xml file.

To create Web Service Client using Wsimport Ant Task

1

2.

Select helloworldclient in Package Exp and create a new file build.xml

Inthisfile (build.xml) copy the sample[http://weblogs.java.net/blog/vivekp/archive/tool s/build.xml]
ant build script

Then select build.xml in the package explorer, then right click Run As - Ant Build...
Invoke client target, it will run wsimport ant task and generate the client side stubs
Invoke run to invoke the endpoint and run the client or you can execute the client, by selecting the

HelloworldClient in the package explorer of Eclipse and selecting Run - Java Application. In the
console window of Eclipse, you should see "Hello World".

Creating Web Service Client using SOAP Ul Plugin

To create Web Service Client using SOAP Ul Plugin

1

Inside Eclipse, install SOAP Ul Plugin

30

http://weblogs.java.net/blog/vivekp/archive/tools/build.xml
http://weblogs.java.net/blog/vivekp/archive/tools/build.xml

Using Metro

2. Select Help - Software Updates - Find and Install...

3. Pressthe New Remote Site button and add http://www.soapui.org/eclipse/update/site.xml as the plu-
gin URL

4. Select Finish and the follow the dialogsto install the soapUI feature

5. Create anew project for the Helloworld client (an ordinary Java project suffices).
6. Select Add GlassFish as Server Runtime in Build Path.

7. right click BuildPath+Add Library+ServerRuntime+GlassFish

8. Select the project and right click Soap Ul - Add SOAPUI Nature, SOAP Ul WebService item will
be added in Project Explorer

9. Select HelloworldPortBinding and right click GenerateCode - JAX-WS Artifacts

10. Enter the appropriateinfo in the JAX-WS Artifacts window

Figure 2.3. SOAP Ul - JAX-WSArtifacts

| £ JAX-WS Artifacts

JAX-WS Artifacts
Specify arguments for IWSDPf1AX-WS wsimport

Basic | Cuskam Args|

WSDL. |http:|/localhost; 8080 helloworld/HelloWorldService 2wsdl

lse cached WSDL Use cached WSDL

Targek Directary :bin .

Paclkage '5ample

Source Direckary |gpc ' Browse...

HTTP Proxy |
Binding files | :
wsdlLocation

Keep [J] (keep generated files)

I. [Generate][Close II Tools]

11. Click Tools and enter the location of Wsimport, for examplec: \ gl assfi sh\ bi n

31

Using Metro

Figure 2.4. SOAP Ul - Preferences

soapUl Preferences
Set global soapll settings

| £| soapll Preferences - w
S, : = - =

p S

HTTP Settings

Proxy Settings

551 Settings

W3DL Settings

LI Settings

Editor Settings

Tools
'W5-1 Settings

|

JBossWS wstoals
JAX-RPC WSCampile
JA-WS WSImpork
Axis 1.

Axis 2

MNET 2.0 wsdl.exe
¥Fire 1.X

OF2.X

ANT 1.6+

Gooap

JAXE xjc
¥miBeans 2.X

JDK 1.5 javac
Apache TcpMon

Oracle wsa.jar

C:Iglgssfishlbip

Browse..,

Browse...

Browse...

Browse...

Browse..,

Browse...

Browse...

Browse..,

Browse...

Browse..,

Browse...

Browse...

Browse..,

Browse...

o
b

= u

12. Click OK

13. Thenclick Generate on JAX-WS Artifactswindow, it will display adialog box that the operation was
successful. Switch back to Java Perspective, then refresh the src folder and you can see the wsimport
generated classes

14. Now implement your client code

Example 2.18. HelloworldClient.java

package sanpl e;

public class Hellowrlddient {

/**

* @aram args

*/

public static void main(String[] args) {

/] Create Service
Hel | oWor | dServi ce service =

/'l create proxy

new Hel | oWor | dServi ce();

32

Using Metro

Hel | oWorl d proxy = service. getHell owr| dPort();

/1i nvoke
Systemout. println(proxy.hello("hello"));

}

15. You can execute the client by selecting the HellowWorldClient in the package explorer of Eclipse and
selecting Run - Java Application. In the console window of Eclipse, you should see "Hello World".

You can also use Wsimport and Wsgen Maven2 tools. For details see here [http://eclipse-eed).github.io/
metro-jax-ws/jaxws-maven-plugin]. Netbeans offers an easy to use acomprehensive Metro tooling choice.
On Eclipse you can use SOAP Ul or ant build script or CLI or even Maven based tools, which does not
look bad. Thereis RFE on Eclipse[https://bugs.eclipse.org/bugs/show_bug.cgi 7d=163334] and lookslike
it is being looked at. For the Quality Of Service features (WS-* features) it islittle difficult as manually
creating/modifying WSIT configuration is hard, so we will need an equivalent of the WSIT Plugin [http:/
websvc.netbeans.org/wsit/] in NetBeans for Eclipse. Please let us [mailto:metro-dev@eclipse.org] know
if you arewilling to writeaWSIT plugin for Eclipse.

2.5. Logging

2.5.1. Dynamic tube-based message logging

As you may know, Metro creates a tubeline for each WS endpoint and endaint client to process SOAP
messages flowing from and to the endpoint and or itsclient. Each tubeline consist of a set of tube instances
chained together. A tube is a basic SOAP message processing unit. Standard Metro tubes are used to
implement processing logic for different SOAP processing aspects (validation, Java-XML mapping etc.)
and higher-level QoS domains (security, reliable messaging etc.) Asan experimental feature, custom tubes
are supported as well.

When developing an advanced web service that requires Quality of Service features or adding a custom
tube into the default Metro tubeline, the ability to see the SOAP message content at different processing
stages as the message flows through the tubeline may be very useful. As Metro tubeline get's dynamically
created for each endpoint or client, Metro (since version 2.0) provides a new message logging facility that
copes with the dynamics of atubeline creation by defining a set of templating rulesthat provide ageneric
way for constructing system-level properties able to control message content logging before and/or after
each tube's processing.

To turn on the logging for any particular tube (or a set of tubes) created by a specific tube factory, the
devel oper needs to set one or more of the following system properties, depending on the target scope:

» <tube_factory_cl ass_name>. dunp - expects boolean string, if settot r ue turns on the log-
ging before and after tube's processing

e <tube_factory_cl ass_nane>. dunp. bef or e - expects boolean string, if set to t r ue turns
on the logging before tube's processing

< overrides anything set by <t ube_factory_cl ass_nane>. dunp

» <tube_factory_cl ass_nane>. dunp. af t er - expectsboolean string, if settot r ue turnson
the logging after tube's processing

» overrides anything set by <t ube_f act ory_cl ass_name>. dunp

33

http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin
http://eclipse-ee4j.github.io/metro-jax-ws/jaxws-maven-plugin
https://bugs.eclipse.org/bugs/show_bug.cgi?id=163334
https://bugs.eclipse.org/bugs/show_bug.cgi?id=163334
http://websvc.netbeans.org/wsit/
http://websvc.netbeans.org/wsit/
http://websvc.netbeans.org/wsit/
mailto:metro-dev@eclipse.org
mailto:metro-dev@eclipse.org

Using Metro

e <tube factory_cl ass_nane>. dunp. | evel - expects string representing
java. util.logging. Level ,if set, overrides the default message dumping level for the class,
whichisj ava. util .l oggi ng. Level . | NFO

Thereisaset of common system propertiesthat control logging for all tubesand takethe lowest precedence
so that they can be overriden by atube-specific properties:

e com sun. netro. soap. dunp - expectsaboolean string, if settot r ue turns on the message dump-
ing before and after each tube's processing on both sides client and endpoint

e com sun. netro. soap. dunp. bef ore/ af t er - expects aboolean string, if settot r ue turns
on the message dumping before/after each tube's processing on both sides client and endpoint.

e com sun. netro. soap. dunp. cl i ent/ endpoi nt - expects a boolean string, if settotrue
turns on the message dumping before and after each tube's processing on the respective side (client or
endpoint).

e com sun. netro. soap. dunp. cl i ent/endpoi nt. before/after - expects a boolean
string, if settot r ue turnson the message dumping before/after each tube's processing on the respective
side (client or endpoint).

e com sun. netro. soap. dunp. | evel and com sun. netro. soap. dunp.client/
endpoi nt. | evel - controlsthelogging level for the whole tubeline

Thelogger root used for message dumpingis<t ube_f actory_cl ass_nane>.

Most of the factories create tubes on both client and endpoint side. To narrow down the message dumping
scope, following system properties can be used:

» <tube factory_cl ass_nane>. dunp. cli ent/ endpoi nt - expects boolean string, if set to
t r ue turns on the logging before and after tube's processing

« overrides anything set by <t ube_f act ory_cl ass_name>. dunp

e <tube_factory_class_nane>. dunp. client/endpoint.before - expects boolean
string, if settot r ue turns on the logging before tube's processing

e overrides anything set by <tube_factory_class_nane>. dunp and/or
<tube_factory_class_nane>. dunp. client/endpoi nt

* <tube_factory_cl ass_name>. dunp. cl i ent/ endpoi nt. aft er - expectsboolean string,
if settot r ue turnson the logging after tube's processing

« overrides anything set by <tube_factory_class_nane>. dunp and/or
<tube_factory_class_nane>. dunp. client/endpoi nt

» <tube factory_ cl ass_nanme>. dunp. client/endpoint.|evel - expects string rep-
resenting java.util.loggi ng. Level , if set, overides anything set by
<tube_factory_ class_nane>.| evel and or the default message dumping level for the class,
whichisj ava. util .| oggi ng. Level . | NFO

2.5.1.1. Examples

In the following examples we will be working with the net r o- def aul t. xmi file that defines the
default Metro tubeline and looks like this:

Using Metro

Example 2.19.

<metro xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance’
xm ns="http://java. sun. com xm / ns/ nmetro/ config'

version="1.0">

<t ubel i nes def aul t ="#def aul t - met r o-t ubel i ne" >
<t ubel i ne nanme="defaul t-nmetro-tubeline">

<client-side>
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
</client-side>
<endpoi nt - si de>
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
<t ube-factory
cl assNane="
</ endpoi nt - si de>
</tubel i ne>
</ tubel i nes>
</ metro>

com sun. xnl

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

com

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.

xni .

xni .

xni .

xni .

xni .

xni .

xni .

xni .

xni .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xmi .

xni .

xni .

xni .

xni .

xni .

5 5 % » 5 & » 5 &

.assenbl er. j axws. Ter m nal TubeFactory"/>

.assenbl er. j axws. Handl er TubeFact ory"/ >

.assenbl er. j axws. Val i dati onTubeFactory"/>

.assenbl er. j axws. Must Under st andTubeFact ory"/ >

.assenbl er. j axws. Moni tori ngTubeFactory"/ >

.assenbl er. j axws. Addr essi ngTubeFact ory"/ >
.tx.runtine. TxTubeFactory"/>

.rx.rmruntinme. RnfubeFactory"/ >

.rx.mc. runtinme. McTubeFactory"/ >

wss. provi der. wsit. SecurityTubeFactory"/>

Ws

5 5 &

5 5 & b

. dunp. Acti onDunpTubeFact ory"/ >
.rx.testing. PacketFilteringTubeFactory"/>
. dunmp. MessageDunpi ngTubeFact ory"/ >

.assenbl er. netro.jaxws. Transport TubeFact ory"/ >

.assenbl er. netro.jaxws. Transport TubeFact ory"/ >
. dunmp. MessageDunpi ngTubeFact ory"/ >
.rx.testing. PacketFilteringTubeFactory"/>

. dunp. Acti onDunpTubeFact ory"/ >

wss. provi der. wsit. SecurityTubeFactory"/>

Ws

Ws.

5 5 % » 5 & b

.rx.mc. runtime. McTubeFactory"/ >

assenbl er.j axws. Addr essi ngTubeFactory"/ >
.rx.rmruntinme. RnfubeFactory"/ >
.tx.runtine. TxTubeFactory"/>

.assenbl er. j axws. Moni tori ngTubeFactory"/ >

.assenbl er. j axws. Must Under st andTubeFact ory"/ >

.assenbl er. j axws. Handl er TubeFact ory"/ >

.assenbl er. j axws. Val i dati onTubeFactory"/ >

.assenbl er. j axws. Ter m nal TubeFact ory"/ >

35

Using Metro

Example 1

To turn on the the message dumping before and after security tube's processing on both, client and endpoint
side, following system property needs to be set to true:

com sun. xm . wss. provi der. wsit. SecurityTubeFactory. dunp=true
com sun. xm . wss. provi der. wsit. SecurityTubeFactory. dunp=true

Example 2

To turn on the the message dumping only after security tube's processing on both, client and server side,
following system property needs to be set to true:

com sun. xm . wss. provi der.wsit. SecurityTubeFactory. dunp. after=true
com sun. xm . wss. provi der.wsit. SecurityTubeFactory. dunp. after=true

Example 3

To turn on the the message dumping only after security tube's processing only on the client side, following
system property needs to be set to true:

com sun. xm . wss. provi der.wsit. SecurityTubeFactory. dunp.client.after=true
com sun. xm . wss. provi der.wsit. SecurityTubeFactory. dunp.client.after=true

Example 4

This exampl e sets message dumping before and after security processing, except for before security pro-
cessing on the endpoint side. The logging level for message dumpsiis set to FI NE on both sides:

com sun. xm . wss. provi der.wsit. SecurityTubeFact ory. dunp=true
com sun. xm . wss. provi der.wsit. SecurityTubeFact ory. dunp. endpoi nt . bef ore=f al se
com sun. xm . wss. provi der.wsit. SecurityTubeFactory. dunp. | evel =FI NE

2.5.2. Dumping SOAP messages on client
2.5.2.1. Transport level dump

One of the things people want to do while devel oping Web Servicesisto look at what the client is sending
and receiving. To monitor soap traffic, there are some GUI toolslike TCP Monitor [http://tcpmon.java.net/]
and WSMonitor [http://wsmonitor.java.net/]. These monitors are implemented with a'man in the middle
approach where-in, the monitor listensto aport (Client send requeststo thisport) and forwardsit to another
port (Server listens to this port). Since these tools use port forwarding, you need to change your Web
Service client to send reguest to the port where the monitor listens (Especialy, if you are using static
clients generated by wsimport, the default endpoint address taken from the wsdl needs to be overidden by
setting ENDPOl NT_ADDRESS_PROPERTY on the proxy).

In Eclipse implementation of Jakarta XML Web Services, you can monitor the request and response
messages without changing the client. When you invoke the Web Service, just pass the system property
com.sun.xml.ws.transport.http.client.HttpTransportPipe.dump=true, it prints out the request and re-

sponse message.

If you are using an Apache Ant script to run your client, this system property can be set asa<j vimar g/ >
element:

Example 2.20. Setting system propertiesvia Ant

<proj ect nanme="netro client" basedir=".">
<property environnent="env"/>
<property nanme="build.dir" |ocation="$${basedir}/build"/>

36

http://tcpmon.java.net/
http://tcpmon.java.net/
http://wsmonitor.java.net/
http://wsmonitor.java.net/

Using Metro

<property nanme="build.classes.dir" location="$${build.dir}/classes"/>

<target name="run">
<java classnane="client. Wdient" fork="yes">
<arg val ue="xxx"/>

<l-- optional args[0] sent to MyCdient.main() -->
<arg val ue="xxx"/>
<l-- optional args[1l], etc. -->

<cl asspat h>
<pat hel ement | ocati on="$${buil d.cl asses.dir}"/>
<pat hel ement | ocati on="$${env. AS HOVE}/|ib/javaee.jar"/>
<pat hel ement | ocati on="$${env. AS HOVE}/| i b/ webservi ces-rt.jar"/>
<pat hel ement | ocati on="$${env. AS HOVE}/lib/activation.jar"/>

</ cl asspat h>

<jvmarg val ue="-Dcom

.sun.xm .ws.transport. http.client. HtpTransportPi pe. dunp=true"/>

</java>
</target>
</ pr oj ect >

Alternatively you can execute
comsun. xm .ws.transport. http.client. HtpTransportPi pe. dunp=true; from
your Java program to programatically enable/disable logging. Since you often run XML Web Servicesin
a container where setting system properties can be tedious, you might find this easier.

With this switch enabled, you'll see message dumps like the following in Syst em out .

Example 2.21. Sample dump

---[HTTP request]---

SCQAPAct i on:

Cont ent - Type: text/xm

Accept: text/xm, nultipart/related, text/htm, image/gif, image/jpeg, *;
g=.2, */I*; g=.2

<?xm version="1.0" ?><S: Envel ope xnm ns: S="http://schenmas. xm soap. or g/ soap/

envel ope/ " ><S: Body><addNunmber s xm ns="http:// duke. exanpl e. or g" ><ar g0>10</

ar g0><ar g1>20</ ar g1></ addNunber s></ S: Body></ S: Envel ope>--------------------

---[HTTP response 200]---

Date: Thu, 17 Aug 2006 00:35:42 GMVI
Content -type: text/xm
Transfer-encodi ng: chunked

Server: Apache-Coyote/ 1.1

null: HTTP/ 1.1 200 K

<?xm version="1.0" ?><S: Envel ope xm ns: S="http://schenmas. xm soap. or g/
soap/ envel ope/ " ><S: Body><addNunber sResponse xm ns="http://

duke. exanpl e. or g" ><r et ur n>30</ r et ur n></ addNunber sResponse></ S: Body></
S:Envelope>----------mmmoaooon

A similar property com.sun.xml.ws.transport.local.Local TransportPipe.dump=true is available for
the local transport.

2.5.2.2. Transport-agnostic dump

The dump mechanism explained above allows you to get the actual bytes that are sent over the wire, as
well as any transport specific information (such as HTTP headers), but the mechanism is different from
transportsto transports. Eclipseimplementation of Jakarta XML Web Services al so defines atransport-ag-
nostic dump, which works regardless of what transport you use.

37

Using Metro

2.5.3.

This dump happens after Eclipse implementation of Jakarta XML Web Services parses the incoming mes-
sage into XML infoset. So you will not be able to investigate a well-formedness error with this dump.

To enable such dump, set the system property
com.sun.xml.ws.util.pipe.StandaloneT ubeAssembler.dump=true or execute that as a Java program.

Dumping SOAP messages on server

You can dump incoming HTTP requests and responses to Syst em out on the server side by using
the system property com.sun.xml.ws.transport.http.HttpAdapter.dump=true. This works exactly like
above (except that this works on server, not client.) You can also set this property programatically by
executing com.sun.xml.ws.transport.http.HttpAdapter .dump=true; as Java progrma.

The transport agnostic dump as explained above aso works on the server for incoming messages and
responses.

2.6. Using Eclipse implementation of Jakarta
XML Web Services / Metro with Java SE

2.6.1.

Using Eclipse implementation of Jakarta XML Web

Services with Java SE

Java SE ships with JAX-WS API and implementation. Unless you are taking precautions, applications
that use the Jakarta XML Web Services API will run with the JAX-WS API version built into Java SE
and not a newer version of Jakarta XML Web Services on the application classpath. Applications that use
new functions of the Jakarta XML Web Services API will thereforefail to run. This section discusses how
to work around this issue by using the endorsed standards override mechanism [https://docs.oracle.com/
javase/8/docs/technotes/guides/standards/].

Java SE 11 does not include the JAX-WS API at all and does not suffer from the issues discussed in this
chapter.

2.6.1.1. Endorsed directory

You can upgrade to Jakarta XML Web Services by copying j akarta. xm .ws-api .jar and
j akarta. xm . bi nd-api .| ar into the JRE endorsed directory, which is $JRE_HOVE/ | i b/ en-
dor sed (or $JDK_HOVE/ j r e/ | i b/ endor sed). (Both of these JARs are availablein the Eclipseim-
plementation of Jakarta XML Web Services download [http://eclipse-eed.github.io/metro-jax-ws/].) The
directory might not exist yet and in that case you will have to create it yourself.

Some application containers, such as GlassFish, Tomcat, modify the location of the endorsed di-
rectory to a different place. From inside the JVM, you can check the current location by doing
System out. println(System getProperty("java. endorsed.dirs"));

Obviously you still need all the other JAX-WS jarsin your classpath.

Please do not put all JAX-WS jarsinto the endorsed directory. This makes it impossible for JAX-WSRI
to see other classesthat it needs for its operation, such as Servlet classes on the server-side, or Ant classes
in the tool time. Asthose are not loaded by the bootstrap classloader, you will get NoCl assDef Er r or

on Servlet/Ant classes.

Also consider that by putting the JAX-WSlibrariesinto $JRE_HOWE/ | i b/ endor sed, all applications
running under this Javainstallation will run with the endorsed JAX-WS libraries.

38

https://docs.oracle.com/javase/8/docs/technotes/guides/standards/
https://docs.oracle.com/javase/8/docs/technotes/guides/standards/
https://docs.oracle.com/javase/8/docs/technotes/guides/standards/
http://eclipse-ee4j.github.io/metro-jax-ws/
http://eclipse-ee4j.github.io/metro-jax-ws/
http://eclipse-ee4j.github.io/metro-jax-ws/

Using Metro

2.6.2. Using Metro with Java SE

Metro ships with the Jakarta XML Web Services API, Java SE contain JAX-WS API. Unless you are
taking precautions, applications that use the Jakarta XML Web Services API will run with the JAX-WS
API version built into Java SE and not with the Jakarta XML Web Services API built into Metro on the
application classpath. Applications that use new functions of the Jakarta XML Web Services API or other
Metro functionality will therefore fail to run.

Do not install any other Jakarta XML Web Services or Metro libraries than the ones discussed below into
an endorsed directory at the same time, otherwise Metro code may not be able to load classes from the
application classpath.

2.6.2.1. Tomcat

If you are running an application in Tomcat, make sure you are using the et r o- on- t ontat . xni
installation script. They will copy al filesinto the Tomcat specific endorsed directories. Without that step,
web applications and EJBswill not be ableto pick up the proper Jakarta XML Web Services API. In other
words, including the Metro libraries in the WEB-INF/lib of a web application does not make use of the
endorsed mechanism and the Jakarta XML Web Services API cannot be used by the web application.

2.6.2.2. GlassFish

If you are running an application in GlassFish, Metro is already included. Y ou may install updates with
themet r 0- on- gl assfi sh. xm Ant script.

2.6.2.3. Stand-alone applications

If you want to run an application or Web Service client outside the Tomcat or GlassFish containers, you
havetoinstal thefilewebser vi ces- api . j ar into the JRE endorsed directory, $JRE_HOVE/ | i b/
endor sed (or $JDK_HOVE/ j re/ | i b/ endor sed). Thedirectory might not exist yet and in that case
you will have to create it yourself.

Alternatively, you can set the Java system property j ava. endor sed. di r s to an application specific
directory and copy the files there. See endorsed standards override mechanism [https://docs.oracle.com/
javase/8/docs/technotes/guides/standards/] for more details on how to set an application specific endorsed
directory.

You may also usethe met r o- on- gl assfi sh. xm ormetro-on-toncat.xm Ant scriptsto do
the installation of webservices-api.jar into the JRE endorsed directory for you. Simply invoke ant -
f nmetro-on-glassfish.xm install-api.Theinstall-api targetwill only instal web-
servi ces-api . jar and will not install Metro into Tomcat or GlassFish. Note that you need to run
this command as a user that has write permissions to the JRE endorsed directory.

2.7. Deploying Metro endpoint

Before you deploy or publish your endpoint, you will need to package your endpoint application into a
WAR file. The requirements when building a WAR:

» All WSDLs, Schema files should be packaged under WEB-INF/wsdl dir. It is recommended not to
package the WSDL if you are doing Java-first development.

» WebServiceimplementation classshould contain @¥bSer vi ce annotation. Provider based endpoints
should have @\bSer vi cePr ovi der annotation.

39

https://docs.oracle.com/javase/8/docs/technotes/guides/standards/
https://docs.oracle.com/javase/8/docs/technotes/guides/standards/
https://docs.oracle.com/javase/8/docs/technotes/guides/standards/

Using Metro

2.7.1.

2.7.2.

» wsdl, service, port attributes are mandatory for Provider based endpoints and can be specifiedin @\eb-
Ser vi cePr ovi der annotation or deployment descriptor (sun-jaxws.xml).

» Deployment descriptors, web.xml, web services deployment descriptor (sun-jaxws.xml or 109 or spring)

The WAR Contents

Typically, one creates the WAR file with a GUI development tool or with the ant war task from the
generated artifacts fromwsi nport , wsgen, or apt tools.

For example, asample WAR file starting from a WSDL file;

Example 2.22. Sample WAR contents (WSDL First)

VEEB- | NF/ cl asses/ hel | o/ Hel | ol F. cl ass SE

VEB- | NF/ cl asses/ hel | o/ Hel | ol mpl . cl ass Endpoi nt

VEB- | NF/ sun-j axws. xm JAX-W5S Rl depl oynent descri ptor
VEB- | NF/ web. xm Wb depl oynent descri ptor

VEEB- | NF/ wsdl / Hel | oSer vi ce. wsdl WSDL

VAEB- | NF/ wsdl / scherma. xsd WSDL i mports this Schema

Using sun-jaxws.xml

Metro definesits own deployment descriptor, which isa so known as deployment descriptor of the Eclipse
Implementation of Jakarta XML Web Services- sun-jaxws.xml.

Hereisthe schemafor sun-jaxws.xml:

Example 2.23.

<?xm version="1.0" encodi ng="UTF-8"?>
<l--

Copyright (c) 1997, 2018 Oracle and/or its affiliates. Al rights
reserved.

Thi s program and the acconpanying materials are nade avail abl e under the
terns of the Eclipse Distribution License v. 1.0, which is avail able at
http://ww. eclipse.org/org/docunent s/ edl -v10. php.

SPDX- Li cense-ldentifier: BSD 3-C ause

-->

<xsd: schema
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns:tns="http://java.sun.com xm /ns/jax-ws/ri/runtinme"
xm ns:javaee="http://java. sun.com xnl / ns/j avaee"
t ar get Nanespace="http://java. sun.com xm /ns/jax-ws/ri/runtime"
el ement For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed"
version="1.0">

<xsd:inport namespace="http://java.sun.com xm /ns/javaee"
schemalLocati on="http://java. sun. coni xm / ns/j avaee/
j avaee_web_servi ces_net adat a_handl er _2_0. xsd"/ >

<xsd: el emrent nane="endpoi nts">
<xsd: conpl exType>

40

Using Metro

m nCccur s="0"

<xsd: sequence>
<xsd: el ement nane="endpoi nt" type="tns: endpoi nt Type"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute nane="versi on" type="xsd:string" use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType nane="ext er nal Met adat a" >
<xsd:attribute name="file" type="xsd:string" use="optional"/>
<xsd:attribute name="resource" type="xsd:string" use="optional"/>
</ xsd: conpl exType>

<xsd: conpl exType nanme="endpoi nt Type" >
<xsd: annot ati on>
<xsd: docunent ati on>
An endpoint definition has several attributes:

nane</Ili>

- the endpoi nt name

i nplementation

- the nanme of the endpoint inplenmentation class
wsdl </1i>

- the nanme of a resource corresponding to the WsDL

docunent for the endpoint

R

(default),

"ecl

</ ul
<p>

</ p>

service

- the QNane of the WBDL service that owns this endpoint;
port

- the QNane of the WSDL port for this endpoint;
url-pattern

- the URL pattern this endpoint is napped to

<l'i >bi ndi ng</1i >

- specify binding id for SOCAP1.1 or SCQAP1. 2

<l i >dat abi ndi ng</1i >

- specify databinding type - "glassfish.jaxb" for JAX-B
pselink.jaxb" for Toplink

MOXy

enabl e-monx/1i>

- Enabl es MIOM opti m zation

>

wsdl, service, port
attributes are required for provider based endpoints

<p>Al | oned nested el enent(s) is

ext er nal - net adat a</ b>
defining xm descriptor to be used to suppl ement or

override annotation netadata. One el enent

m nCccur s="0"

</ p>

defi nes one resource/file

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>

<xsd: el ement nane="ext ernal - met adat a" type="tns: ext ernal Met adat a"
maxQccur s="unbounded"/ >
<xsd: el ement ref="javaee: handl er-chai ns" m nCccurs="0"
maxCccurs="1"/>
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>

41

Using Metro

<xsd:attribute name="inpl enentati on" type="xsd:string"
use="required"/>
<xsd:attribute name="wsdl" type="xsd:anyURl "/>
<xsd:attribute name="service" type="xsd:anyURl "/>
<xsd:attribute name="port" type="xsd:anyURl "/>
<xsd:attribute name="url-pattern" type="xsd:anyUR " use="required"/>
<xsd:attribute name="dat abi ndi ng" type="xsd:string"/>
<xsd:attribute name="bi ndi ng" type="xsd:string"/>
<xsd:attribute name="enabl e-ntont' type="xsd: bool ean"/>
</ xsd: conpl exType>

</ xsd: schema>

The <endpoi nt s> element contain one or more <endpoi nt > elements. Each endpoint represents a
port in the WSDL and it contains all information about implementation class, servlet url-pattern, binding,
WSDL, service, port QNames. Thefollowing showsasun- j axws. xmi fileforasimpleHel | oWor | d
service. sun-jaxws.xml is the schema instance of sun-jaxws.xml [sun-jaxws.html].

Example 2.24.

<?xm version="1.0" encodi ng="UTF-8"?>
<endpoints
xm ns="http://java. sun.com xm /ns/jax-ws/ri/runtime"
versi on="2.0">
<endpoi nt
nane="MHel | o"
i mpl enent ati on="hel |l o. Hel | ol npl "
url-pattern="/hello"/>
</ endpoi nt s>

» Endpoint attribute

Table 2.1. Endpoint attributes

Attribute Optional Use
name N Name of the endpoint
wsdl Y Primary wsdl file location in the WAR file. E.g. WEB-INF/

wsdl/HelloService.wsdl. If thisisn't specified, Metro runtime
will generate and publish anew WSDL. When the serviceis
developed from Java, it isrecommended to omit thisattribute.

service Y OQName of WSDL servicee For eg. {http://
example.org/} HelloService. When the service is developed
from java, it is recommended to omit this attribute.

port Y QName of WSDL port. For eg. {http://
example.org/} HelloPort. When the serviceis developed from
Java, it is recommended to omit this attribute.

i mpl ement a- N Endpoint implementation class name. For eg:
tion hello.Hellolmpl. The class should have @\¥bSer vi ce an-
notation. Provider based implementation class should have
@\ébSer vi ceProvi der annotation.

url-pattern N Should match <url-pattern> in web.xml

bi ndi ng Y Binding id defined in the Jakarta XML
Web Services APIL. The possible val-
ues ae "http://schemas. xm soap. or g/ ws-

42

sun-jaxws.html
sun-jaxws.html

Using Metro

Attribute Optional Use

dl / soap/ http","http://
www. W3. or g/ 2003/ 05/ soap/ bi ndi ngs/ HTTP/ "
If omitted, it is considered SOAPL.1 binding.

enabl e- nt om Y Enables MTOM optimization. true or false. Default isfalse.

* Specifying Handler Chains

Example 2.25.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<endpoi nts xm ns="http://java. sun.com xm /ns/jax-ws/ri/runtime"
version="2.0">
<endpoi nt nanme="MHel | 0" >
<handl er-chai ns xm ns="http://java. sun.coni xm / ns/javaee" >
<handl| er - chai n>
<handl er >
<handl er - nane>MyHandl er </ handl er - name>
<handl er - cl ass>hel | 0. M\yHandl er </ handl er - cl ass>
</ handl er >
</ handl er - chai n>
<handl er - chai ns>
</ endpoi nt >
</ endpoi nt s>

» External Web Service Metadata

Example 2.26.

If there is a need to use existing implementation for web service and it is impossible to change the
source code to provide necessary java annotations, it is possible to use external web service metadata
configuration. For more information on this topic see External Web Service Metadata [http://eclipse-
eedj.github.io/metro-jax-ws/3.0.2/docs/rel ease-documentati on.html#users-gui de-external-metadata)

<?xm encodi ng="UTF- 8" version="1.0" ?>
<endpoi nts xm ns="http://java. sun.com xm /ns/jax-ws/ri/runtimnme"
versi on="2.0">

<endpoi nt i npl ement ati on="or g. exanpl e. server. Bl ackboxServi ce" url -
pattern="/W5" nane="W5">

<ext ernal - net adat a resour ce="ext ernal - met adat a-

or g. exanpl e. server. Bl ackboxServi ce. xm " />

</ endpoi nt >
</ endpoi nt s>

2.7.2.1. The web.xml File

The following shows a web.xml file for a simple HelloWorld service. It shows the listener and servlet
classes that need to be used when deploying Metro-based web services.

Example 2.27.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE web-app PUBLIC
"-//Sun M crosystens, |Inc.//DTD Wb Application 2.3//EN
"http://java.sun.com j2ee/ dt ds/ web-app_2_3.dtd">

43

http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-external-metadata
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-external-metadata
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-external-metadata

Using Metro

<web- app>

<l istener>

<listener-cl ass>
comsun. xm . ws. transport. http. servl et. WsSer vl et Cont ext Li st ener

</listener-cl ass>

</listener>

<servl et>
<servl et - nane>hel | o</ servl et - nane>
<servl et-class>com sun. xm . ws. transport. http. servl et. WsSer vl et
</ servlet-cl ass>
<l oad- on-startup>1</| oad-on-start up>

</servlet>

<servl et - mappi ng>
<servl et - nane>hel | o</ servl et - nane>
<url-pattern>/hello</url-pattern>

</ servl et - mappi ng>

<sessi on-confi g>
<sessi on-ti meout >60</ sessi on-ti neout >

</ sessi on-confi g>

</ web- app>

2.8. Handlers and MessageContext
2.8.1. Efficient Handlers in Metro

Extend your Web Service applications with the new efficient Handlers in Eclipse
Metro [https://community.oracle.com/peopl e/ramapul avarthi/bl og/2007/12/13/extend-your-web-ser-
vice-applications-new-efficient-handlers-jax-ws-ri?customTheme=java]: UsethisRI extension to take ad-
vantage of the Eclipse Metro Message API for efficient access to message and other contextual informa:
tion.

2.9. Deploying Metro with ...
2.9.1. WebLogic 12

Here are the steps to use the Metro 2.x/Eclipse Implementation of Jakarta XML Web services instead of
Oracle's JAX-WS implementation in Weblogic 12.1.1.0 without affecting the Weblogic domain or other
applications under the same domain:

1. Create an EARfile and include your WARfile inside it. Here is the directory structure of the EARfile:
o META- I NF/
* META- | NF/ MANI FEST. MF
 META- I NF/ application. xm
e META- | NF/ webl ogi c-appl i cation. xm
* metro-customtubes. war (your.war application)
* APP-| NF/
* APP-INF/Iib/
e APP-INF/Ilib/stax-api.jar

https://community.oracle.com/people/ramapulavarthi/blog/2007/12/13/extend-your-web-service-applications-new-efficient-handlers-jax-ws-ri?customTheme=java
https://community.oracle.com/people/ramapulavarthi/blog/2007/12/13/extend-your-web-service-applications-new-efficient-handlers-jax-ws-ri?customTheme=java
https://community.oracle.com/people/ramapulavarthi/blog/2007/12/13/extend-your-web-service-applications-new-efficient-handlers-jax-ws-ri?customTheme=java
https://community.oracle.com/people/ramapulavarthi/blog/2007/12/13/extend-your-web-service-applications-new-efficient-handlers-jax-ws-ri?customTheme=java

Using Metro

e APP-| NF/I|ib/webservices-api.jar

e APP-| NF/Iib/webservices-extra-api.jar
e APP-I NF/I|ib/webservices-extra.jar

e APP-I NF/I|ib/webservices-rt.jar

e APP-I NF/I|ib/webservices-tools.jar

* APP-I NF/ cl asses/

. IncludeaMETA- | NF/ appl i cati on. xm fileto point out the name of the EARfile and the location
and context of the WAR file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<application xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schemna- i nst ance"
xm ns="http://java. sun.com xm / ns/j avaee"
xm ns: application="http://java. sun. conl xm / ns/j avaee/
appl i cation_5. xsd"
xsi : schemalLocation="http://java. sun. com xm / ns/j avaee
http://java. sun. conlf xm / ns/j avaee/ appl i cati on_5. xsd"
i d="Application_ID" version="5">
<nmodul e>
<web>
<web- uri >metro-cust omtubes. war </ web-uri >
<cont ext - r oot >nmet r o- cust om t ubes</ cont ext - r oot >
</ web>
</ modul e>
</ application>

. Include a META- | NF/ webl ogi c-appl i cation. xm filethat uses Weblogic's class loading fil-
tering feature to override the System class loader packages and resources with the ones from the appli-
cation class loader:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<wW s: webl ogi c-application xm ns: xsi="http://ww.w3. org/ 2001/ XM_Schena-
i nstance"
xm ns:wW s="http://ww. bea. conf ns/ webl ogi c/ webl ogi c-application"
xsi : schemaLocati on="
http://ww. bea. com ns/ webl ogi ¢/ webl ogi c-application
http://ww:. bea. conm ns/ webl ogi c/ webl ogi c-appl i cati on. xsd
http://java. sun.conf xm / ns/j 2ee
http://java.sun.conl xm /ns/j2eelj2ee_1_4.xsd">
<w s: appl i cati on- par ant
<wl s: par am nane>webapp. encodi ng. def aul t </ W s: par am nane>
<wW s: param val ue>UTF- 8</ W s: par am val ue>
</w s: appl i cati on-paranp
<prefer-application-packages>
<w s: package- name>com sun. xm . f asti nf oset </ W s: package- nanme>
<w s: package- name>com sun. xm . f asti nf oset . t ool s</ w s: package- nane>
<w s: package- name>com sun. xm . f asti nf oset. vocab</w s: package- nane>
<wW s: package- name>com sun. xm . fastinfoset. util </w s: package- nane>
<wW s: package- name>com sun. xn . f asti nf oset. st ax. event s</w s: package-
name>
<wW s: package- name>com sun. xm . f asti nf oset. st ax</ w s: package- nane>
<wl s: package- name>com sun. xnl . f asti nf oset . st ax. fact ory</w s: package-
name>
<w s: package- name>com sun. xm . fasti nfoset. stax. util </w s: package- nane>

45

Using Metro

<wl s: package- name>com sun.
<wl s: package- name>com sun.
<wl s: package- name>com sun.
<wl s: package- name>com sun.

w s: package- nanme>

< s:

< s:

< s:

< s:

< s:

<wl s: package- nane>com

<wl s: package- nane>com

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com
nane>

<wl s: package- nane>com

<wl s: package- nane>com
nane>

<wl s: package- nane>com
nane>

<wl s: package- nane>com
nane>

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- name>com sun.

nane>

<wl s: package- nanme>j akart a.
<wl s: package- nanme>j akart a.
<wl s: package- name>com sun.

w s: package- nane>

<wl s: package- name>com sun.

w s: package- nane>

<wl s: package- name>com sun.

w s: package- nane>

<wl s: package- name>com sun.

w s: package- nane>
<wW s:
<w s:
<w s:
<wW s:

package- nane>com sun.
package- nane>org. j vnet. fasti nf oset </wW s: package- name>
package- nane>org. j vnet. fasti nf oset.
package- nane>org. j vnet. fasti nf oset.
package- nane>org. j vnet. fasti nf oset.
xm .
xm .
xm .

sun.

sun.

sun.

sun.

sun.

sun.

sun.

sun.
sun.

sun.

sun.

sun.

xm .
xm .
xm .
xm .

xm .

xm .

xm .

xm .

xm .

xm .
xm .

xm .

xm .

xm .

xm .

nmessagi
nmessagi
messagi
nmessagi
nmessagi
nmessagi

nmessagi

nmessagi
nmessagi

nmessagi
nmessagi

nmessagi

f asti nfoset.
f asti nfoset.
f asti nfoset.
fasti nfoset.

f asti nfoset.

ng.
ng.
ng.
ng.
ng.
ng.
ng.

ng.
ng.

ng.

ng.

ng.

nmessagi ng. saaj

sax</w s: package- nane>

donx/ w s: package- nane>

al gorithnx/w s: package- nane>
org. apache. xerces. util </

al phabet </ W s: package- nane>

sax</w s: package- nane>

sax. hel pers</w s: package- nane>
st ax</ W s: package- nane>

saaj </ W s: package- nane>

saaj . util </w s: package- nane>
saaj . util.transfornx/

saaj . packagi ng. m me</

saaj . packagi ng. mi me. util </
saaj . packagi ng. m ne. i nt er net </
saaj .client.p2p</W s: package-

saaj
saaj

. soap</w s: package- nane>

. soap. ver1l_2</w s: package-
saaj . soap. nane</ w s: package-
saaj . soap. ver1l _1</w s: package-
saaj . soap. dynam c</

. soap. i npl </ W s: package-

jws</W s: package- nanme>
. soap</ W s: package- nane>

j ws
org

org.

org.

org.

.apache. xm . i nt ernal

sh.

sh. ha.

apache. xm . i nt er nal
apache. xm . i nt er nal

apache. xm . i nt er nal

nane>

nane>

package- name>or g. gl assfi
<wW s: package- nanme>or g. gl assfi
< s:
< s:
< s:

package- name>or g. gl assfi
package- name>or g. gl assfi
package- name>or g. gl assfi

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

package- name>or g. gl assfi
package- name>or g. gl assfi

sh. ha. store.
sh.
sh.

sh.

ha.
ha.
ha.

store.
store.
store.

sh.
sh.

ha.
ha.

store.
store.

.resol ver</
.resol ver. hel pers</
.resol ver. readers</

.resol ver. t ool s</

package- nanme>or g. j vnet. st axex</ W s: package- nane>
package- nanme>or g. gl assfi sh.
package- name>or g. gl assfi

gnbal </ W s: package- name>
gnbal . util </ w s: package- nane>
store.

criteria</w s: package- name>
criteria.spi</wWs: package-

api </ w s: package- nane>
util </w s: package- nane>
annot at i ons</w s: package-

i mpl </ W s: package- nane>
spi </ W s: package- nane>

package- nane>j akart a. annot at i on</ W s: package- nane>

package- nane>j akarta. annot ati on. security</w s: package- nane>
package- nane>j akart a. annot ati on. sql </ w s: package- nane>
package- nane>org. j vnet. mi mepul | </ W s: package- nanme>

package- nane>j akarta. xm . ws</ W s: package- nane>

46

Us

ng Metro

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
nane>
<W s:
nane>
<W s:
nane>
<W s:
nane>
<W s:
nane>
<W s:
<W s:
<W s:
<W s:

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

sun
sun
sun
sun
sun
sun
sun

package- nane>com sun

package- nane>com sun

package- nane>com sun

package- name>com sun
package- name>com
package- name>com
package- name>com
package- name>com

<wl s: package- nane>com

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com
nane>

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com
nane>

<wl s: package- nane>com

<wl s: package- nane>com

<wl s: package- nane>com
nane>

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com
nane>

<wl s: package- nane>com

<wl s: package- nane>com

<wl s: package- nane>com
w s: package- nanme>

<wl s: package- nane>com

<wl s: package- nane>com

<wl s: package- nane>com

<wl s: package- nane>com

<wl s: package- nane>com

<wl s: package- nane>com
nane>

< s:

< s:
nane>

< s:

< s:

sun
sun
sun
sun
sun
sun

sun
sun
sun

sun
sun
sun

sun
sun

sun
sun
sun

sun
sun
sun
sun
sun
sun

package- nane>com
package- nane>com

sun
sun

sun
sun

package- nane>com
package- nane>com

package- name>j akart a.
package- name>j akart a.
package- name>j akart a.
package- name>j akart a.
package- name>j akart a.
package- name>j akart a.
package- name>j akart a.

xm .
xm .
xm .
xm .
xm .
xm .
xm .
.tools.
.tools.
.tools.
.tools.
.tools.
.tools.
.tools.

555555 b5

.tools.

.tools.

.tools.

.tools.

.tools.
.tools.
.tools.
.tools.
.tools.
.tools.

.tools.

.tools.

.tools.

.tools.
.tools.
.tools.

.tools.

.tools.

.tools.
.tools.
.tools.

.tools.
.tools.
.tools.
.tools.
.tools.
.tools.

.tools.
.tools.

.tools.
.tools.

. handl er </ wl s: package- nane>

. handl er. soap</ W s: package- nane>
. http</w s: package- nane>

. soap</w s: package- nane>

. spi </ W s: package- nane>

.spi . http</w s: package- nane>
.wsaddr essi ng</ W s: package- nane>

5 % 5 5 o bbbbDB B

555 5 5 bo6> B b b bbb

.wsdl
.wsdl
.wsdl
.wsdl
.wsdl .
ws</W s:
.util.
.util </w s: package- nane>

. processor </ W s: package- name>
. processor.
. processor.
. processor.
. processor.
. processor.
. processor.
. processor.

. processor.

. processor.

. spi </ W s: package- nane>
.ant</w s: package- nanme>
. api </ W s: package- nane>
.api . wsdl </ W s: package- nane>
.wsdl
.wsdl
.wsdl

. framewor k</ W s: package- name>
. docunent </ W s: package- nane>
.docunent .. m ne</w s: package-

. docunent . soap</W s: package-
.docunent . htt p</w s: package-
.docunent . j axws</w s: package-
. docunent . schema</ W s: package-
par ser</w s: package- nane>
package- nane>

xm </ W s: package- nanme>

nodel er. wsdl </

nodel er </ W s: package-
nodel er. annot at i on</
gener at or</ W s: package-
util </w s: package- nane>
nodel </ W s: package- nane>
nodel . j ava</ W s: package-
nodel . exporter</

nodel . j axb</ W s: package-

.resources</wW s: package- nane>
.wsconpi | e</ W s: package- nane>
.wsconpi |l e. pl ugi n. at _gener at ed</

Xj c</ W s: package- name>

Xj c.
Xj c.
Xj c.
Xj c.
Xj c.

Xj c.
Xj c.

Xj c.
Xj c.

api </ W s: package- nane>

api . util </wW s: package- nane>

api . i npl.s2j</w s: package- nane>
reader </ W s: package- nane>
reader.internalizer</w s: package-

r eader.
r eader.

dt d</ wl s: package- nane>
dt d. bi ndi nfo</W s: package-

r eader.
r eader.

rel axng</ w s: package- nane>
gbi nd</ W s: package- nane>

47

Using Metro

nane>

<W s:

<W s:

package- nane>com

package- nane>com

w s: package- nane>

nane>

<W s:

<W s:

package- nane>com

package- nane>com

w s: package- nane>

nane>

<W s:
<W s:
<W s:

<W s:
<W s:

package- nane>com
package- nane>com
package- nane>com

package- nane>com
package- nane>com

w s: package- nane>

nane>

nane>

nane>

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

<W s:

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

package- nane>com

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>or g.
package- nane>or g.
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.

sun. t ool s. xj c. reader. xm schenma</ W s: package-
sun. tool s. xj c. reader. xm schema. bi ndi nf o</

sun. t ool s. xj c. reader. xm schema. ct </ W s: package-
sun. t ool s. xj c. reader . xm schema. par ser </

sun. tool s. xj c.outline</w s: package- nane>
sun. t ool s. xj c. gener at or. bean</ W s: package- nanme>
sun. tool s. xj c. generator. bean. fi el d</w s: package-

sun.tool s. xjc.generator.util </wW s: package- name>
sun. t ool s. xj c. generat or. annot ati on. spec</

sun.tool s.xjc.util </wW s: package- nane>

sun.tool s.xjc.witer</w s: package- nane>

sun. tool s. xj c. runtine</w s: package- nane>

sun. t ool s. xj c. addon. sync</w s: package- nane>
sun. t ool s. xj c. addon. | ocat or </ W s: package- nane>
sun. t ool s. xj c. addon. at _gener at ed</ w s: package-

sun. t ool s. xj c. addon. code_i nj ect or</ W s: package-

sun. t ool s. xj c. addon. accessor s</ W s: package- nane>
sun. t ool s. xj c. addon. epi sode</w s: package- nane>
sun. t ool s. xj c. nodel </ W s: package- name>

sun. t ool s. xj c. nodel . nav</w s: package- nane>

sun. xm . xsom par ser</w s: package- name>

sun. xm . xsom uti | </w s: package- nane>

sun. xm . xsom vi sitor</w s: package- nane>

sun. xm . xsom i npl . par ser </ W s: package- nane>

sun. xm . xsom i npl . parser. st at e</ W s: package-

sun. xm . xsom i npl </ W s: package- nane>

sun. xm . xsom i npl . scd</w s: package- nane>
sun. xm . xsominpl.util </wW s: package- nane>
sun. xm . xsonx/ W s: package- nane>

rel axng. dat at ype</ W s: package- nane>

rel axng. dat at ype. hel per s</w s: package- nanme>
sun. codenodel </ W s: package- nane>

sun. codenodel . writer</w s: package- nane>

sun. codenodel . util </ W s: package- nane>

sun. codenodel . f mt </ W s: package- nane>

kohsuke. rngom ast . bui | der </ W s: package- nane>
kohsuke. rngom ast . onx/ W s: package- nane>
kohsuke. rngom ast . util </ w s: package- nane>
kohsuke. rngom bi nary</w s: package- nane>
kohsuke. rngom bi nary. vi sitor</w s: package- nane>
kohsuke. rngom di gest ed</ w s: package- nane>
kohsuke. rngom dt. buil ti n</ W s: package- nane>
kohsuke. rngom dt </ W s: package- nane>

kohsuke. rngom nc</ W s: package- nane>

kohsuke. rngom par se. conpact </ W s: package- nanme>
kohsuke. rngom par se</ w s: package- nane>
kohsuke. rngom par se. host </ W s: package- nanme>
kohsuke. rngom par se. xm </ W s: package- nane>
kohsuke. rngom uti | </ w s: package- nane>
kohsuke. rngom xm . sax</w s: package- nane>
kohsuke. rngom xm . uti | </ w s: package- nane>

48

Using Metro

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

package- nane>com sun. xni .

package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- nane>or g.
package- name>com
package- name>com
package- name>com
package- name>com
package- name>com
package- name>com
package- name>com
package- name>com
<w s: package- nane>com
<w s: package- nane>com
w s: package- nanme>
<w s: package- nane>com
w s: package- nanme>
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<w s: package- nane>com
<wl s: package- nane>or g.
<wl s: package- nane>or g.
name>
<wl s: package- nane>or g.
w s: package- nanme>
<wl s: package- nane>or g.
<wl s: package- nane>or g.
<wl s: package- nane>or g.
name>
<wl s: package- nane>or g.
w s: package- nanme>
<wl s: package- nanme>j akart a.
name>
<wl s: package- name>j akart a.
<wl s: package- nanme>j akart a.
<wl s: package- name>j akart a.

t ool
t ool
t ool
t ool
t ool
t ool
xm .
xm .
xm .
xm .

sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun. xm .
xm .
xm .
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
Wst X
ctc. wstx
ctc. wstx
gl assfis
gl assfis

sun.
sun.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.
ctc.

gl assfis

S
S
S

gl assfi
gl assfi
gl assfi

gl assfis

xm .
xm .

xm .
xm .

dt dpar ser </ W s: package- nane>

package- nane>com sun. i st ack. t ool s</ W s: package- nane>
codehaus.
codehaus.
codehaus.
codehaus.
codehaus.
codehaus.
codehaus.
codehaus.
codehaus.
codehaus.
codehaus.

st ax2</w s: package- nane>

st ax2. evt </ w s: package- nane>
stax2.io</wW s: package- name>

st ax2. osgi </ W s: package- nane>
stax2.ri</wW s: package- name>
stax2.ri.donx/w s: package- nane>
stax2.ri.evt</w s: package- nane>
stax2.ri.typed</w s: package- nane>
st ax2.typed</ W s: package- nane>
stax2. util </w s: package- nane>
stax2. val i dati on</ W s: package- nane>
s.jxc</wW s: package- name>
s.jxc.api.inpl.j2s</wW s: package- nane>
s.j xc. api </wW s: package- nane>

s.j xc.ap</W s: package- nane>

s.j xc. gen. config</w s: package- nane>

s.j xc. model . nav</ W s: package- nanme>

ws. pol i cy</w s: package- nane>

ws. pol i cy. subj ect </ W s: package- nane>

ws. pol i cy. sour cenpdel </ W s: package- name>
ws. pol i cy. sour cenpdel . wspol i cy</

ws. pol i cy. sour cenpdel . att ach</

ws. pol i cy. spi </ W s: package- nane>

ws. policy.privateutil </wW s: package- name>
. api </ W s: package- nane>

.cfg</w s: package- nane>

. conpat </ W s: package- name>
. donx/ W s: package- nane>
.dtd</w s: package- nane>
.ent</w s: package- nane>
.evt</w s: package- nane>
. exc</w s: package- nanme>
.io</wW s: package- nane>

. mev</ W s: package- nane>
. 0sgi </ W s: package- nane>
. sax</Ww s: package- nanme>

. sr</w s: package- nane>

. st ax</w s: package- nane>
. sw</ W s: package- nane>

.util </w s: package- nane>

h. ext ernal . amx</ w s: package- nane>

h. ext ernal . probe. provi der </ w s: package-
h. ext ernal . probe. provi der. annot ati ons</
h. ext ernal . arc</w s: package- nane>

h. external .statistics</w s: package- nane>
h.external .statistics.inpl</ws:package-
h. external .statistics.annotations</

bi nd. annot ati on. adapt er s</ W s: package-

bi nd. annot ati on</w s: package- nane>

bi nd. att achment </ wl s: package- nane>

bi nd</ w s: package- nane>

49

Using Metro

<wW s: package- nanme>j akarta. xm . bi nd. hel per s</w s: package- name>
<wW s: package- nanme>j akarta. xm . bi nd. util </w s: package- nane>
<wl s: package- name>com sun. xm . bi nd. api </ W s: package- nane>
<wW s: package- name>com sun. xm . bi nd</ W s: package- nane>
<w s: package- name>com sun. xm . bi nd. util </ w s: package- nane>
<wW s: package- name>com sun. xm . bi nd. v2</w s: package- nane>
<wW s: package- name>com sun. xm . bi nd. v2. util </ W s: package- name>
<wl s: package- name>com sun. xm . bi nd. v2. byt ecode</ w s: package- nane>
<wW s: package- name>com sun. xm . bi nd. v2. runti me</w s: package- nane>
<wl s: package- name>com sun. xnl . bi nd. v2. runti me. property</w s: package-
name>
<wl s: package- name>com sun. xm . bi nd. v2. runti ne. out put </ W s: package-
name>
<wW s: package- name>com sun. xm . bi nd. v2. runti me. refl ect </ w s: package-
name>
<w s: package- name>com sun. xm . bi nd. v2. runti me.refl ect. opt </
w s: package- nane>
<wW s: package- name>com sun. xm . bi nd. v2. runti me. unmar shal | er </
w s: package- nane>
<wl s: package- name>com sun. xnl . bi nd. v2. nodel . i npl </ W s: package- nane>
<w s: package- name>com sun. xm . bi nd. v2. nodel . runti ne</w s: package- nane>
<w s: package- name>com sun. xn . bi nd. v2. nodel . annot ati on</ w s: package-
name>
<wl s: package- name>com sun. xnl . bi nd. v2. schemagen</w s: package- nanme>
<wW s: package- name>com sun. xn . bi nd. v2. schemagen. xm schema</
w s: package- nane>
<w s: package- name>com sun. xm . bi nd. unmar shal | er </ w s: package- nane>
<wW s: package- name>com sun. xm . bi nd. mar shal | er </ W s: package- nane>
<w s: package- name>com sun. xm . st ream buf f er </ W s: package- nane>
<w s: package- name>com sun. xm . stream buf f er. sax</ w s: package- nane>
<wW s: package- name>com sun. xm . stream buf f er. st ax</ W s: package- nane>
<wl s: package- nane>j akart a. xm . soap</ W s: package- nane>
<wl s: package- name>com sun. xnm . ws. spi </ W s: package- nane>
<wl s: package- name>com sun. xm . ws. spi . db</ w s: package- nane>
<wl s: package- name>com sun. xm . ws. addr essi ng</ w s: package- nane>
<wl s: package- name>com sun. xnm . ws. addr essi ng. v200408</ W s: package- nanme>
<w s: package- name>com sun. xnl . ws. addr essi ng. pol i cy</ W s: package- nane>
<wl s: package- name>com sun. xm . ws. addr essi ng. nodel </ W s: package- nane>
<w s: package- name>com sun. xnl . ws. or g. obj ect web. asn</ Wl s: package- nane>
<wl s: package- name>com sun. xn . ws. api </ W s: package- nane>
<wl s: package- name>com sun. xnl . ws. api . addr essi ng</ W s: package- nanme>
<wl s: package- name>com sun. xm . ws. api . st reanm ng</w s: package- nane>
<wl s: package- name>com sun. xm . ws. api . cl i ent </ w s: package- nane>
<wl s: package- name>com sun. xn . ws. api . fasti nf oset </ W s: package- nane>
<w s: package- name>com sun. xnm . ws. api . wsdl . wri ter</w s: package- nane>
<wl s: package- name>com sun. xn . ws. api . wsdl . par ser </ W s: package- nane>
<wl s: package- name>com sun. xnm . ws. api . pol i cy. subj ect </ W s: package- name>
<wl s: package- name>com sun. xm . ws. api . pol i cy</w s: package- nane>
<wl s: package- name>com sun. xnl . ws. api . pi pe</w s: package- nane>
<wl s: package- name>com sun. xnl . ws. api . pi pe. hel per</w s: package- nane>
<wl s: package- name>com sun. xn . ws. api . handl er </ W s: package- nane>
<wl s: package- name>com sun. xnl . ws. api . dat abi ndi ng</ W s: package- nane>
<wl s: package- name>com sun. xnm . ws. api . ha</ wl s: package- nane>
<wl s: package- name>com sun. xm . ws. api . confi g. managenent . pol i cy</
w s: package- nane>
<wl s: package- nane>com sun. xni .
name>
<wl s: package- nane>com sun. xni .
<wl s: package- nane>com sun. xni .
<wl s: package- nane>com sun. xni .

.api . config. managenment </ Wl s: package-

.api . server</w s: package- nane>
. api . message</w s: package- nane>
. api . message. saaj </ W s: package- nanme>

555 5 bboobbOOODODOOOODDDD DB D

50

Using Metro

nane>

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

<W s:

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

package- nane>com

w s: package- nane>

<W s:

package- nane>com

w s: package- nane>

<W s:

package- nane>com

w s: package- nane>

<W s:

package- nane>com

w s: package- nane>

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

w s: package- nane>

nane>

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.

sun.

sun.

sun.

sun.

sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.

sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.
sun.

xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .

xm .

xm .

xm .

xm .

xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .

xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .
xm .

55555 5 b b b bobobEIOIOODDD B

. api

. message. streanx/w s: package- name>
. api . nodel . soap</w s: package- nanme>
. api . nodel . wsdl </ W s: package- nanme>
. api . nodel </ W s: package- nane>

. stream ng</ W s: package- nane>
.client</wW s: package- name>
.client.dispatch</w s: package- nane>
.client.sei</wWs: package- nane>

. bi ndi ng</ W s: package- nane>
.fault</wW s: package- nane>

.wsdl </ W s: package- nane>

.wsdl . writer</w s: package- nane>
.wsdl . writer.docunment</w s: package-
.wsdl . writer.docurment. soapl2</

.wsdl . writer. docunent. soap</

.wsdl . writer. docunent. http</

.wsdl . writer. docunent. xsd</

.wsdl . parser</w s: package- nane>

.assenbl er </ W s: package- nane>
.assenbl er. dev</ W s: package- nane>
.assenbl er. j axws</ w s: package- nane>
. devel oper </ W s: package- nane>

ws</ W s: package- nane>

trhoobhbbobbbbODDDDD DDDDDDDD D

. policy.jaxws. spi </W s: package- nanme>
. policy.jaxws</w s: package- nane>
.util </w s: package- nane>

.util.xm </w s: package- nane>
.util.exception</w s: package- name>
.util.pipe</W s: package- name>

. handl er </ w s: package- nane>
.runtinme.config</w s: package- name>
.config. managenent . pol i cy</

.config.metro. dev</wW s: package- name>
.config.metro.util </wW s: package- nane>
.server</w s: package- name>

.server. sei </w s: package- nane>
.server. provi der</w s: package- nane>
. dunp</w s: package- nane>

. db</W s: package- name>

. db. gl assfi sh</w s: package- nane>

. message</w s: package- nane>

. message. sour ce</ W s: package- nane>

. message. saaj </ W s: package- nane>

. message. j axb</w s: package- nane>

. message. streanx/w s: package- nane>

. model </ W s: package- nane>

. model . soap</Ww s: package- nane>

. model . wsdl </ W s: package- nane>
.comons. xm util </ w s: package- nane>
.transport</w s: package- nane>
.transport. http</w s: package- name>
.transport. http.client</w s: package-

51

Using Metro

<W s:
nane>
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
nane>
<W s:
<W s:
<W s:

package- nane>com

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

package- nane>com
package- nane>com
package- nane>com

w s: package- nane>

<W s:

<W s:
nane>

<W s:
nane>

<W s:

package- nane>com
package- nane>com

package- nane>com

package- nane>com

w s: package- nane>

<W s:
nane>

<W s:
nane>

<W s:

package- nane>com
package- nane>com

package- nane>com

w s: package- nane>

<W s:
<W s:
<W s:
nane>
<W s:
<W s:
<W s:
<W s:
<W s:
nane>
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

</ prefer-application-packages>

package- nane>com
package- nane>com
package- nane>com

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com
package- nane>com

sun.

sun.
sun.
sun.
sun.
sun.
sun.

sun.
sun.

xm

xm . ws
xm . ws
xm . ws
xm . ws
L WS,
ws
ws
ws
xm

xm

xm .

xm .
xm .

oracl e.

oracl e.
oracl e.

oracl e.

oracl e.

oracl e.

sun.

sun.

sun.
sun.
sun.

sun.
sun.
sun.
sun.
sun.

sun.
sun.
sun.
sun.
sun.
sun.
sun.

xm

xm .

xm .
xm .
xm .

xm .
xm .
xm .
xm .
xm .

xm .

. WS

web
web

web
web
web
RS
ws
ws
ws
ws
bi
bi
bi
bi
bi

bi

.transport. http.server</w s: package-

.resources</ W s: package- nane>
.protocol.xm </w s: package- nane>

. protocol . soap</W s: package- nane>
.encodi ng</w s: package- nane>

encodi ng. xm </ W s: package- name>

. encodi ng. soap. streani ng</ W s: package-

. encodi ng. soap</ W s: package- nane>
. encodi ng. pol i cy</ W s: package- nane>
ns. webservi ces. j axws_dat abi ndi ng</

servi ces. api </ W s: package- nane>
servi ces. api . dat abi ndi ng</w s: package-

servi ces. api . nessage</ W s: package-
services.inpl.internal spi.encodi ng</
servi ces. i npl . encodi ng</ W s: package-
.encodi ng. fasti nfoset</wW s: package-
.transport. httpspi.servlet</

. devel oper. servl et </ W s: package- nane>
.server.servl et </w s: package- nane>
.transport. http.servl et</wW s: package-
nd. api . i mpl </ wl s: package- nane>

nd. v2. nodel . core</ W s: package- nane>
nd. v2. nodel . util </ W s: package- nane>
nd. v2. nodel . nav</ w s: package- nane>

nd. v2. schenagen. epi sode</ W s: package-

nd. annot ati on</ W s: package- name>

i stack.l ocalization</w s: package- nane>
i stack</w s: package- nane>

i stack. | oggi ng</ W s: package- nane>

xm .t xw2</w s: package- nane>

xm . t xw2. out put </ W s: package- nane>

xm . t Xw2. annot at i on</w s: package- nane>

<w s: prefer-application-resources>
<wl s: resour ce- nane>META- | NF/ servi ces/j avax. xm . stream *</
W s: resour ce- nane>
<wl s: resour ce- nane>META- | NF/ servi ces/jakarta. xm . ws. *</w s: resour ce-

nane>

<wl s: resour ce- nane>META- | NF/ servi ces/jakarta. xn . bi nd. *</
W s: resour ce- nane>
<wl s: resour ce- nane>META- | NF/ servi ces/jakarta. xn . soap. *</
W s: resour ce- nane>
<w s: resource- nanme>META- | NF/ servi ces/ com sun. xnl . ws. *</w s: resour ce-

nane>

<w s: resour ce- nane>META- | NF/ servi ces/ com sun. t ool s. ws. *</
W s: resour ce- nane>
<wl s: resour ce- nane>META- | NF/ servi ces/ com sun. tool s. xjc. *</
W s: resour ce- nane>

52

Using Metro

nane>

nane>

<w s: resour ce- nanme>META- | NF/ servi ces/ com or acl e. webservi ces. *</
W s: resour ce- nane>
<wl s: resour ce- nane>META- | NF/ servi ces/ org. rel xng. *</w s: resour ce- nane>

<wl s: resource-nane>com sun. xm

<W s:

<W s:

resour ce- nane>com

resour ce- nane>com

W s: resour ce- nane>

nane>

nane>

nane>

<W s:

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

<W s:
<W s:
<W s:
<W s:

<W s:

resour ce- nane>com

resour ce- nane>com
resour ce- nane>com
resour ce- nane>com
resour ce- nane>com
resour ce- nane>com
resour ce- nane>com

sun. xm .

sun. xm .

sun. xm .

.fastinfoset.resources.*</w s:resource-

messagi ng. saaj . util.*</w s: resource-

nmessagi ng. saaj . client. p2p. *</

messagi ng. saaj . soap. *</w s: resour ce-

sun. tool s. ws. *</W s: resour ce- nane>

sun.tool s. xjc.*</w s: resource- nane>

sun. xm . xsom *</w s: resour ce- nane>

sun. xm . xsom i npl . parser. *</w s: resour ce- nanme>
sun.tool s.jxc.*</w s: resource- nane>

ws. policy.privateutil.*</w s:resource-

sun. xm .

resour ce- name>j akarta. xm .

resour ce- nane>com
resour ce- nane>com
resour ce- nane>com

resour ce- nane>com

W s: resour ce- nane>

nane>

nane>

</w s: prefer-application-resources>

<W s:

<W s:

<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:
<W s:

resour ce- nane>com

resour ce- nane>com

resour ce- nane>com
resour ce- nane>com
resour ce- nane>com
resour ce- nane>com

</ W s: webl ogi c-appl i cati on>

sun. xm .
sun. xm .
sun. xm .

sun. xm .
sun. xm .
sun. xm .
sun. xm .
sun. xm .

sun. xm .
sun. xm .

bi
bi
bi
bi
bi
bi

bi

nd.
nd.
nd.
nd.
nd.
nd.

nd.

*</wW s: resource-nane>

api . *</w s: resour ce- nanme>
v2.runtine.*</w s: resource- nane>
v2. nmodel . i npl.*</wW s: resource-
v2. nodel . annot ati on. *</

v2. schemagen. *</w s: resour ce-

unmar shal l er. *</w s: resour ce-

ws. util.*</w s:resource-nane>

WS. resources. *</w s: resour ce- nane>
bi nd. v2. *</wW s: resour ce- nane>

bi nd. marshal | er. *</w s: resour ce- nane>
r esour ce- name>conpl exType. rng</w s: r esour ce- nane>

resour ce- name>el enent . rng</w s: r esour ce- nane>

resour ce- nanme>si npl eType. rng</w s: resour ce- nane>

resour ce- name>nodel Group. rng</w s: resour ce- nane>

r esour ce- name>xnl schena. rng</ W s: r esour ce- nane>
resource-name>attri bute.rng</w s: resource- nane>

resour ce- nanme>i ncl ude. rng</w s: r esour ce- nane>

. Make surethewebser vi ces- *. j ar filesareplaced inthe APP- | NF/ | i b directory.

. Make sure any Metro classes you are overriding are placed in the APP- | NF/ cl asses directory.

. Hereisthedirectory structure of the WAR file:

o META- I NF/

V\EB- | NF/

META- 1 NF/ MANI FEST. MF

WEB- | NF/ web. xmi

VEEB- | NF/ sun-j axws. xm

53

Using Metro

e VEEB- | NF/ webl ogi c. xm

* VEB- | NF/ et r 0. xmi

o VEB- | NF/ wsdl /

o VEEB- | NF/ wsdl / AddNunber s. wsdl
* \EB- | NF/ cl asses/

* VEB- | NF/ cl asses/*

7. IncludeaVEEB- | NF\ webl ogi c. xm filewiththepr ef er - web- i nf - cl asses entry tooverride
the System class |oader classes with the onesin the WEB- | NF\ | i b directory:

<?xm version="1.0" encodi ng="UTF-8"?>
<webl ogi c-web-app xm ns="http://ww. bea. conl ns/ webl ogi ¢/ 90" >
<cont ai ner - descri ptor>
<pref er-web-inf-classes>true</prefer-web-inf-classes>
</ cont ai ner - descri pt or >
</ webl ogi c- web- app>

2.9.1.1. Known Issues

1. Make sure your web. xm file does not include the <di spl ay- nane> and <descri pti on> el-
ements under <ser vl et > element because they are not supported in the following 2.4 or 2.5 Web
Deployment Descriptor XSDs:

« http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd
* http://java.sun.com/xml/ng/javaee/web-app 2 5.xsd

Weblogic will throw this schema validation error if they are present:

Message icon - Error VALIDATI ON PROBLEMS WERE FOUND probl em
cvc-conpl ex-type. 2. 4a: Expected el enents
"servlet-class@ttp://java. sun.com xm / ns/j avaee
jsp-file@ttp://java.sun.com xm /ns/javaee' instead of
"display-name@ttp://java. sun. comf xm / ns/j avaee' here in el ement
servlet@ttp://java. sun.com xm / ns/javaee: <nul | > probl em cvc-conpl ex-
type. 2. 4a:

Expected el ements 'servlet-class@ttp://java.sun.con xm /ns/javaee
jsp-file@ttp://java.sun.com xm /ns/javaee' instead of
"description@ttp://java.sun.conlxm/ns/javaee' here in el ement
servlet@ttp://java. sun.com xm / ns/javaee: <nul | >

2. Make sure any Oneway methods/ operationsin your service implementation class have the @neway
annotation in order to avoid thisNul | Poi nt er Excepti on:

com sun. xm . ws. transport. http. servl et. WsSer vl et Cont ext Li st ener
contextlnitialized
SEVERE: WSSERVLET11: failed to parse runtinme descriptor:
java.l ang. Nul | Poi nt er Excepti on
java.l ang. Nul | Poi nt er Excepti on
at
com sun. xm . ws. nodel . JavaMet hodl npl . freeze(JavaMet hodl npl . j ava: 375)
at
com sun. xm . ws. nodel . Abst r act SEl Model | npl . freeze(Abst ract SEI Model | npl

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd

Using Metro

3. If you're getting an exception similar to the following one, ex-
tract the contents of the file MemberSubmissionEndpointReferencezip [down-
load/MemberSubmissionEndpointReference.zip] into the APP-I NF/ cl asses directo-
ry in the EAR (subclasses Menber Subm ssi onEndpoi nt Ref er ence. Addr ess
and Menber Subm ssi onEndpoi nt Ref erence. El enents have been annotated with
@mM Type(nane="el enent s",
nanespace=Menber Submni ssi onEndpoi nt Ref er ence. MBNS) and
@mM Type(nanme="addr ess",
nanmespace=Menber Submni ssi onEndpoi nt Ref erence. MSNS) respectively and recom-
piled). Make sure to preserve the hierarchy of the file (all classes from the file should be located in the
directory APP- | NF/ cl asses/ conf sun/ xm / ws/ devel oper/).

com sun. xm . ws. transport. http. servl et. WsSer vl et Del egat e doGet
SEVERE: caught throwabl e
java.l ang. ExceptionlnlnitializerError
at
com sun. xm . ws. api . addr essi ng. WSEndpoi nt Ref er ence. t oSpec(WSEndpoi nt Ref er ence. j ava: 637)
at
comsun. xm . ws. rx. rmruntinme. Server Tube. handl eCr eat eSequenceActi on(Server Tube. j ava: 334)
at
comsun. xm . ws.rx.rmruntine. Server Tube. processPr ot ocol Message(Server Tube. j ava: 302)
at
comsun. xm . ws. rx.rmruntinme. Server Tube. processRequest (Server Tube. j ava: 169)
at com sun. xnl . ws. api . pi pe. Fi ber. __doRun(Fi ber.java: 641)
at com sun. xm . ws. api . pi pe. Fi ber._doRun(Fi ber.java: 600)
at com sun. xm . ws. api . pi pe. Fi ber. doRun(Fi ber.j ava: 585)
at com sun. xnl . ws. api . pi pe. Fi ber. runSync(Fi ber.java: 482)
at com sun. xnl . ws. server. WsEndpoi nt | npl
$2. process(WSEndpoi nt | npl . j ava: 314)
at comsun.xnl .ws.transport. http. Htt pAdapt er
$Ht t pTool ki t. handl e(Ht t pAdapt er. j ava: 608)
at
com sun. xm . ws. transport. http. H t pAdapt er. handl e(Ht t pAdapt er. j ava: 259)
at
com sun. xm .
at
com sun. xm .
at
com sun. xm .
at
com sun. xm . ws. transport. http. servlet. WsServl et. doPost (WsSer vl et . j ava: 80)
at jakarta.servlet.http. HtpServlet.service(HtpServlet.java: 751)
at jakarta.servlet.http. HtpServlet.service(HtpServlet.java: 844)
at webl ogic.servlet.internal.StubSecurityHel per
$Ser vl et Servi ceAction. run(StubSecurityHel per.java: 242)
at webl ogic.servlet.internal.StubSecurityHel per
$Ser vl et Servi ceAction. run(StubSecurityHel per.java: 216)

55555

.transport. http.servlet. Servl et Adapt er. i nvokeAsync(Servl et Adapter. java: 213

.transport. http.servlet.WsSer vl et Del egat e. doGet (WESer vl et Del egat e. j ava: 159

5 5 &

.transport. http.servlet.WSer vl et Del egat e. doPost (W5Ser vl et Del egat e. j ava: 19

at

webl ogi c. servl et.internal.StubSecurityHel per.invokeServl et (StubSecurityHel per.java: 132)
at

webl ogi c. servl et.internal . Servl et Stubl npl . execut e(Servl et Stubl npl . j ava: 352)
at

webl ogi c. servl et.internal. Servl et Stubl npl.execute(ServletStublnpl.java: 235)
at webl ogi c. servl et.internal . WbAppSer vl et Cont ext
$Servl et I nvocati onActi on. w apRun(WebAppSer vl et Cont ext . j ava: 3284)
at webl ogi c. servl et.internal . WbAppSer vl et Cont ext
$Servl et I nvocati onActi on. run(WebAppSer vl et Cont ext . j ava: 3254)

55

download/MemberSubmissionEndpointReference.zip
download/MemberSubmissionEndpointReference.zip
download/MemberSubmissionEndpointReference.zip

Using Metro

webl ogi ?t security.acl.internal.AuthenticatedSubject. doAs(Aut henti cat edSubj ect.j ava: 321)
webl ogi ?t security.service. SecurityManager.runAs(SecurityMnager.java: 120)
webl ogi ?t servl et. provi der. WsSubj ect Handl e. run(W sSubj ect Handl e. j ava: 57)
webl ogi ?t servl et.internal . WebAppSer vl et Cont ext . doSecur edExecut e(WebAppSer vl et Cont ext . j av
webl ogi ?t servl et.internal . WebAppSer vl et Cont ext . secur edExecut e(WebAppSer vl et Cont ext . j ava:
webl ogi ?t servl et.internal . WebAppSer vl et Cont ext . execut e(WWebAppSer vl et Cont ext . j ava: 2074)

at

webl ogi c. servl et.internal . Servl et Request | npl . run(Servl et Request | npl . j ava: 1512)
at webl ogi c. servl et. provi der. Cont ai ner Support Provi der | npl
$W sRequest Execut or. run(Cont ai ner Support Provi der | npl . j ava: 254)
at webl ogi c. wor k. Execut eThr ead. execut e(Execut eThr ead. j ava: 256)
at webl ogi c. wor k. Execut eThr ead. run(Execut eThr ead. j ava: 221)
Caused by: jakarta.xm .ws. \WbServi ceException: Error creating JAXBCont ext
for WBCEndpoi nt Ref er ence.
at com sun. xnl . ws. spi . Providerl npl $2. run(Provi derl npl . j ava: 266)
at com sun. xnl . ws. spi . Providerl npl $2. run(Provi derl npl . j ava: 262)
at java.security.AccessController.doPrivil eged(Native Method)
at
com sun. xm . ws. spi . Provi der | npl . get EPRJaxbCont ext (Provi der | npl . j ava: 261)
at com sun. xm . ws. spi.Providerlnpl.<clinit>(Providerlnpl.java: 95)

34 nore
Caused by: com sun.xm .bind.v2. runtine. ||l egal Annot ati onsException: 2
counts of Il egal Annotati onExceptions

Two cl asses have the same XML type nanme "address". Use @Xm Type.nanme and
@ Type. namespace to assign different names to them
this problemis related to the follow ng | ocation:

at
com sun. xm . ws. devel oper. Menber Subm ssi onEndpoi nt Ref er ence$Addr ess
at public

com sun. xm . ws. devel oper. Menber Submi ssi onEndpoi nt Ref er ence$Addr ess
com sun. xm . ws. devel oper. Menber Submi ssi onEndpoi nt Ref er ence. addr ess
at
com sun. xm . ws. devel oper . Menber Submi ssi onEndpoi nt Ref er ence
this problemis related to the follow ng | ocation:
at jakarta.xm .ws.wsaddressi ng. WBCEndpoi nt Ref er ence$Addr ess
at private jakarta.xm .ws.wsaddressi ng. WBCEndpoi nt Ref er ence
$Address jakarta.xm .ws. wsaddressi ng. WBCEndpoi nt Ref er ence. addr ess
at jakarta.xm .ws.wsaddressi ng. WBCEndpoi nt Ref er ence
Two cl asses have the same XM. type nanme "el ements". Use @Xml Type. name and
@ Type. namespace to assign different names to them
this problemis related to the follow ng | ocation:

at
com sun. xm . ws. devel oper. Menber Subm ssi onEndpoi nt Ref er ence$El enent s
at public

com sun. xm . ws. devel oper. Menber Subm ssi onEndpoi nt Ref er ence$El enent s
com sun. xm . ws. devel oper. Menber Subm ssi onEndpoi nt Ref er ence. ref erenceProperties
at
com sun. xm . ws. devel oper . Menber Submi ssi onEndpoi nt Ref er ence
this problemis related to the follow ng | ocation:
at jakarta.xm .ws.wsaddressi ng. WBCEndpoi nt Ref er ence
$El enent s
at private jakarta.xnm .ws.wsaddressi ng. WBCEndpoi nt Ref er ence
$El enent s
jakarta.xm . ws. wsaddr essi ng. WBCEndpoi nt Ref erence. ref erencePar anet ers

56

Using Metro

at jakarta.xm .ws.wsaddressi ng. WBCEndpoi nt Ref er ence

at com sun. xnl . bind.v2. runtine. ||| egal Annotati onsException
$Bui | der. check(I11 egal Annot ati onsExcepti on.java: 106)
at
com sun. xm . bi nd. v2. runti nme. JAXBCont ext | npl . get Typel nf 0Set (JAXBCont ext | npl . j ava: 466)
at
com sun. xm . bi nd. v2. runti ne. JAXBCont ext | npl . <i ni t >(JAXBCont ext | npl . j ava: 298)
at

com sun. xm . bi nd. v2. runti ne. JAXBCont ext | npl . <i ni t >(JAXBCont ext | npl . j ava: 141)

at com sun. xnl . bi nd. v2. runti me. JAXBCont ext | npl
$JAXBCont ext Bui | der. bui | d(JAXBCont ext | npl . j ava: 1157)

at

com sun. xm . bi nd. v2. Cont ext Fact ory. cr eat eCont ext (Cont ext Fact ory. j ava: 145)
at sun.reflect. NativeMet hodAccessorl npl.invokeO(Native Method)
at

sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . j ava: 57)
at

sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | npl . java: 43)
at java.lang.reflect.Method. i nvoke(Method. java: 601)
at

j akarta. xm . bi nd. Cont ext Fi nder. new nst ance(Cont ext Fi nder. j ava: 263)
at

j akarta. xm . bi nd. Cont ext Fi nder . new nst ance(Cont ext Fi nder. j ava: 250)
at jakarta.xnl.bind. Cont extFi nder. find(ContextFinder.java: 447)
at jakarta.xnl.bind. JAXBCont ext . newl nst ance(JAXBCont ext . j ava: 652)
at jakarta.xm . bind. JAXBCont ext . newl nst ance(JAXBCont ext . j ava: 599)
at com sun. xnl . ws. spi. Providerl npl $2. run(Provi derl npl . j ava: 264)

38 nore

2.10. Developing client application with locally
packaged WSDL

In the JAX-WS programming model, to develop a web services client you compile the deployed WSDL
using wsimport and then at runtime the same WSDL is used to determine binding information. The default
WSDL used can be determined by looking in the jakarta.xml.ws.Service subclass generated by wsimport.
Y ou can choose another location (network or local file directory) for the WSDL other than the one you
used wsimport with, for exampleif you do not want runtime accesses of the WSDL to go over the network
or if you want to edit a copy of the WSDL to work around some bug (dangerous but we do it sometimes).

There are the different ways in which you can provide the local WSDL information to the JAX-WS run-
time:

2.10.1. Service API to pass the WSDL information

Example 2.28. Sample service creation using local WSDL

URL baseUrl = client.MonService.class. get Resource(".");

URL url = new URL(baseUrl, "../SoapliM onltf8.svc.xm");

M onServi ce service = new MonService(url, new QNane("http://tenpuri.org/",
"M onftervice"));

| M oniTest proxy = service. getBasi cHtt pBi ndi ngl M oniTest () ;

String input="Hello Wrld";

byte[] response = proxy.echoStringAsBi nary(input);

57

Using Metro

2.10.2. Xml Catalog

» Create acatalog file

* META-INF/jax-ws-catalog.xml

Example 2.29. jax-ws-catalog.xml

<cat al og xm ns="urn: oasi s: names:tc:entity:xm ns: xm : cat al og"
prefer="systen >
<system system d="http://131. 107. 72. 15/ MTOM Ser vi ce_I ndi go/
Soaplim onmt f 8. svc?wsdl "
uri ="SoapliM omk f 8. svc. xm "/ >
</ cat al og>

» For details see the details on using catalog scheme [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/
docg/rel ease-documentati on.html#users-guide-catal og]

This works well but requires some work, such as composing the right catalog file then package it appro-
priately.

2.10.3. Using -wsdlLocation switch

There is another easy way to do it - just run wsimport with -wsdl L ocation switch and provide the WSDL
location value which isrelative to the generated Service class and provide the WSDL location value which
isrelative to the generated Service class and you need to put this WSDL file at this relative location.

Let us try to create a client for the NET 3.0 MTOM endpoint [http://131.107.72.15/
MTOM _Service Indigo/SoapllMtomUtf8.svc]. | am using Metro 1.0 [https://eclipse-eedj.github.io/
metro-wsit/1.0/].

Fire | save the .NET 30 MTOM WSDL [http://131.107.72.15/MTOM_Service Indigo/
Soapl1MtomUtf8.svcwsdl] locally then run wsimport giving the relative location to where you will pack-
age the wsdl with your application

Example 2.30. Sample wsimport command

wsi nport -keep -d build/classes -p client etc/SoapllMonkf8.svc.xm -
wsdl Location ../ SoapliM omltf 8. svc. xm

Note

Why istherelativelocationis../Soapl1MtomUtf8.svc.xml? Basically the generated Service will
be at build/classes/client location and | would copy this WSDL at build/classes, see option -d
and -p.

Here is excerpt from the generated MtomService class. Y ou can see how the wsdlL ocation value is gen-
erated inside it and is used internally to create the Service.

Example 2.31. MtomServicejava

/**
* This class was generated by the JAX-WS RI.

* JAX-WS Rl 2. 1. 2-hudson-53- SNAPSHOT
* Cenerated source version: 2.1

58

http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-catalog
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-catalog
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-catalog
http://131.107.72.15/MTOM_Service_Indigo/Soap11MtomUtf8.svc
http://131.107.72.15/MTOM_Service_Indigo/Soap11MtomUtf8.svc
http://131.107.72.15/MTOM_Service_Indigo/Soap11MtomUtf8.svc
https://eclipse-ee4j.github.io/metro-wsit/1.0/
https://eclipse-ee4j.github.io/metro-wsit/1.0/
https://eclipse-ee4j.github.io/metro-wsit/1.0/
http://131.107.72.15/MTOM_Service_Indigo/Soap11MtomUtf8.svc?wsdl
http://131.107.72.15/MTOM_Service_Indigo/Soap11MtomUtf8.svc?wsdl
http://131.107.72.15/MTOM_Service_Indigo/Soap11MtomUtf8.svc?wsdl

Using Metro

>/
@\ebServi ceCient(namre = "M onServi ce",
t ar get Nanespace = "http://tenpuri.org/",
"../SoapliMonlktf 8. svc. xm ")
public class Monftervice extends Service {

private final static URL MIOVSERVI CE_WSDL_LOCATI ON;
private final static Logger |ogger = Logger. getlLogger(client
. M onService. cl ass. get Nane());

static {

URLurl = null;

try {
URLbaseUr | ;
baseUrl = client.MonService.class. get Resource(".");
url = new URL(baseUrl, "../SoapllM omktf8.svc.xm");

} catch (Ml f ormnedURLException e) {
| ogger.warning("Failed to create URL for the wsdl Location: ." +

"./SoapliMomltf8.svc. xm");
| ogger . war ni ng(e. get Message());

}
MIOMSERVI CE_WSDL_LOCATI ON = url ;
}

public MonService() {
super (MTOVSERVI CE_WSDL_LOCATI ON,
new QNane("http://tempuri.org/", "MonService"));

Seed i ent.java below it invokesthe .NET 3.0 service. You may natice here that you dont need to
enable MTOM explicitly. Metro bring in .NET 3.0 interop thru WSIT and due to thisthe MTOM policy
assertions in the .NET 3.0 WSDL, it correctly interpreted and the IMtomTest port is configured with
MTOM enabled.

Example 2.32. MtomServicejava
package client;

i mport comsun.xm .ws.transport. http.client.HtpTransportPi pe;

/**

* Client that invokes .NET 3.0 MIOM endpoi nt using a | ocal wsdl
*/

public class Cient {

public static void main(String[] args) {

/l enbl e SOAP Message | oggi ng
Ht t pTransport Pi pe. dunp = true;

// Create | MonfTest proxy to invoke .NET 3.0 MIOM service

| M oniTfest proxy = new M onService().getBasi cH t pBi ndi ngl M onilest () ;
String input = "Hello Wrld";

byte[] response = proxy.echoStringAsBi nary(input);
Systemout.printin("Sent: " + input + ", Received: " + new String

59

Using Metro

(response));

}

Get the complete client bundle from here [downl oad/portable-client-withwsdl.zip] and see the enclosed
Readne. t xt for instructions on how to runiit.

2.11. How to invoke and endpoint by overriding
endpoint address in the WSDL

Often times there is need to override the endpoint address that is obtained from the WSDL referenced by
the generated Service class. Thisishow you can do this;

2.11.1. BindingProvider.ENDPOINT_ADDRESS_PROPERTY

You can use Bi ndi ngPr ovi der. ENDPOl NT_ADDRESS PROPERTY to set the endpoint address in
your client application code.

Example 2.33. Sample

// Create service and proxy fromthe generated Service class.
Hel | oServi ce service = new Hel | oService();

Hel | oPort proxy = service.getHelloPort();

((Bi ndi ngProvi der) proxy). get Request Cont ext (). put (Bi ndi ngProvi der
. ENDPO NT_ADDRESS _PROPERTY, "http://new endpoi nt address");

proxy.sayHell o("Hello World!");

2.11.2. Create Service using updated WSDL

In case you have access to the updated WSDL which has the right endpoint address, you
can simply create the Service using this WSDL and there will be no need to set the
Bi ndi ngPr ovi der . ENDPO NT__ADDRESS property.

Note

This updated WSDL must have the same wsdl:service and wsdl:port as in the original wsdl.
Otherwise you may get an error while creating the Service or Port.

Example 2.34. Sample

// Create service and proxy fromthe generated Service cl ass.

Hel | oServi ce service = new Hel | oServi ce(servi ceNane,
"“http://new endpoi nt address?wsdl ") ;

Hel | oPort proxy = service.getHelloPort();

proxy.sayHello("Hello World!");

2.12. Maintaining State in Web Services

These articles provide details on maintaing state with Eclipse Implementation of Jakarta XML Web Ser-
Vices.

60

download/portable-client-withwsdl.zip
download/portable-client-withwsdl.zip

Using Metro

2.13.

e Maintaining Session With JAX-WS [https://community.oracle.com/blogs/rama-
pulavarthi/2006/06/07/mai ntai ning-sessi on-jax-ws|

e Making it easier with @HttpSessionScope. [https://github.com/javaee/metro-jaxws-commons/tree/
master/http-session-scope]

e Transport neutral mechanism to maintain state [http://eclipse-eedj.github.io/metro-jax-ws/3.0.2/docs
rel ease-documentati on.html#users-guide-statef ul-webservice]

Fastinfoset

The Fast Infoset specification (ITU-T Rec. X.891 | ISO/IEC 24824-1) describes an open, standards-based
"binary XML" format that is based on the XML Information Set [http://www.w3.org/TR/xml-infoset/].
Metro supports this optimized encoding implementation. For ease of deployment, Eclipse | mplementation
of Jakarta XML Web Services also support aform of HTTP content negotiation that can be used to turn
on Fast Infoset during message exchanges. By default, the Fast Infoset encoding is turned off. For more
information on how to use this feature see the following section.

The XML Information Set specifiesthe result of parsing an XML document, referred to asan XML infoset
(or simply an infoset), and a glossary of terms to identify infoset components, referred to as information
itemsand properties. An XML infoset isan abstract model of theinformation stored in an XML document;
it establishes a separation between data and information in away that suits most common uses of XML.
In fact, severa of the concrete XML data models are defined by referring to XML infoset items and
their properties. For example, SOAP Version 1.2 [http://www.w3.0rg/TR/soapl2-partl/] makes use of this
abstraction to define the information in a SOAP message without ever referring to XML 1.X, and the
SOAP HTTP binding specificaly allows for alternative mediatypesthat "provide for at |east the transfer
of the SOAP XML Infoset".

The Fast Infoset specification isjointly standardized at the ITU-T and 1SO. The specification is available
to all ITU-T sector members and can also be obtained via the corresponding 1SO national body in your
location. These specifications recommend the use of the MIME type application/fastinfoset, which has
been approved by the Internet Engineering Steering Group (IESG) for documents serialized using this
format.

FI [https://github.com/eclipse-eedj/jaxb-fi] is an open-source project initiated by Sun Microsystems to
provide accessto afast, fully-featured and robust implementation of the Fast Infoset specification. Metro
employsthe basic Fast Infoset parsers and serializers available from that project.

2.13.1. Using FastIinfoset

Content negotiation is completely driven by the client and uses the standard HTTP headers Accept and
Cont ent - Type. Theinitial request isalways encoded in XML, but the client has the option of including
the MIME type application/fastinfoset as part of the HT TP Accept header list. If the request isreceived by
aFast Infoset-enabled service, the reply will be encoded in Fast Infoset. The remainder of the conversation
between the client and the service will also be encoded in Fast Infoset as long as the client continues to
use the same client object (e.g., the same stub instance) to converse with the server. We call this form
of negotiation pessimistic, in contrast to the optimistic case in which a client directly initiates a message
exchange using the more efficient encoding.

Content negotiation can be enabled in two different ways: (i) by setting a system property on the
VM used to run the client, and (ii) by setting a property on the proxy object. In either case,
both the property name and its value are identical. For Eclipse Metro, the name of the proper-
ty is com sun. xm . ws. cl i ent. Cont ent Negoti ati on. In either case, the accepted proper-
ty values are none (the default) and pessimistic, optimistic. Note that due to JDK repackaging, if

61

https://community.oracle.com/blogs/ramapulavarthi/2006/06/07/maintaining-session-jax-ws
https://community.oracle.com/blogs/ramapulavarthi/2006/06/07/maintaining-session-jax-ws
https://community.oracle.com/blogs/ramapulavarthi/2006/06/07/maintaining-session-jax-ws
https://github.com/javaee/metro-jaxws-commons/tree/master/http-session-scope
https://github.com/javaee/metro-jaxws-commons/tree/master/http-session-scope
https://github.com/javaee/metro-jaxws-commons/tree/master/http-session-scope
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-stateful-webservice
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-stateful-webservice
http://eclipse-ee4j.github.io/metro-jax-ws/3.0.2/docs/release-documentation.html#users-guide-stateful-webservice
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
https://github.com/eclipse-ee4j/jaxb-fi
https://github.com/eclipse-ee4j/jaxb-fi

Using Metro

2.14

you are using JAX-WS implementation directly from JDK you need to use this property name:
comsun. xm .internal.ws.client.ContentNegotiation.

Example 2.35. Enabling Fastlnfoset by configuring proxy

/1 Enabling FI in pessimstic node
Map<String, Ooject> ctxt = ((Bindi ngProvider)proxy).get Request Cont ext ();
ctxt. put ("com sun. xm .ws. client. ContentNegotiation", "pessimstic");

java -Dcom sun. xm . ws. client. Cont ent Negoti ati on=pessim stic ...

High Availability Support in Metro

Starting with the Metro 2.1 release [https://eclipse-eedj.github.io/metro-wsit/2.1/] Metro officialy sup-
portsdeployment in clustered environment configurationsincluding the support for stateful Metro features,
namely Reliable Messaging (see High Availability Support in Reliable Messaging for limitations), Secure
Conversation, Security NONCE Manager and Stateful Web Services. Currently this support istested with
and limited to the GlassFish [https://eclipse-eedj.github.io/glassfish/] Application Server.

Clustering support in Metro is automatic, which means that once configured and enabled in the container,
there is no extra configuration required on the Metro side to enable Metro High Availability support. The
d assFish Metro d ue Modul e that is responsible for Metro - GlassFish integration does all
the necessary configuration automatically during the Metro module initialization by injecting the required
configuration information into the Metro runtime using a private API contract.

For more information on configuring Clustering environment in GlassFish, please consult the Glass-
Fish [https://eclipse-eedj.github.io/glassfish/] Application Server User Guide or watch this very compre-
hensible basic screencast [http://www.youtube.com/user/GlassFishVideos#p/c/1808040BD 1409BF0/3/
LDjXjm9_Q5A] or another amore recent screen cast [http://www.youtube.com/user/GlassFishVideost#p/
fl0/xSIiZHKJLOh4] available at The GlassFish YouTube Channel [http://www.youtube.com/user/Glass-
FishVideos].

62

https://eclipse-ee4j.github.io/metro-wsit/2.1/
https://eclipse-ee4j.github.io/metro-wsit/2.1/
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
http://www.youtube.com/user/GlassFishVideos#p/c/1808040BD1409BF0/3/LDjXjm9_Q5A
http://www.youtube.com/user/GlassFishVideos#p/c/1808040BD1409BF0/3/LDjXjm9_Q5A
http://www.youtube.com/user/GlassFishVideos#p/c/1808040BD1409BF0/3/LDjXjm9_Q5A
http://www.youtube.com/user/GlassFishVideos#p/c/1808040BD1409BF0/3/LDjXjm9_Q5A
http://www.youtube.com/user/GlassFishVideos#p/f/0/xSiZHKJLOh4
http://www.youtube.com/user/GlassFishVideos#p/f/0/xSiZHKJLOh4
http://www.youtube.com/user/GlassFishVideos#p/f/0/xSiZHKJLOh4
http://www.youtube.com/user/GlassFishVideos
http://www.youtube.com/user/GlassFishVideos
http://www.youtube.com/user/GlassFishVideos

Chapter 3. Compiling WSDL

Table of Contents

3.1. Compiling multiple WSDLSs that share a common schemacoooviiiiiiiiiinees 63
3.2. Dealing with schemas that are Not referenCedoooeiiiiiiiii e 64
3.3. Customizing XML Schema binNdingcoouiiiuiiiiii e 64

3.3.1. How to get simple and better typed bindingcoooiiiiiii 64
3.4. Generating Javadocs from WSDL doCUMENLaLiONceuuiieniiiieeiieeei e 65
3.5. Passing Java Compiler options t0 WSIMPOITieuniiiiiiiiiee e e 67

3.1. Compiling multiple WSDLs that share a
common schema

Occasionally, aserver will expose multiple services that share common schema types. Perhaps the " com-
mon schematypes' are from an industry-standard schema, or perhaps the server was developed by a Ja-
vafirst web servicetoolkit and the services all use the same Java classes as parameter/return values. When
compiling such aWSDL, it's desirable for the shared portion to produce the same Java classes to avoid
duplicates. There are two waysto do this.

The easy way isfor you to compile al the WSDL s into the same package:

$ wsinport -p org.acne.foo first.wsdl
$ wsinport -p org.acne.foo second. wsd

The Java classes that correspond to the common part will be overwritten multiple times, but since they
are identical, in the end this will produce the desired result. If the common part is separated into its
own namespace, you can use a Jakarta XML Binding customization [https:.//eclipse-eedj.github.io/jaxb-ri/
doc/user-guide/ch03.html#customi zati on-of -schema-compil ati on-customi zing-j ava-packages] so that the
common part will go to the overwritten package while everything else will get its own package.

$ cat common. j axb
<bi ndi ngs xm ns="http://java. sun. coni xm / ns/jaxb" version="2.1">
<bi ndi ngs scd="x-schema::tns" xmns:tns="http://comon. schenma. ns/">
<schenmaBi ndi ngs>
<package nane="org. acne. f oo. comrmon" />
</ schemaBi ndi ngs>
</ bi ndi ngs>
</ bi ndi ngs>
$ wsinmport -p org.acnme.foo.first first.wsdl -b common.jaxb
$ wsinmport -p org.acne.foo.second second.wsdl -b conmmon.jaxb

Y ou can a so compile the schema upfront by xjc, then use its episode file [https://community.oracle.com/
blogs/kohsuke/2006/09/05/separate-compilation-jaxb-ri-21] when later invoking wsimport. For this to
work, the common schema needs to have a URL that you can passinto xjc. If the schemaisinlined inside
the WSDL, you'll have to pull it out into a separate file.

$ xj c -epi sode common. epi sode common. xsd
$ wsinmport wsdl -that-uses-comon-schema. wsdl -b common. epi sode

Thiswill cause wsimport to refer to classes that are generated from XJC earlier.

For more discussion on this, please see this forum thread [http://forums.java.net/jivelthread.jspa?threa-
diD=28673].

63

https://eclipse-ee4j.github.io/jaxb-ri/doc/user-guide/ch03.html#customization-of-schema-compilation-customizing-java-packages
https://eclipse-ee4j.github.io/jaxb-ri/doc/user-guide/ch03.html#customization-of-schema-compilation-customizing-java-packages
https://eclipse-ee4j.github.io/jaxb-ri/doc/user-guide/ch03.html#customization-of-schema-compilation-customizing-java-packages
https://community.oracle.com/blogs/kohsuke/2006/09/05/separate-compilation-jaxb-ri-21
https://community.oracle.com/blogs/kohsuke/2006/09/05/separate-compilation-jaxb-ri-21
https://community.oracle.com/blogs/kohsuke/2006/09/05/separate-compilation-jaxb-ri-21
http://forums.java.net/jive/thread.jspa?threadID=28673
http://forums.java.net/jive/thread.jspa?threadID=28673
http://forums.java.net/jive/thread.jspa?threadID=28673

Compiling WSDL

3.2. Dealing with schemas that are not refer-
enced

Because of ambiguity inthe XML Schema spec, some WSDL s are published that reference other schemas
without specifying their locations. This happens most commonly with the reference to the schema for
XML Schema, like this:

Example 3.1. Location-lessreferenceto a schema

<l-- notice there's no schenaLocation attribute -->
<xs:inport nanespace="http://ww. w3. org/ 2001/ XM_Schema" />

When you run wsimport with such a schema, this is what happens:

$ wsimport SecureConversati on. wsdl

[ERROR] undefined el enent declaration 'xs:schena'

line 1 of http://131.107.72.15/Security_WsSecurity_Service_I ndi go/
WSSecur eConver sat i on. svc?xsd=xsd0

To fix this, two things need to be done:

1. Run wsimport with the -b option and pass the URL/path of the actual schema (in the case of XML
Schema, it's here [http://www.w3.0rg/2001/XML Schemaxsd]. This is to provide the real resolvable
schema for the missing schema.

2. For the schema for Schema, potential name conflicts may arise. This was discussed here at length
[http://forums.java.net/jivelthread.jspa?messagel D=205301] and a Jakarta XML Binding customiza-
tion [http://webl ogs.java.net/bl og/kohsuke/archive/20070228/xsd.xjb] has been created to resolve such
conflicts.

So your wsimport command will be:

$ wsinmport -b http://ww. w3. org/ 2001/ XM_Schema. xsd -b customni zation.xjb
Secur eConver sati on. wsdl

Y ou can do the same with NetBeans 5.5.1 by providing local copies of these schema and customization
files. If you are facing thisissue try it and let us know if you have any problems.

3.3. Customizing XML Schema binding
3.3.1. How to get simple and better typed binding

wsimport internally uses XJC tool from Eclipse Implementation of JAXB to achive XML Schemato Java
binding. The default behaviour is strictly as per Jakarta XML Binding specification. However it does not
work for everyone, for exampleif you want to map xs:anyURI to java.net.URI instead of java.lang.String
(default mapping).

ThereisaJakarta XML Binding global customization that can help you achieve these tasks:
 Eliminating JAXBElements as much as possible

 Giving you a better, more typed binding in general

 Using plural property names where applicable

<?xm version="1.0" encodi ng="UTF- 8" ?>

64

http://www.w3.org/2001/XMLSchema.xsd
http://www.w3.org/2001/XMLSchema.xsd
http://forums.java.net/jive/thread.jspa?messageID=205301
http://forums.java.net/jive/thread.jspa?messageID=205301
http://weblogs.java.net/blog/kohsuke/archive/20070228/xsd.xjb
http://weblogs.java.net/blog/kohsuke/archive/20070228/xsd.xjb
http://weblogs.java.net/blog/kohsuke/archive/20070228/xsd.xjb

Compiling WSDL

<j axb: bi ndi ngs
xm ns:jaxb="http://java. sun. coni xm / ns/jaxb" jaxb:version="2.0"
xm ns: xjc= "http://java. sun. coni xm / ns/jaxb/xj c"

j axb: ext ensi onBi ndi ngPrefi xes="xj ¢c">

<j axb: gl obal Bi ndi ngs>
<xjc:sinmple />
</ j axb: gl obal Bi ndi ngs>
</ j axb: bi ndi ngs>
Then simply run your wsimport and pass this binding customization file
wsi nport -p mypackage -keep -b sinple.xjb myservice.wsd

See Kohsuke's blog [https://community.oracle.com/peopl e/kohsuke/bl og/2007/01/23/using-jaxb-ris-sim-
pler-and-better-binding-mode-jax-ws] for more details.

3.4. Generating Javadocs from WSDL docu-
mentation

wsimport can map the documentation inside the WSDL that can map as corresponding Javadoc on the
generated classes. The documentation insidethe WSDL should be done using standard WSDL 1.1 element:
<wsdl:documentation>.

It is important to note that not everythign in the WSDL maps to Java class, the table below shows
wsdl:documentation to Javadoc mapping for various WSDL compoenentsthat correspond to the generated
Java class.

Table3.1. wsdl : docunent at i on to Javadoc mapping

WSDL documentation (wsdl:documentation) Javadoc

wsdl:portType AsaJavadoc on the generated Service Endpoint In-
terface (SEI) class

wsdl:portType/wsdl:operation As a Javadoc on the corresponding method of the
generated SEI class

wsdl:service As aJavadoc on the generated Service class

wsdl:service/wsdlport AsaJavadoc on the generated getX'Y ZPort() meth-
ods of the Service class

L et us see a sample wsdl with documentation and the generated Java classes:

Example 3.2. WSDL with documentation

<wsdl : port Type name="Hel | oWorl| d" >
<wsdl : docunment ati on>This is a sinple Hell owrld service.
</ wsdl : docunent ati on>
<wsdl : operati on nanme="echo">
<wsdl : docunent ati on>Thi s operation sinply echoes back whatever it
recei ves
</ wsdl : docunent ati on>
<wsdl : i nput nessage="tns: echoRequest"/>
<wsdl : out put nessage="tns: echoResponse"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>

65

https://community.oracle.com/people/kohsuke/blog/2007/01/23/using-jaxb-ris-simpler-and-better-binding-mode-jax-ws
https://community.oracle.com/people/kohsuke/blog/2007/01/23/using-jaxb-ris-simpler-and-better-binding-mode-jax-ws
https://community.oracle.com/people/kohsuke/blog/2007/01/23/using-jaxb-ris-simpler-and-better-binding-mode-jax-ws

Compiling WSDL

<servi ce nane="Hel | oServi ce">
<wsdl : docunentati on>This is a sinple Hell oWwrld service.
</ wsdl : docunent ati on>
<port nanme="Hel | oWorl dPort" bi ndi ng="tns: Hel | oWor | dBi ndi ng" >
<wsdl : docurment ati on>A SOAP 1.1 port</wsdl:docunentation>
<soap: address | ocation="http://|ocal host/Hel | oService"/>
</ port>
</ service>

In the above WSDL the documentation is mentioned using standard WSDL 1.1 element:
<wsdl:documentation>. Running wsimport on this will generate Javadoc on the SEI and Service class.

Example 3.3. Generated SEI - HellowWorld.java
/**

* This is a sinple Hell oWwrld service.
*
* This class was generated by the JAX-WS RI.
* JAX-WS Rl 2.1.3-11/27/ 2007 02: 44 PMvi vekp) -
* Cenerated source version: 2.1
*
>/
@\ebServi ce(nane = "Hel | oWorl d",
t ar get Nanespace = "http://exanpl e.com wsdl ")
@Xm SeeAl so({
oj ect Factory. cl ass
})

public interface HelloWrld {

/**

* This operation sinply echoes back whatever it receives
*
* @aramreqlnfo
* @eturn
* returns java.lang. String
>/
@\bMet hod
@\ébResul t (nanme = "respl nfo",
t ar get Nanespace = "http://exanpl e.com types")
@Request W apper (| ocal Nane = "echo",
t ar get Nanespace = "http://exanpl e.com types"”,
cl assName = "sanpl e. EchoType")

@ResponseW apper (| ocal Nanme = "echoResponse”,
t ar get Nanespace = "http://exanpl e.com types"”,
cl assNane = "sanpl e. EchoResponseType")

public String echo(
@\ebPar anm(nane = "reql nfo",
t ar get Nanespace = "http://exanpl e.com types")
String reqlnfo);

}
Example 3.4. Generated Service class HelloworldServicejava

/**

* This is a sinple Hell owrld service.
* This class was generated by the JAX-WS RI.
* JAX-WS Rl 2.1.3-11/27/ 2007 02: 44 PM vi vekp) -

66

Compiling WSDL

* Generated source version: 2.1
*
*/
@\ébServi ceCient(name = "Hell oService",
t ar get Nanespace = "http://exanpl e.com wsdl ",
wsdl Location = "file:/C:/issues/wsdl/sanple.wsdl")
public class HelloService
extends Service

{

private final static URL HELLOSERVI CE_WSDL_LOCATI ON;
private final static Logger |ogger =
Logger. get Logger (sanpl e. Hel | oSer vi ce. cl ass. get Nane()) ;

static {

URL url = null;

try {
URL baseUrl ;
baseUr|l = sanpl e. Hel | oServi ce. cl ass. get Resource(".");
url = new URL(baseUrl, "file:/C:/issues/wsdl/sanple. wsdl");

} catch (Ml f ormedURLException e) {
| ogger.warning("Failed to create URL for the wsdl Location: " +

""file:/C/issues/wsdl/sanple.wsdl', " +

"retrying as a local file");
| ogger . war ni ng(e. get Message());

}
HELLOSERVI CE_WSDL_LOCATI ON = url ;
}

public Hell oService(URL wsdl Locati on, QNane servi ceNane) ({
super (wsdl Locati on, servi ceNane);
}

public HelloService() {
super (HELLOSERVI CE_WSDL_LOCATI ON,
new QNane("http://exanpl e.comwsdl ", "HelloService"));
}

/**

* A SOAP 1.1 port

*

* @eturn
* returns HelloWrld
*/

@\ebEndpoi nt (nane = "Hel | oWor | dPort")
public Hell oWsrld getHelloWwrldPort() {
return super.getPort(
new QNane("http://exanple.comwsdl ", "HelloWwrldPort"),
Hel | oWorl d. cl ass);

}

3.5. Passing Java Compiler options to Wsim-
port

wsimport invokes Javac to compile the generated classes. Thereis no option currently to pass any options
to the compiler. Y ou can use -Xnocompile option of wsimport to not compile the generated classes. But,
this would require you to compile the generated sources separately in your project.

67

Compiling WSDL

Note

This would be useful, if you are developing the Web service/Client on JDK 6 and you want to
deploy it on JDK 5. Since there is no option to pass Javac tool option "-target 1.5" directly, you
can use -Xnocompile option of wsimport and further compile it yourself.

68

Chapter 4. SOAP

Table of Contents

A1 SOAP NBATEIS ...t 69
4.1.1. Adding SOAP headers when sending reqQUESESoooveviieiiiiiiieeeiii e 69
4.1.2. Accessing SOAP headers for inCOMING MESSA0ESuuevvrvineiiiieeieiiine e 70
4.1.3. Adding SOAP headers when sending repli€Soooiviiiiiiiiiiiicc e 70
4.1.4. Mapping additional WSDL headers to method parameterscooeviveviiiiiieiiiiinneees 70

4.2, SChema Validationuueieiiiei ettt et e 71
4.2.1. Server Side SChema Validationcc.uuiiiiiiiiiei e 72
4.2.2. Client Side SChema Validationccoeuuiiiiiiiii e 72

4.1. SOAP headers

When the WSDL you are compiling specifies that some parts of a message are bound to SOAP headers,
wsi nport generatestheright stuff (@ébPar am(header =t r ue)), so you can pass headers as argu-
ments to the method invocation. When starting from Java, you can use this same annotation to indicate
that some parameters be sent as headers.

That said, there are many WSDL s out there that do not specify SOAP headers explicitly, yet the protocol
still requires such headers to be sent, so the Eclipse Implementation of Jakarta XML Web Services offers
convenient ways for you to send/receive additional headers at runtime.

4.1.1. Adding SOAP headers when sending requests

The portable way of doing thisis that you create a SOAPHandl er and mess with Jakarta SOAP with
Attachments, but the Eclipse |mplementation of Jakarta XML Web Services provides abetter way of doing
this.

When you create a proxy or dispatch object, they implement Bi ndi ngPr ovi der interface. When
you use the Eclipse Implementation of Jakarta XML Web Services, you can downcast to WEBi ndi ng-
Pr ovi der which defines a few more methods provided only by the Eclipse Implementation of Jakarta
XML Web Services.

Thisinterface lets you set an arbitrary number of Header object, each representing a SOAP header. You
can implement it on your own if you want, but most likely you'd use one of the factory methods defined
on Header s classto create one.

Example 4.1. Adding custom headers
i mport com sun. xm . ws. devel oper . WEBi ndi ngPr ovi der;

Hel | oPort port = hell oService.getHelloPort(); // or something like that...
WEBi ndi ngProvi der bp = (WBBi ndi ngProvi der) port;

bp. set Qut boundHeader (
/1 sinmple string value as a header,
/'l 1ike <sinpleHeader>stringVal ue</si npl eHeader >
Headers. creat e(new QNane("si npl eHeader"), "stringVal ue"),

69

SOAP

4.1.2.

4.1.3.

4.1.4.

/1 create a header from JAXB obj ect
Headers. creat e(j axbCont ext, nyJaxbQbj ect)
)

Once set, it will take effect on all the successive methods. If you'd like to see more factory methods on
Headers, please let us know.

Accessing SOAP headers for incoming messages

Server can access al the SOAP headers of the incoming messages by using the
JAXWEPr oper ti es#l NBOUND_HEADER LI ST_PROPERTY property like this:

Example 4.2. Accessing incoming headers

@\ebService

public class FooService {
@Rresource
WebSer vi ceCont ext cont ext;

@\bMet hod
public void sayHell oTo(String name) {
Header Li st hl = context. get MessageCont ext (). get (JAXWEProperti es
. I NBOUND_HEADER LI ST_PROPERTY) ;
Header h = hl.get (MYHEADER) ;

}

private static final Qane MYHEADER = new QNane("nyNsUri", "nyHeader");
}

Clients can similarly access all the SOAP headers of the incoming messages:

Example 4.3. Accessing incoming headers
Hel | oPort port = helloService.getHelloPort(); // or sonething like that...
port.sayHel | oTo("duke");
Header Li st hl = port.get ResponseCont ext (). get (JAXWSProperties
. 1 NBOUND_HEADER LI ST_PROPERTY) ;
Header h = hl.get (MYHEADER) ;

Seethe Header interface for more details about how to access the header values.

Adding SOAP headers when sending replies

Servers tend to be developed "from-Java' style, so we feel the necessity of adding out-of-band headers
issmaller (you can just define headers as method @\bPar anm(node=0UT, header =t r ue) parame-
ters.) Therefore, currently there's no support for adding out-of-band SOAP headersinto response messages.

If you'd like us to improve on this front, please let us know.

Mapping additional WSDL headers to method pa-

rameters

Sometimes WSDL sin the binding section reference soap:header messages that are not part of the input or
output contract defined in the portType operation. For example:

70

SOAP

Example 4.4. Sample WSDL with additional header bindings

<message nhane="additi onal Header" >
<part name="additi onal Header" el ement="types: addi ti onal Header"/ >
</ nessage>

<wsdl : port Type name="Hel | oPort Type">
<wsdl : operation nane="echo">
<wsdl : i nput nmessage="tns: echoRequest"/>
<wsdl : out put nessage="t ns: echoResponse"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="Hel | oBi ndi ng" type="tns: Hel | oPort Type" >
<soap: bi ndi ng styl e="docunent"”
transport="http://schenmas. xm soap. org/ soap/ http"/>
<wsdl : operation nane="echo">
<soap: operation/ >
<wsdl : i nput >
<soap: body nmessage="tns: echoRequest"/>
<soap: header nessage="tns: addi ti onal Header"
part ="addi ti onal Header"/ >
</ wsdl : i nput >
<wsdl : out put >
<soap: body nmessage="tns: echoResponse"/>
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>

In the above schema in the wsdl:binding section tns:additionalHeader is bound but if you see this header
isnot part of the echo abstract contract (i.e., the wsdl:portType section). According to Jakarta XML Web
Services specification only thewsdl:part'sfrom the abstract portion are mapped to Javamethod parameters.

Running wsimport on this wsdl will generate this method signature:
wsi nport sanpl e. wsd

Example 4.5. Default mapping

public String echo(String request);

Note

wsimport has an option -XadditionalHeaders, this option will map such additional headers as
method parameters.

wsi nport - Xadditional Headers sanpl e. wsd

Example 4.6. WSDL to Java mapping with -XadditionalHeader s switch

public String echo(String request, String additional Header);

4.2. Schema Validation

SOAP messages are not validated against schemas by default with the Eclipse Implementation of Jakarta
XML Web Services. However, this can be enabled for doc/lit cases. The Eclipse Implementation of Jakar-
taXML Web Services uses JAXP's SchemaFactory [https://docs.oracle.com/javase/8/docs/api/javax/xml/
validation/SchemaFactory.html] API to do the validation.

71

https://docs.oracle.com/javase/8/docs/api/javax/xml/validation/SchemaFactory.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/validation/SchemaFactory.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/validation/SchemaFactory.html

SOAP

4.2.1. Server Side Schema Validation

The @chemaVal i dati on [https://github.com/eclipse-eedj/metro-jax-ws/blob/master/jaxws-ri/run-
time/rt/src/main/javalcom/sun/xml/ws/devel oper/SchemaValidation.java] annotation needs to be speci-
fied on the endpoint implementation to enable server side validation. Both the incoming SOAP request
and outgoing SOAP response will be validated, with exceptions returned to the client for any validation
errors that occur.

Example 4.7. Enabling Schema Validation for an Endpoint

i mport com sun. xm . ws. devel oper. SchemaVal i dati on;

@-chemaVal i dati on

@\ebServi ce
public class Hellolnml {
}

If a application wants to have complete control over validation error handling, it can set up
a Val i dati onError Handl er [https:/github.com/eclipse-eedj/metro-jax-ws/blob/master/jaxws-ri/
runtime/rt/src/main/javalcom/sun/xml/ws/devel oper/ValidationErrorHandl er.java) to receive notification
of errors. The handler has accessto the Packet [https.//github.com/eclipse-eedj/metro-jax-ws/blob/mas-
ter/jaxws-ri/runtime/rt/src/main/javalcom/sun/xml/ws/api/message/Packet.java] and can store any infor-
mation in its invocationProperties. These properties are accessible from the endpoint's MessageCon-
text.

Example 4.8. Customizing Schema Validation

@chemaVal i dati on(handl er = MyErrorHandl er. cl ass)

@\ebServi ce
public class Hellolnmpl {
}

i mport com sun. xm . ws. devel oper. Val i dati onError Handl er;
i mport org.xm .sax. SAXPar seExcepti on;
i mport org.xm .sax. SAXExcepti on;

public class M/ErrorHandl er extends Validati onErrorHandl er {
public void warni ng(SAXPar seException e) throws SAXException {
/1 Store warnings in the packet so that they can be retrieved
/1l fromthe endpoint
packet . i nvocati onProperties.put("error”, e);

}

public void error(SAXParseExcepti on e) throws SAXException {
t hrow e;

}

public void fatal Error(SAXParseException e) throws SAXException {
; /1 noop

}

}
4.2.2. Client Side Schema Validation

Proxy needsto be created with SchenaVal i dat i onFeat ur e [https.//github.com/eclipse-eedj/metro-
jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/javalcom/sun/xml/ws/

72

https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/SchemaValidation.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/SchemaValidation.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/SchemaValidation.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/ValidationErrorHandler.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/ValidationErrorHandler.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/ValidationErrorHandler.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/api/message/Packet.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/api/message/Packet.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/api/message/Packet.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/SchemaValidationFeature.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/SchemaValidationFeature.java
https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/SchemaValidationFeature.java

SOAP

developer/SchemaV alidationFeature.java] to enable client side validation. Both the outgoing SOAP re-
guest and incoming SOAP response will be validated.

Example 4.9. Enabling Proxy with Schema Validation

i mport com sun. xm . ws. devel oper. SchemaVal i dati onFeat ur e;

ScheraVal i dati onFeature feature = new SchemaVal i dati onFeature();
Hel | oPort port = new Hel |l oService. getHel | oPort (feature);
/1 Al'l invocations on this port are validated

If aclient application wantsto have complete control over validation error handling, it cansetupaVval i -
dat i onErr or Handl er toreceivenotification of errors. The handler has accessto the Packet and can
store any information in its invocationProperties. These properties are accessible from proxy's response
context.

Example 4.10. Customizing Schema Validation

SchenaVal i dati onFeature feature =

new SchemaVal i dati onFeat ure(MyError Handl er. cl ass) ;
Hel | oPort port = new Hel | oService. getHel | oPort (feature);
/1 Al'l invocations on this port will be validated

73

https://github.com/eclipse-ee4j/metro-jax-ws/blob/master/jaxws-ri/runtime/rt/src/main/java/com/sun/xml/ws/developer/SchemaValidationFeature.java

Chapter 5. HTTP

Table of Contents

B.L HTTP NEAOENS ..ottt ettt e e e e e 74
5.1.1. Sending HTTP headers 0N FeQUESEiiiiiiieiiii e 74
5.1.2. Accessing HTTP headers of the reSpoNnSeuuvviiiiiiieiiiii e 74

5.2, HTTP COMPIESSION ...iiitiiee ettt e et e e et e e e e et e e e e et e e e e et e e e e eba s 75

B3 HT TP COOKIES ...ttt ettt et e et e et eeeaa s 75
5.3.1. Enabling COOKI@ SUPPOITuuuiiiiiiieieiie ettt e e 75
5.3.2. Accessing HTTP cookies in the reSPONSEccoeuuiiiiiiiieceiii e 76
5.3.3. Accessing HTTP COOKIeS 0N the SEIVESuuiiiiiiiiiiiii e 76

5.4. HTTP client Streaming SUPPONT ... eeeeee ettt ettt e ettt e ettt e e et e e et e e e eeaa e e eeeens 76

5.5. Access HTTP headers in a Handleroooovuniiiiiiii e 76
55.1. From Client Side handleroooiiiiiii e 76
5.5.2. From Server side handler 7

B5.6. HTTP TIMEOULSeeeiti ettt e ettt e ettt e e e e et e e e e ebbneeeeabaeeeee 78

5.7. HTTP Persistent Connections (KEEP-aliVE)ceuuiiiiiiiiiiiiiiieiiiie e e 78

5.8. HTTPS HOSINAMEV EFTTIEN ...eiviiiiiiiii e 78

5.9. HTTPS SSLSOCKELFACIONY ...e.vvuieeiiiiie ettt et e e e e 79

5.10. HTTP address in soap:address and import [0CAHONSuveieriiiieiiiiine e 79

5.1. HTTP headers
5.1.1. Sending HTTP headers on request

5.1.2.

Client can set additionad HTTP headers for making a requests by using
MessageCont ext . HTTP_REQUEST HEADERS. See the following code for an example:

Example5.1. Sending HTTP headers

import java.util.Collections;
import jakarta.xm .ws. Bi ndi ngProvi der;
import jakarta.xm .ws. handl er. MessageCont ext ;

Hel | oPort port =...;
((Bi ndi ngProvi der) port).get Request Cont ext (). put (MessageCont ext

. HTTP_REQUEST_HEADERS, Col | ecti ons. si ngl et onMap
("X-dient-Version", Collections.singletonList("1.0-RC")));

/!l the header will be sent to all successive invocations
port.sayHel | oTo("duke");
port.sayHel | oTo("duke");

Note that the property takes Map<St ri ng, Li st <Stri ng>> asthetype.

Accessing HTTP headers of the response

Clients can access the HTTP headers of the response by using
MessageCont ext . HTTP_RESPONSE HEADERS. See the following code for example:

74

HTTP

Example5.2. Accessing HTTP headers

Hel | oPort port = ...;
port.sayHel | oTo("duke");

headers = (Map<String, List<String>>) ((BindingProvider) port)
. get ResponseCont ext () . get (MessageCont ext . HTTP_RESPONSE_HEADERS) ;

5.2. HTTP compression

HTTP supports compression of data at the transport level [http://www.websiteoptimization.com/speed/
tweak/compress/], which can substantially reduce the size of the data (at the expense of an additional CPU
load.)

When sending arequest to aserver, aclient can inform the server that it can receive compressed response
likethis:

Example 5.3. Request HTTP Compression

Map<String, List<String> httpHeaders = new HashMap<String, List<String>>();
ht t pHeader s. put (" Accept - Encodi ng", Col | ecti ons. si ngl et onLi st ("gzip"));
Map<String, Object> reqContext =

((bi ndi ngPr ovi der) proxy) . get Request Cont ext () ;
request Cont ext . put (MessageCont ext . HTTP_REQUEST_HEADERS, htt pHeaders);

Thisworkseven if the server isn't capable of doing compression; it will ssmply respond with uncompressed
response and it will work transparently.

If aclient knows that the server is capable of receiving a compressed request, it can send a compressed
request by adding one more HTTP header as follows:

Example 5.4. Sending Compressed Request

Map<String, List<String> httpHeaders = new HashMap<String, List<String>>();
ht t pHeader s. put (" Cont ent - Encodi ng", Col | ecti ons. singl etonList("gzip"));
htt pHeader s. put (" Accept - Encodi ng", Col |l ections. singl etonList("gzip"));
Map<String, oject> reqContext = ((bindingProvider) proxy)

. get Request Cont ext () ;
r equest Cont ext . put (MessageCont ext . HTTP_REQUEST HEADERS, htt pHeaders);

Note that this will fail if the server is incapable of dealing with compressed HTTP traffic. Most modern
HTTP servers understand it, but thisis not guaranteed.

5.3. HTTP cookies
5.3.1. Enabling cookie support

To enable cookie support, you need to enable the session property. This causes requests sent via the port
to use the same cookie jar, so if the server responds with a cookie, the next request will go out with those
cookies. This allows the server to use the normal session tracking mechanism like Ht t pSessi on.

Example5.5. Sending HTTP headers

Hel | oPort port = ...;
port. get Request Cont ext () . put (Bi ndi ngProvi der. SESSI ON_MAI NTAI N_PROPERTY, true) ;

75

http://www.websiteoptimization.com/speed/tweak/compress/
http://www.websiteoptimization.com/speed/tweak/compress/
http://www.websiteoptimization.com/speed/tweak/compress/

HTTP

5.3.2.

5.3.3.

Accessing HTTP cookies in the response

TODO

Accessing HTTP cookies on the server

When the web service is using servlets as the transport mechanism, you can use servlet's native support
for cookies [http://www.google.com/search?q=servlet+cookie]. See the following code to how to access
jakarta.servlet.http. H tpServl et Request from your service.

Example 5.6. Accessing cookies

class MyService {
@Resour ce
WebSer vi ceCont ext cont ext;

public void foo() {
Ht t pServl et Request rq = (HttpServl et Request) cont ext
. get MessageCont ext (). get (MessageCont ext . SERVLET _REQUEST) ;
Ht t pSer vl et Response rs = (H t pServl et Response) cont ext
. get MessageCont ext () . get (MessageCont ext . SERVLET _RESPONSE) ;

}

5.4. HTTP client streaming support

Jakarta XML Web Services uses Java SE's HitpURL Connection [https://docs.oracle.com/javase/8/docs/
api/javalnet/HttpURL Connection.html] to send requests to web service. By default, HttpURL Connec-
tion buffers the entire request before sending it on the wire. To enable HTTP streaming support,
one needs to enable setChunkedStreamingMode() [https://docs.oracle.com/javase/8/docs/api/javalnet/
HttpURL Connection.html#setChunkedStreamingM ode-int-] on the connection. The same thing can be
achieved by doing the following in Jakarta XML Web Services clients.

Example5.7. HTTP client streaming support

int chunkSize = ...;
Map<String, Ooject> ctxt = ((Bindi ngProvider)proxy). get Request Cont ext ();
ct xt. put (JAXWSPr operties. HTTP_CLI ENT_STREAM NG _CHUNK_SI ZE, chunkSi ze);

5.5. Access HTTP headers in a Handler

5.5.1.

HTTP headers can be accessed in aHandler. Here is how you can access the Content-Type HT TP header
inaHandler:

From Client side handler

HTTP headers can be accessed in a client side Handler in an incoming response. Here is Handler code
that demonstrates how to do this:

Example5.8. ClientHandler .java

public class dientHandl er inplenments SOAPHandl er <SOAPMessageCont ext > {
publ i ¢ bool ean handl eMessage(SOAPMessageCont ext context) {

76

http://www.google.com/search?q=servlet+cookie
http://www.google.com/search?q=servlet+cookie
http://www.google.com/search?q=servlet+cookie
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html#setChunkedStreamingMode-int-
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html#setChunkedStreamingMode-int-
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html#setChunkedStreamingMode-int-

HTTP

if (!(Bool ean) context.get(MessageCont ext
. MESSAGE_QOUTBOUND_PROPERTY)) {

Map<String, List<String>> map = (Map<String,
Li st<String>>) context.get(MessageCont ext
. HTTP_RESPONSE_HEADERS) ;

Li st<String> content Type = get HTTPHeader (map, "Content-Type");
if (contentType != null) {
StringBuffer strBuf = new StringBuffer();
for (String type : contentType) {
st rBuf . append(type);

}
Systemout. println("Content-Type:" + strBuf.toString());
}
}
return true;
}
private
@\ul | abl e

Li st <String> get HTTPHeader (Map<String, List<String>> headers,
String header) {
for (Map. Entry<String, List<String>> entry : headers.entrySet()) {
String nane = entry. getKey();
i f (nane. equal sl gnoreCase(header))
return entry. get Val ue();

}

return null;

}
5.5.2. From Server side handler

HTTP headers can be accessed in aserver side Handler on an incoming request. Here is Handler code that
demonstrates how to do this:

Example5.9. ServerHandler .java

public class ServerHandl er inplenments SOAPHandl er <SOAPMessageCont ext > {
publ i ¢ bool ean handl eMessage(SOAPMessageCont ext context) {

if (!(Bool ean) context.get(MessageCont ext
. MESSAGE_OUTBOUND_PROPERTY)) {

Map<String, List<String>> map = (Map<String,
Li st<String>>) context.get (MessageCont ext
. HTTP_REQUEST_HEADERS) ;

Li st<String> content Type = get HTTPHeader (map, "Content-Type");
if (contentType != null) {
StringBuffer strBuf = new StringBuffer();
for (String type : contentType) {
st rBuf . append(type);
}

Systemout.println("Content-Type:" + strBuf.toString());

77

HTTP

return true;

}
private
@\ul | abl e

Li st<String> get HTTPHeader (@ot Nul | Map<Stri ng,
Li st<String>> headers, @\otNull String header) {

for (Map. Entry<String, List<String>> entry : headers.entrySet()) {
String nane = entry. getKey();
i f (nane. equal sl gnoreCase(header))
return entry. get Val ue();

}

return null;

}

5.6. HTTP Timeouts

Jakarta XML Web Services uses Java SE's HttpURLConnection [https://docs.oracle.com/
javase/8/docdapi/javalnet/HttpURL Connection.html] to send requests to web services.
URLConnection offers setConnectTimeout() [https://docs.oracle.com/javase/8/docs/api/javalnet/
URL Connection.html#setConnectTimeout-int-] and setReadTimeout() [https://docs.oracle.com/javase/8/
docs/api/java/net/URL Connection.html#setRead Timeout-int-] methods so that clients can control connec-
tion timeouts. The same things can be achieved by doing the following in Jakarta XML Web Services
clients:

Example5.10. HTTP client timeouts

/| set Connect Ti neout ()

int timeout = ...;

Map<String, Qbject> ctxt = ((BindingProvider)proxy).getRequest Context();
ct xt. put (JAXWSPr operti es. CONNECT_TI MEQUT, ti meout);

/'l set ReadTi nmeout (

int timeout = ...;

Map<String, Qbject> ctxt = ((BindingProvider)proxy).getRequest Context();
ctxt.put ("com sun.xnm .ws.request.tineout”, tinmeout);

5.7. HTTP Persistent Connections (keep-alive)

Persistent connections improve performance by allowing the underlying socket connection to be reused
for multiple http requests. Jakarta XML Web Services uses Java SE's HttpURL Connection [https://
docs.oracle.com/javase/8/docs/api/java/net/HttpURL Connection.html] to send requests to web services.
HTTPkeep-alive behavior can be controlled by the http.keepAlive (default: true) and http.maxConnections
(default: 5) system properties. For more information, see Networking Properties [https.//docs.oracle.com/
javase/8/docs/technotes/guides/net/properties.html]

5.8. HTTPS HostnameVerifier

Jakarta XML Web Services uses Java SE's HttpsURLConnection [https://
docs.oracle.com/javase/8/docs/api/javax/net/ssl /HttpsURL Connection.html] to send requests
to web services that use the HTTPS transport. HttpsURL Connec-

78

https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setConnectTimeout-int-
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setConnectTimeout-int-
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setConnectTimeout-int-
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setReadTimeout-int-
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setReadTimeout-int-
https://docs.oracle.com/javase/8/docs/api/java/net/URLConnection.html#setReadTimeout-int-
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html

HTTP

tion offers a setHostnameVerifier() [https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
HttpsURL Connection.html#setDefaultHostnameV erifier-javax.net.ssl.HostnameV erifier-] method so that
the client's verification callback can be caled to determine whether a connection is alowed. The same
thing can be achieved by doing the following in Jakarta XML Web Services clients:

Example5.11. SSL Hostname Verification

Host NaneVeri fi er host NanmeVerifier = ...;

int tinmeout = ...;

Map<String, Ooject> ctxt = ((Bindi ngProvider)proxy).get Request Cont ext ();
ct xt. put (JAXWSPr operti es. HOSTNAMVE VERI FI ER, host NameVerifier);

5.9. HTTPS SSLSocketFactory

5.10.

Jakarta XML Web Services uses Java SE's HttpsURL Connection [https://docs.oracle.com/javase/8/docs/
api/javax/net/sdl/HttpsURL Connection.html] to send requests to web services that use HTTPS transport.
HttpsURL Connection offers setSSL SocketFactory() [https://docs.oracle.com/javase/8/docs/api/javax/net/
sdl/HttpsURL Connection.html#setSSL SocketFactory-javax.net.ssl.SSL SocketFactory-] method and that
factory is used when creating sockets for secure https URL connections. The same thing can be achieved
by doing the following in Jakarta XML Web Services clients:

Example5.12. HTTPS SSL SocketFactory

SSLSocket Fact ory ssl Socket Factory = ...;
Map<String, oject> ctxt = ((Bi ndi ngProvider) proxy). get Request Cont ext ();
ct xt. put (JAXWSPr operti es. SSL_SOCKET_FACTCRY, ssl Socket Factory);

HTTP address in soap:address and im-

port locations

A service may be hosted in a servlet container that is behind firewall/load balancer. Then a published
WSDL's soap:address, wsdl:import, xsd:import |ocations may point to theinternal address(not to the exter-
nal firewall/loadbalancer address). Metro uses the HttpServietRequest's getServerName() and getServer-
Port() to figure out the server's address and port respectively. Thisworksin many cases, but you may need
to configure the servlet container's server address in some cases.

» Thisissupported in GlassFish, by configuring "server-name” attribute of <http-listener>indomain.xml.
For example, set it to "http://firewall-host:firewall-port”

e Thisis supported in Tomcat, by using the "proxyName" and "proxyPort" attributes on <Connector>.
See tomcat configuration [http://tomcat.apache.org/tomcat-5.5-doc/proxy-howto.html]

79

https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html#setDefaultHostnameVerifier-javax.net.ssl.HostnameVerifier-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html#setDefaultHostnameVerifier-javax.net.ssl.HostnameVerifier-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html#setDefaultHostnameVerifier-javax.net.ssl.HostnameVerifier-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html#setSSLSocketFactory-javax.net.ssl.SSLSocketFactory-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html#setSSLSocketFactory-javax.net.ssl.SSLSocketFactory-
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/HttpsURLConnection.html#setSSLSocketFactory-javax.net.ssl.SSLSocketFactory-
http://tomcat.apache.org/tomcat-5.5-doc/proxy-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/proxy-howto.html

Chapter 6. Processing Large Data

Table of Contents

6.1. RecaiVing 1arge SOAP FEOUESESuuieieieii et et e e e e e e e s e e e e e e e et e e et e e e eenns 80
B.1.1. ProVider<MESSAgE™ . .ouvuiiie et e e e e 80
6.2. Binary AttaChmentS (MTOM) ...ouuuiiiiieii e e e e e e e e e an s 80
& 302280 Y L 1 T 80
6.2.2. ENabling MTOM ON SEIVENcuuuiiiiieiei e e s e e e e e e e e e e e e e e e e et e eeanaeees 83
6.2.3. Enabling MTOM 0N CHENEcouniiiicei e e e e e e e e eaeees 83
6.2.4. MTOM thresSholdoiiiiiiee e e et eees 83
6.2.5. .NET interoperabilityoeieiiiiiiii e e 84
G =0 oI AN 1o 1= P 84
B.3. 1. ClENE SIAE ..ot ettt e e et e et e e eaa e aee 85
B.3.2. SEIVEN SIOB ...t 85
LG TG T @0 o 11 = o o 86
6.3.4. Large AttaChments SUMMEIYcoouiiieiiii e ee e e e e e e e e e eanes 86

6.1. Receiving large SOAP requests

6.1.1.

Processing of large incoming SOA P requests can be made more efficient with some additional effort.

Provider<Message>

An implementation extension Provider<Message> [https.//community.oracle.com/people/kohsuke/
blog/2007/03/01/dispatch-and-provider] can be used to read an incoming SOAP message by using XML-
St r eamReader (among other things.) This allows you to read the SOAP message on-demand lazily,
without needing to buffer the whole message in memory.

See the relevant Eclipse implementation of JAXB users guide section [https://eclipse-eedj.github.io/jaxb-
ri/doc/user-guide/ch03.html#unmarshalling-dealing-with-large-documents] for how to combine Jakarta
XML Binding with such streaming processing.

6.2. Binary Attachments (MTOM)

6.2.1.

MTOM

MTOM [http://mww.w3.org/TR/soapl2-mtom/] (and XOP [http://www.w3.0org/TR/xopl0/]) allows you
to send and receive binary attachments (such asfiles and images) efficiently and in an interoperable man-
ner.

6.2.1.1. What is MTOM?

Perhaps the best way to understand the pros and cons of MTOM isto see an actual on-the-wire message.
See an example below:

Example 6.1. Sample MTOM message

Content-Type: Miltipart/Related; start-info="text/xm"; type="application/xop
+xm"; boundary="----= Part_0_1744155.1118953559416"

80

https://community.oracle.com/people/kohsuke/blog/2007/03/01/dispatch-and-provider
https://community.oracle.com/people/kohsuke/blog/2007/03/01/dispatch-and-provider
https://community.oracle.com/people/kohsuke/blog/2007/03/01/dispatch-and-provider
https://eclipse-ee4j.github.io/jaxb-ri/doc/user-guide/ch03.html#unmarshalling-dealing-with-large-documents
https://eclipse-ee4j.github.io/jaxb-ri/doc/user-guide/ch03.html#unmarshalling-dealing-with-large-documents
https://eclipse-ee4j.github.io/jaxb-ri/doc/user-guide/ch03.html#unmarshalling-dealing-with-large-documents
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/xop10/

Processing Large Data

Cont ent - Lengt h: 3453
SQAPActi on: ""

------ = Part_1 4558657. 1118953559446
Cont ent - Type: application/ xop+xm ; type="text/xm"; charset=utf-8

<S: Envel ope xm ns: S="http://schemas. xm soap. or g/ soap/ envel ope/ ">
<S: Body>
<Detail xm ns="http://exanple.org/ntonm data">
<i mage>
<xop: I ncl ude xm ns: xop="http://ww. w3. or g/ 2004/ 08/ xop/ i ncl ude"
hr ef ="ci d: 5aeaa450- 17f 0- 4484- h845- a8480c363444@xanpl e. org" />
</i mage>
</ Detail >
</ S: Body>
</ S: Envel ope>

------ = Part_1 4558657. 1118953559446
Cont ent - Type: i nmage/j peg
Content -1 D: <5aeaa450-17f 0- 4484- h845- a8480c363444@xanpl e. or g>

bi nary data ...
The noteworthy points are:

1. Thebinary attachment is packaged in aMIME multi-part message (the same mechanism used in e-mail
to handle attachments.)

2. An <xop:Include> element is used to mark where the binary datais.
3. The actua binary datais kept in a different MIME part.

MTOM is efficient, in the sense that it doesnt have the 33% size increase penalty that
Xs: base64Bi nary has. It isinteroperable, in the sense that it is a W3C standard. However, MIME
multipart incurs a small cost proportional to the number of attachments, so it is not suitable for a large
number of tiny attachments.

The schema that describes the above message is below. The MTOM spec is designed to work below the
XML infoset level, so the schemadescribestheimage asbeing of typexs: base64Bi nar y, eventhough
it can be attached as seen above. When using MTOM, any base64Binary can be attached or inlined.

Example 6.2. Schema

<el enment nane="Detail" type="types: Detail Type"/>
<conpl exType nane="Det ai | Type" >
<sequence>
<el erent nane="i mage" type="base64Bi nary" />
</ sequence>
</ conpl exType>

6.2.1.2. xmime:expectedContentType to Java type mapping

Schema elements of type xs: base64Bi nary or xs: hexBi nary can be annotated by using the
xmime:expectedContentType [http://mww.w3.org/TR/xml-media-types/] attribute to indicate the type of
binary that is expected. wsi npor t recognizes this annotation and will map the binary data to its proper

81

http://www.w3.org/TR/xml-media-types/
http://www.w3.org/TR/xml-media-types/

Processing Large Data

6.2.1.3.

Java representation instead. The table below is taken from Jakarta XML Binding spec Table 9-1, which
shows the mapping rules:

Table6.1. JAXB Mapping Rules

MIME Type Java Type

image/* java.awt.Image

text/plain javalang.String
application/xml, text/xml javax.xml.transform.Source
(others) jakarta.activation.DataHandl er

xmime:contentType attribute

The schema can further use the xmime:contentType [http://www.w3.0org/TR/xml-media-types/] at-
tribute to designate the actual content type of the binary data used in the message. (In contrast,
xm me: expect edCont ent Types specifies what are allowed. This combination allows you to say
"image/* is expected but this message contains image/jpeg".)

This attribute can be used with elements whose content is either xs: base64Bi nary or
xs: hexBi nary. Consider the following example:

Example 6.3. Using xmime:contentType
<el ement name="Test M onmXni meCont ent Type" type="types: Pi ctureType"/>

<conpl exType name="Pi ctureType">
<si npl eCont ent >
<restriction base="xm nme: base64Bi nary" >
<attribute ref="xnm me: content Type" use="required" />
</restriction>
</ si npl eCont ent >
</ conpl exType>

Herexm me: base64Bi nary isdefined by Describing Media Content of Binary Datain XML [http:/
www.w3.0rg/ TR/xml-media-types/#tschema]. The following code shows how your program can set the
MIME type to the generated beans:

Example 6.4. Setting content type

Pi ctureType req = new PictureType();
reg. set Val ue(nane. get Bytes());
reg. set Cont ent Type("application/ xm");

On the wire thisis how it |ooks:

Example 6.5. SOAP Message that uses xmime:contentType

<S: Envel ope xm ns: S="http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns: xsd="htt p://ww. wW3. or g/ 2001/ XM_Schenma"
xm ns:nsl="http://exanpl e.org/nton data"
xm ns: ns2="http://ww. w3. or g/ 2005/ 05/ xm m ne" >
<S: Body>
<nsl: Test M omXm neCont ent TypeResponse ns2: cont ent Type="appl i cation/xm ">
<xop: I ncl ude
xm ns: xop="http://ww. w3. or g/ 2004/ 08/ xop/ i ncl ude"

82

http://www.w3.org/TR/xml-media-types/
http://www.w3.org/TR/xml-media-types/
http://www.w3.org/TR/xml-media-types/#schema
http://www.w3.org/TR/xml-media-types/#schema
http://www.w3.org/TR/xml-media-types/#schema

Processing Large Data

6.2.3.

6.2.4.

href ="ci d: 193ed174- d313- 4325- 8eed- 16cc25595e4e@xanpl e. org"/ >
</ nsl: Test M onXm nmeCont ent TypeResponse>
</ S: Body>

</ S: Envel ope>

6.2.2. Enabling MTOM on server

There are several waysto enable MTOM.

1. By using the @M TOM annotation on SEI. Thisis convenience and preferable for developers.

3.

Example 6.6. Annotating SEI with @M TOM

@ akarta. xm . ws. soap. MTOM
@\ebServi ce
public class Hellolnpl inplements Hello {

}

By using the enabl e- nt omattribute in the sun-j axws. xm configuration file. This allows the
MTOM setting to be changed at deployment time.

Example 6.7. Enabling MTOM in sun-jaxws.xml

<endpoints xm ns="http://java. sun. comf xm /ns/jax-ws/ri/runtine'
version='2.0">
<endpoi nt name="M om' inpl enentati on="ntom server. Hellol npl"
url -pattern="/hell 0"
enabl e-nt om="true"/ >
</ endpoi nt s>

If you are using Eclipse Implementation of Jakarta XML Web Services via Spring, you can also enable
MTOM from the bean definition file. See the JAX-WS spring extension for more.

Enabling MTOM on client

There are several waysto enable MTOM.

1

By doing nothing. If the server WSDL advertises that it supports MTOM, the MTOM support in the
client will be automatically enabled. Thisisthe preferable way.

By passing MTOMFeat ur e as\WebSer vi ceFeat ur e parameter whilecreating apr oxy orabi s-
pat ch. See the example below:

Example 6.8. Passsng M TOM Feature

Hel | o port
Di spatch d

new Hel | oService(). get Hel | oPort (new MIOVFeat ure());
new Hel | oService().createDispatch(....,new MIOVFeature());

MTOM threshold

As discussed above, in rare situations where you have alot of tiny attachments, the overhead of MTOM
may outweigh the benefit of binary transfer. To cope with this situation, the Eclipse Implementation of
Jakarta XML Web Services supports the notion of "threshold" --- if an attachment is smaller than the
size specified in threshold, it will simply inline the binary data as base64 binary instead of making it an

83

Processing Large Data

attachment. Because of the way MTOM spec is designed, such inline vs attachment decision is handled
by the toolkits of both ends and will not harm the application running on both sides.

There are two ways to control the threshold:

1. By using the
com sun. xm . ws. devel oper. JAXWEPr operti es. MTOM THRESHOLD VALUE property
inthe Request Cont ext onthe client side and in the MessageCont ext on the server side.

2. By adding parameter to the @/TOMannotation, such as @UTOM t hr eshol d=3000)

3. By adding parameter to the MTOVFeat ur e object, such asnew MIOM 3000)

6.2.5. .NET interoperability
6.2.5.1. Using Metro distribution

MTOM support is fully interoperable with .NET clients and servers. If you are working with M etr o then
your MTOM solution as aendpoint or as client will work out of the box.

6.2.5.2. Using Eclipse Implementation of Jakarta XML Web Services
distribution
If you are using Eclipse Implementation of Jakarta XML Web Services distribution, MTOM interop
with .NET client or server will not work out of the box. The reason behind thisis that Eclipse Implemen-
tation of Jakarta XML Web Services does not have built in support for WS-Policy and .NET 3.0/.NET 3.5

looksfor an MTOM policy assertioninthe WSDL beforeturningon MTOM encoding. So, you will need to
turnit on explicitly on your .NET 3.0/3.5 or Eclipse Implementation of Jakarta XML Web Services client.

The MTOM policy assertion that .NET 3.0/.NET 35 understands is:
<wsoma: OptimizedMimeSerialization/>

6.2.5.2.1. JAX-WS RI endpoint and .NET client

Turn on MTOM explicitly on your .NET client using the WCF editor available with Visual Studio 2005.

6.2.5.2.2. Eclipse Implementation of Jakarta XML Web Services client and .NET
endpoint

Turn on MTOM on Eclipse Implementation of Jakarta XML Web Services client as defined above.

Hereisasample Metro MTOM endpoint [download/M etroMtomService.zip] and a.NET 3.0 client [down-
load/WCFMtomClient.zip].

6.3. Large Attachments

Eclipse Implementation of Jakarta XML Web Services provides support for sending and receiving large
attachments in a streaming fashion. Often times, large attachments need to be stored on the file system
sincethey cannot be kept in memory(limited by heap size). But in certain cases, streaming of attachmentsis
possible without ever storing the content on the file system. RI will try to stream the attachments whenever
it ispossible. Otherwise, it would store the large attachments on the file system.

The programming model is based on MTOM and DataHandler. Y ou want to send large data as a SOAP
attachment, see this section [Binary_Attachments MTOM __.html] for more details. Also you want to

84

download/MetroMtomService.zip
download/MetroMtomService.zip
download/WCFMtomClient.zip
download/WCFMtomClient.zip
download/WCFMtomClient.zip
Binary_Attachments__MTOM_.html
Binary_Attachments__MTOM_.html

Processing Large Data

6.3.1.

6.3.2.

bind large data to Dat aHandl er instead of byt e[] . Rl provides a St r eam ngDat aHandl er, a
DataHandler implementation that can be used to access the data efficiently in a streaming fashion.

Client Side

Rl uses Java SE's HttpURLConnection [https://docs.oracle.com/javase/8/docs/api/javalnet/
HttpURL Connection.html] for web service invocations. Ht t pURLConnect i on buffers the request da-
ta by default. So the client applications need to enable streaming explicitly, see http client streaming
[HTTP_client_streaming_support.html]. The following sample show how to send and receive large data.

Example 6.9. Sample client for large attachments

i mport com sun. xm . ws. devel oper . JAXWEPr operti es;
i mport com sun. xm . ws. devel oper. Stream ngDat aHandl er;

MIOVFeat ure feature = new MIOVFeat ure();

MyServi ce service = new MyService();

MyProxy proxy = service. getProxyPort(feature);

Map<String, Object> ctxt = ((BindingProvider)proxy).getRequest Context();
/'l Enabl e HTTP chunki ng node, otherw se H t pURLConnection buffers

ct xt. put (JAXWSPr operti es. HTTP_CLI ENT_STREAM NG_CHUNK_SI ZE, 8192);

Dat aHandl er dh = proxy.fileUpload(...);

St reami ngDat aHandl er sdh = (Stream ngDat aHandl er) dh;

Input Streamin = sdh. readOnce();

in.close();
sdh. cl ose();

Server Side

Use @MTOM feature for a service and Dat aHandl er parameter for large data. If the WSDL contains
xmime:expectedContentTypes="application/octet-stream”, it would be mapped to DataHandler in the gen-
erated SEIl. If the service is starting from java, @XmlIMimeType(" application/octet-stream”) can be used
to generate an appropriate schematype in the generated WSDL .

Thefollowing sample showshow to upload files. It uses St r eam ngDat aHandl er . noveTo(Fi | e)
convenient method to store the contents of the attachment to afile.

Example 6.10. Sample servicefor large attachments

i mport com sun. xm . ws. devel oper. Stream ngDat aHandl er;

@mrom
@\ébServi ce
public class Upl oadl npl {

/1 Use @m M neType to map to DataHandl er on the client side
public void fileUpload(String nane,
@m M nmeType("application/octet-streant)
Dat aHandl er data) {

try {
St reani ngDat aHandl er dh = (St reamn ngDat aHandl er) dat a;
File file = File.createTenpFil e(narme, "");
dh. moveTo(file);
dh. cl ose();

} catch (Exception e) {

85

https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
HTTP_client_streaming_support.html
HTTP_client_streaming_support.html

Processing Large Data

6.3.3.

6.3.4.

t hr ow new WebSer vi ceException(e);

}
Configuration

You can configure streaming attachments behaviour using @t r eam ngAt t achnent on the server
side, and using St r eani ngAt t achnment Feat ur e on the client side. Using this feature, you can con-
figure only certain sized attachments are written to afile.

Example 6.11. Sample Service Configuration
i mport com sun. xm . ws. devel oper. Stream ngAttachnent;

/1 Configure such that whole M ME nessage is parsed eagerly,

/1 Attachnments under 4MB are kept in nmenory

@mrom

@3t r eam ngAt t achnent (par seEager | y=true, menoryThr eshol d=4000000L)
@\bServi ce

public class Upl oadl npl {

}

Example 6.12. Sample client configuration
i mport com sun. xm . ws. devel oper. Streamni ngAttachment Feat ur e;
MIOVFeat ure nmtom = new MIOMFeat ure();
/1 Configure such that whole M ME nessage is parsed eagerly,
/1 Attachnents under 4MB are kept in menory
Streami ngAttachment Feature stf =

new Stream ngAttachment Feature(null, true, 4000000L);

MyServi ce service = new MyService();
MyProxy proxy = service. getProxyPort(feature, stf);

Large Attachments Summary

* Use MTOM and DataHandler in the programming model.
» Cast the DataHandler to StreamingDataHandler and use its methods.

» Makesureyou call StreamingDataHandler.close() and al so close the StreamingDataHandl er.readOnce()
stream.

» Enable HTTP chunking on the client-side.

86

Chapter 7. Bootstrapping and
Configuration

Table of Contents

7.1. What is a Server-Side ENAPOINT?ooiiiiiiiii et 87
7.2. Creating @ Client from WSDLuuiiiiiiiecei et 87
7.3. Client From WSDL EXAMPIEScoeiiiiiiii e e 87

7.1. What is a Server-Side Endpoint?

Web services expose one or more endpoints to which messages can be sent. A web service endpoint isan
entity, processor, or resource that can be referenced and to which web services messages can be addressed.
Endpoint references convey the information needed to address a web service endpoint. Clients need to
know this information before they can access a service.

Typically, web services package endpoint descriptions and use a WSDL file to share these descriptions
with clients. Clients use the web service endpoint description to generate code that can send SOAP mes-
sages to and receive SOAP messages from the web service endpoint.

7.2. Creating a Client from WSDL

To create aweb service client that can access and consume a web service provider, you must obtain the
information that definestheinteroperability requirements of the web service provider. Providers makethis
information available by means of WSDL files. WSDL files may be made available in service registries
or published on the Internet using a URL (or both). Y ou can use aweb browser or NetBeans |DE to obtain
WSDL files.

A WSDL file contains descriptions of the following:

* Network services: The description includesthe name of the service, the location of the service, and ways
to communicate with the service, that is, what transport to use.

» Web services policies: Policies express the capabilities, requirements, and general characteristics of a
web service. Web service providers use policies to specify policy information in a standardized way.
Policies convey conditions on interactions between two web service endpoints. Typically, the provider
of aweb service exposes a policy to convey conditions under which it providesthe service. A requester
(aclient) might use the policy to decide whether or not to use the service.

Web Services Metadata Exchange (WS-MEX) is the protocol for requesting and transferring the WSDL
from the provider to the client. This protocol is a bootstrap mechanism for communication.

7.3. Client From WSDL Examples

Thefollowing sections, found in other chapters of thistutorial, explain how to createaclient fromaWSDL
file using the examplefilesin the tutorial bundle:

 Creating a Client to Consume a WSI T-Enabled Web Service shows how to create a client from WSDL
using aweb container and the NetBeans I DE.

87

Bootstrapping and Configuration

 Creating a Client from WSDL shows how to create a client from WSDL using only aweb container.

88

Chapter 8. Message Optimization

Table of Contents

8.1. Creating a MTOM WED SEIVICE ...u.iveiiiii e et e e e e e e e et e e e eanas 89
8.2. Configuring Message Optimization in aWebh SErviCecoovvviiiiiiiiiii i 89
8.3. Deploying and Testing a Web Service with Message Optimization Enabledc.cceeneis 90
8.4. Creating a Client to Consume a Message Optimization-enabled Web Servicec.oceveennnnns 91
8.5. Message Optimization and Secure CONVEISAIONoveuuieiriieeiiieeiie e e e e e e e eeees 93

8.1. Creating a MTOM Web Service

The starting point for developing a web service to use WSIT is a Java class file annotated with the
j akarta.jws. WebSer vi ce annotation.

For detailed instructionsfor how to use NetBeans IDE to create aweb service, see Creating aWeb Service.

8.2. Configuring Message Optimization in a
Web Service

To use the IDE to configure a web service for message optimization, perform the following steps.

To Configure Message Optimization in a Web Service

1. InthelDE Projectswindow, expand the Web Services node, right-click the Calculator W SSer -
vice node, and choose Edit Web Service Attributes.

The Web Service Attributes editor appears.

2. SeecttheOptimizeTransfer of Binary Data(MTOM) check box, asshown in EnablingM TOM,
and click OK.

This setting configures the web service to optimize messagesthat it transmits and to decode optimized
messages that it receives.

89

Message Optimization

Figure 8.1. Enabling MTOM

< NN Calculatorws

Configure security, reliability and other W5-* features in the 'Quality Of Service' tab. Press F1
on a header for details specific to its section.

[Quality Of Service]

7 CalculatorwSPortBinding

Version Compatibility: | .NET 3.5 { METRO 1.3 4

ﬁﬂ Optimize Transfer Of Binary Data (MTOM)

8.3. Deploying and Testing a Web Service with
Message Optimization Enabled

Now that you have configured the web service to use message optimization, you can deploy and test it.

To Deploy and Test a Web Service with M essage Optimization Enabled
To deploy and test the web service, perform the following steps.

1. Right-click the project node and select Properties, then select Run.

2. Type/ Cal cul at or WsSer vi ce?wsdl inthe Relative URL field and click OK.
3. Right-click the project node and choose Run.

The IDE starts the web container, builds the application, and displays the WSDL file page in your
browser.

The following WSIT tags related to message optimization display in the WSDL file:

Example 8.1.

<nsl: Policy wsu:|d="Cal cul at or WsPor t Bi ndi ngPol i cy"/ >
<nsl: Exact | yOne>
<nsl: Al >
<ns2: Optim zedM neSeri al i zati on/ >
<ns3: RMAssertion/>
<ns4: Usi ngAddr essi ng nsl: Optional ="true"/>
</nsl:All>
</ nsl: Exact | yOne>
</ nsl: Policy>

90

Message Optimization

8.4. Creating a Client to Consume a Message
Optimization-enabled Web Service

Now that you have built and tested a web service that uses the WSIT Message Optimization technology,
you can create a client that accesses and consumes that web service. The client will use the web service's
WSDL to create the functionality necessary to satisfy the interoperability requirements of the web service.

To Createa Client to Consume a WSI T-enabled Web Service

To create aclient to access and consume the web service, perform the following steps.

1. ChooseFile . New Project, select Java Web from the Web category and click Next.

2. Nametheproject, for example, Calculator WSServletClient, and click Finish.

3. Right-click the Calculator WSServletClient node and select New —. Web Service Client.

The New Web Service Client window displays.
Note

NetBeans submenus are dynamic, so the Web Service Client option may not appear. If you
do not see the Web Service Client option, select New - File\Folder - Webservices . Web
Service Client.

4. Select theWSDL URL option.

5. Cut and pastethe URL of the web service that you want the client to consume into the WSDL
URL field.

For example, hereisthe URL for the Cal cul at or W5 web service:

Example 8.2.
http://1 ocal host: 8080/ Cal cul at or Appl i cati on/ Cal cul at or WsSer vi ce?wsdl

When Jakarta XML Web Service implementation generates the web service, it appends Ser vi ce
to the class name by default.

6. Typeorg. ne.cal cul ator. client inthePackagefield, and click Finish.
7. Right-click the Calculator WSServletClient project node and choose New -, Servlet.

8. Name the servlet CientServlet, specify the package name, for example,
org. me. cal cul ator. cli ent and click Finish.

9. Tomakethe servlet the entry point to your application, right-click the Calculator W SSer vlet-
Client project node, choose Praoperties, click Run, type/ O i ent Ser vl et intheRelative URL
field, and click OK.

10. IfdientServlet.javaisnot already openin the Source Editor, open it.

11. In the Source Editor, remove the line that comments out the body of the pr ocessRequest
method.

91

Message Optimization

12.

13.

14.

15.

Thisisthe start-comment line that starts the section that comments out the code:

Example 8.3.
/* TODO out put your page here

Delete the end-comment line that endsthe section of commented out code:

Example 8.4.
*/

Add some empty lines after the following line:

Example 8.5.

out.println("<hl>Servlet CientServlet at " +
request. getContextPath () + "</hl>");

Right-click in one of the empty linesthat you added, then choose Web Service Client Resour ces
- Call Web Service Operation.

The Select Operation to Invoke dialog box appears.
Browseto the Add operation and click OK.

The pr ocessRequest method is as follows, with bold indicating code added by the IDE:

Example 8.6.

protected void processRequest (Htt pServl et Request request,
Ht t pSer vl et Response response) throws
Servl et Exception, | OException {

response. set Cont ent Type("text/htnml ; charset =UTF-8");
PrintWiter out = response.getWiter();
out.println("<htm >");
out. println("<head>");
out.println("<title>Servlet ClientServliet</title>");
out.println("</head>");
out. println("<body>");
out.println("<hl>Servlet CientServlet at " + request
.getContextPath() + "</ h1>");
try { // Call Wb Service Operation
org.me.cal cul ator.client.Cal cul atorWs port = service
. get Cal cul at or WsPort () ;
[/ TODO initialize W5 operation argunents here
int i = 0;
int j =0;
/1 TODO process result here
int result = port.add(i, j);
out.printIn("Result =" + result);
} catch (Exception ex) {
/1 TODO handl e custom exceptions here
}
out.println("</body>");
out.println("</htm>");

92

Message Optimization

out.close();

}
16. Changethevaluesforint i andint j toother numbers, such as3and 4.
17. Add alinethat printsout an exception, if an exception isthrown.

Thetry/ cat ch block is as follows (new and changed lines from this step and the previous step
are highlighted in bold text):

Example 8.7.

try { // Call Wb Service Operation
org.nme.calcul ator.client.Cal cul atorWs port = service
. get Cal cul at or W5sPor t () ;
// TODO initialize W5 operation argunents here

int i = 3;

int j = 4;

// TODO process result here

int result = port.add(i, j);

out.println("<p>Result: " + result);
} catch (Exception ex) {

out.println("<p>Exception: " + ex);

}

18. Saved ient Servl et.java.
19. Right-click the project node and choose Run.

Theserver starts (if it wasnot running already), the application isbuilt, deployed, and run. The brows-
er opens and displays the calculation result.

8.5. Message Optimization and Secure Conver-
sation

The Web Services Secure Conversation technology has message optimization benefits. While providing
better message-level security it also improves the efficiency of multiple-message exchanges. It accom-
plishes this by providing basic mechanisms on top of which secure messaging semantics can be defined
for multiple-message exchanges. Thisfeature allowsfor contextsto be established so that potentially more
efficient keys or new key material can be exchanged. The result isthat the overall performance of subse-
guent message exchanges isimproved.

For more information on how to use Secure Conversation, see Using WS T Security.

93

Chapter 9. SOAP/TCP Web Service
transport

Table of Contents

9.1, What 1S SOAPITCP? ...ttt ettt e e e e e e e e e as 94
9.2. Creating a SOAP/TCP enabled WED SErVIiCeocoiiiiiiiiiiiii et 94
9.3. Configuring Web Service to be able to operate over SOAP/TCP transportccocevvieeenneen. 94
9.4. Deploying and Testing a Web Service with SOAP/TCP Transport Enabledccoceeeenniii. 95
9.5. Creating a Client to Consume a SOAP/TCP-enabled Web Servicecoovveviieiiiiiiiinieineeenn. 96
9.6. Configuring Web Service client to operate over SOAP/TCP transportcveevveeinieiinneeennnn. 96

9.1. What is SOAP/TCP?

SOAP/TCPisTCPtransport for Web Services. By default SOAP/TCP uses Fastl nfoset encoding in stateful
mode, which lets SOAP/TCP to index XML elements optimal way, taking into account specifics of each
concrete Web Service.

9.2. Creating a SOAP/TCP enabled Web Service

For detailed instructionsfor how to use NetBeans IDE to create aweb service, see Creating aWeb Service.

9.3. Configuring Web Service to be able to op-
erate over SOAP/TCP transport

To use the IDE to configure a web service transport, perform the following steps.

To Configure SOAP/TCP transport in a Web Service

1. InthelDE Projectswindow, expand the Web Services node, right-click the Calculator W SSer -
vice node, and choose Edit Web Service Attributes.

The Web Service Attributes editor appears.
2. Select the Allow TCP Transport check box, as shown in Enabling SOAP/TCP, and click OK.

This setting configures the web service to be able to operate over SOAP/TCP transport additionally
to the default HTTP.

94

SOAPITCP Web Service transport

Figure 9.1. Enabling SOAP/TCP

N.Yore) Calculatorws

Configure security, reliability and other W5-* features in the 'Quality Of Service' tab. Press F1 on
a header for details specific to its section.

[Quality Of Service]

Validators Advancec

Act As Secure Token Service (5T5) Configure

E{ Allow TCP Transport
["] Disable Fast Infoset

@ add Operation -

I'r Help:fl [:Cam:eljl f OK 3

9.4. Deploying and Testing a Web Service with
SOAP/TCP Transport Enabled

Now that you have configured the web service to be able to operate over SOAP/TCP, you can deploy
and test it.

To Deploy and Test a Web Service with SOAP/TCP Enabled

To deploy and test the web service, perform the following steps.

1. Right-click the project node and select Properties, then select Run.

2. Type/ Cal cul at or W5Ser vi ce?wsdl intheRelative URL field and click OK.
3. Right-click the project node and choose Run.

The IDE starts the web container, builds the application, and displays the WSDL file page in your
browser.

Thefollowing WSIT tags related to SOAP/TCP display in the WSDL file:

Example9.1.

<wsp: Policy wsu: | d="Cal cul at or WsPor t Bi ndi ngPol i cy" >
<wsp: Exact | yOne>
<wsp: Al l >

95

SOAPITCP Web Service transport

<ns2: Opti mi zedTCPTransport enabl ed="true"/>
</wsp: Al >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

9.5. Creating a Client to Consume a SOAP/TCP-
enabled Web Service

For detailed instructions for how to use NetBeans | DE to create aweb service client, see Creating a Client
to Consume a WSIT-Enabled Web Service.

9.6. Configuring Web Service client to operate
over SOAP/TCP transport

To use the IDE to configure aweb service client transport, perform the following steps.

To Configure SOAP/TCP transport in a Web Service client

1. InthelDE Projectswindow, expand the Web Service Refer ences node, right-click the Calcula-
tor WSSer vice node, and choose Edit Web Service Attributes.

The Web Service Attributes editor appears.

2. Select the Automatically Select Optimal Transport (HTTP/TCP) check box, as shown in En-
abling SOAP/TCP for aWeb Service client, and click OK.

This setting configures the web service client to choose SOAP/TCP transport as prefferable, when
working with a Web Service.

Figure 9.2. Enabling SOAP/TCP for a Web Service client

' 8.0.0 CalculatorWsservice

Configure security, reliability and other W5-* features in the 'Quality Of Service' tab.
Use the WSDL Customization tab to customize WSDL to Java binding. Use the
Wsimport Options to set certain JAXWS and JAXB code generation options. Press F1
on a header for details specific to its section.

[Quality Of Service | WSDL Customization Wsimport Options

5 Transport

[] Automatically Select Optimal Encading (XML/Fast Infoset)
E Automatically Select Optimal Transport (HTTP/TCP)

(Help:I f:CanceI:‘] (OK)

96

SOAPITCP Web Service transport

After checking the SOAP/TCP check box, new policy assertions will be added to the Web Service
client policy configuration file. Open Cal cul at or WsSer vi ce. xnl file, whichissituated under
the project's Sour ce Packages/ META- | NF folder.

Thefollowing WSIT tags related to SOAP/TCP display in the Web Service client configuration file:

Example 9.2.

<wsp: Policy wsu: | d="Cal cul at or WsPor t Bi ndi ngPol i cy" >
<wsp: Exact | yOne>
<wsp: Al l >
<tcp: Autonati cal | ySel ect Opti mal Transport/>
</wsp: Al | >
</ wsp: Exact | yOne>
</ wsp: Pol i cy>

97

Chapter 10. Using Reliable Messaging

Table of Contents

10.1

10.2.

10.1. Introduction to Reliable MESSAgINGvuevireee i e e e e e e e e e e e e ean e 98
10.2. Configuring Web Service ENAPOINTviiiioiiieii e e e e e e e e e e e eanns 98
10.3. Configuring Web Service CHENtcovvuiiiiiici e e e e e e e eae e 102
10.4. Configurable fEAtUrES SUMMEIYcuuuiiiiieei e ee e e e e e e e e e e e e e e e e e et e e eeaneees 103
10.5. Creating Web Service Providers and Clients that use Reliable Messagingc.cocevvneeenn. 107
10.6. Using Secure Conversation With Reliable MeSsagingccvvviiiieiiiiiiiiieece e 108
10.7. High Availability Support in Reliable MESSagiNgcvvueiiiiiiiieeii e eve e ee e 108

Introduction to Reliable Messaging

In the SOAP messaging world, presence of software, system or network failures is a common issue web
service devel opers need to deal with. Thisissue is even more obviousin mobile applications which access
the corporate network through mobile-enabled channel s with limited connectivity and connection quality,
such as WiFi, UMTS or GPRS.

WS-ReliableMessaging specification, an OASIS standard, addresses this issue by defining a modular
mechanism for reliabletransfer of messages. It defines amessaging protocol to identify, track, and manage
thereliable transfer of messages between a source and a destination in an interoperable fashion. The mod-
ularity and the extension points defined in the mechanism allows integration of other quality of service
features, such as message level security.

Metro implementation of reliable messaging is based o0 WS-ReliableMessaging. As other Quality of Ser-
vicefeatures, Reliable Messaging is configured viaWS-Policy expressions stored in the WSDL document
of aweb service or in the web services WSIT configuration file. These XML-based expressions are de-
signed for machine processing rather than for human readability. Metro comes with a tooling support in
the form of a plug-in for NetBeans IDE [http://www.netbeans.org] which provides a convenient way to
configure reliable messaging feature for your web services. It provides a dialog-based wizard that lets
you fine-tune a few reliable messaging configuration properties. In general, the properties you configure
on the web service endpoint apply to the web service client as well. On the other hand, the client-side
configuration options have only local effect and let you tweak the client-specific behavior.

In the following sections we will look at enabling reliable messaging with Metro in more detail. These
sections also contain tables that describe configuration options in more detail for service endpoint (Con-
figuring Web Service Endpoint) as well as service client (Reliable Messaging Configuration Options for
Service Client) side.

Configuring Web Service Endpoint

When creating a reliable web service, you first start by creating a web service using common steps de-
scribed in section Devel oping with NetBeans. Once the web service is created, a design view of the web
service should open in the editor window. If the design view is not opened, locate your web servicein the
Projects view and double-click the web service to open it in the editor window.

In the design view, there isa Quality of Service section as show on the picture below:

98

http://www.netbeans.org
http://www.netbeans.org

Using Reliable Messaging

Figure 10.1. Quality of Service (NetBeans)

Quality Of Service

1 Optimize Transfer Of Binary Data (MTOM)
@ Reliable Message Delivery
[Secure Service

Advanced ...

In this section you may either simply check the Reliable Message Delivery checkbox and accept the Re-
liable Messaging configuration defaults, which means that your RM configuration for your web service
is done, or you may click the Advanced button to display the Quality of Service dialog as shown on the
picture below.

99

Using Reliable Messaging

Figure 10.2. Quality of Service - Advanced (NetBeans)

Configure security, reliability and other WS-~ features in the 'Quality Of Service' tab. Press F1 on a header for

details specific to its section.

!(Quality Of Service],
E RmPingServicePortBinding
Version Compatibility: [.NET 3.5 / METRO 1.3 B

"] Optimize Transfer Of Binary Data (MTOM)

Reliable Message Delivery
"] Deliver Messages in Exact Order

[T Secure Service

Username Authentication with Symmetric Key = " Config...

v

Username authentication with symmetric keys for integrity and confidentiality protection.

vl Use Development Defaults

" Keystore...) [Truststore...) { Kerberos...
(validators...) { Advanced...)
1 Act As Secure Token Service (5TS) [Configure... |

[Allow TCP Transport
[T Disable Fast Infoset

(Help) [:Cancel) E—Cl—a

Note

Y ou may aternatively access the Quality of Service dialog by right clicking on aweb servicein
the Projects view and selecting Edit Web Service Attributes from the context pop-up menu.
The Quality of Service dialog contains more configuration options for Reliable Messaging. Some of these

are accessibledireclty whilethe most advance configuration details are hidden behind the Advanced button
in aseprate dialog presented on the next picture.

100

Using Reliable Messaging

Figure 10.3. Advanced Reliable M essaging Attributes (NetBeans)

™ 7 O Advanced Reliable Messaging Attributes

Message Delivery Assurance: l Exactly Once |3 i

"1 Flow Control

Maximum Flow Control Buffer Size

Inactivity Timeout {ms): 600000

ot

In order to provide better overview of the RM configuration options, we included the following table that
povides a detailed description of all the reliable messaging configuration options available on the service

endpoint.

Table 10.1. Reliable M essaging Configuration Optionsfor Service Endpoint

Option
Reliable Message Delivery
Deliver Messages In Exact Order

Message Delivery Assurance

Description
Enables or disables reliable messaging feature.

Specifies whether the Reliable Messaging protocol ensures that the
application messagesfor agiven message sequencearedeliveredto the
endpoint application in the order indicated by the message numbers.

This option increases the time to process application message se-
guencesand may result in the degradation of web service performance.
Therefore, you should not enable this option unless ordered delivery
isrequired by the web service.

This option tells our Reliable M essaging implementation what type of
the message delivery assurance is expected. Currently it can be set to
"Exactly Once" and "At Least Once".

« Exactly Once delivery assurance, as the name suggests, guarantees
that each message request from the web service client will be deliv-
ered to the web service endpoint once and only once. By default,
this delivery assurance strategy is applied.

¢ At Least Oncedelivery assurance guaranteesthat each messagere-
quest from the web service client will be delivered to the web ser-
vice endpoint, however it is possible that duplicate messages may

101

Using Reliable Messaging

10.3.

Option Description
be delivered under some circumstances. In general, this type of de-
livery assurance may provide better performance.

Flow Control Enables or disables the flow control feature. When enabled, this fea-
ture works in conjunction with the Max Buffer Size setting to de-
termine the maximum number of messages for sequence that can be
stored at the endpoint awaiting delivery to the application. Messages
may have to be withheld from the application if ordered delivery is
required and some of their predecessors have not arrived. If the num-
ber of stored messages reaches the threshold specified in the Max
Buffer Size setting, incoming messages belonging to the sequence are

ignored.

Maximum Flow Con- If Flow control is enabled, this value specifies the number of request

trol Buffer Size messages that will be buffered in the RM session. The default setting
is 32. For more information, see the description of the Flow Control
option.

Inactivity Timeout Specifies the time interval beyond which either source or destination

may terminate the RM session due to inactivity. The default setting
is 600,000 milliseconds (10 minutes). A web service endpoint will al-
way's terminate session whose inactivity timeout has expired.

This option may be used to ensure the early removal of stale RM se-
guences and thus reduce the memory footprint of the service endpoint.
Note that setting the value of this option affects also the web service

proxy usage patternsin the client applications.

Configuring Web Service Client

While most of the Reliable Messaging options are configured on the web service endpoint, there are some
details that may be fine-tuned on the client side as well. To configure the client-side details of Reliable
Messaging you first need to create a web service proxy. Section Creating a Client to Consume a WSIT-
Enabled Web Service describes all the necessary steps.

Once aweb service proxy is created, you can find it in the Projects view under Web Service References
item. By right-clicking on the we service proxy and selecting Edit Web Service Attributes from the opened
context pop-up menu you may open a dialog that let's you specify additional RM details.

When dialog opens, it may have multiple tabs. The Reliable messaging configuration options are located
on the Quality of Servicetab in Advanced Configuration section. Following table describes al thereliable
messaging configuration options available on the web service client side.

Table 10.2. Reliable M essaging Configuration Optionsfor Service Client

Option Description

RM Resend Interval The timein milliseconds after which the sender (RM Source) attempts
to redeliver unacknowledged messages to the Reliable Messaging
Destination (RM-enabled WS endpoint). By default, resend happen
every 2000ms.

RM Close Timeout By default, the call to proxy.close() will not return until all messages
have been acknowledged. RM close timeout is the interval (in mil-
liseconds) that the client runtimewill block waiting for acall to close()
toreturn. If there are still unacknowledged messages after thisinterval

102

Using Reliable Messaging

10.4.

Option Description
is reached, and the call to close has returned, an error will be logged
about messages being lost.

RM Ack Request Interval The suggested minimum time that the sender (RM Source) should al-
low to elapse between sending consecutive Acknowledgement request
messages to the Reliable Messaging Destination (RM-enabled WS
endpoint).

Configurable features summary

In the previous chapter we focused on configuring Metro reliable messaging using NetBeans IDE [http://
www.hetbeans.org]. This section is a summary of all Metro reliable messaging runtime features that can
be configured since Metro v2.0 and higher. The summary lists all the features discussed before aswell as
all other features that can be only configured by manually editing the WSIT config file.

Please note that this chapter focuses on features configurable with Metro v2.0 and higher.

Table 10.3. Namespaces used within Metro Reliable Messaging WS-Policy
Assertions

Prefix Namespace

wsp http://www.w3.org/ns/ws-policy

wsrmpl0 http://schemas.xml soap.org/ws/2005/02/rm/policy

wsrmp http://docs.oasis-open.org/ws-rx/wsrmp/200702

net30rmp http://schemas.microsoft.com/net/2005/02/rm/
policy

net35rmp http://schemas.microsoft.com/ws-rx/
wsrmp/200702

sunrmp http://sun.com/2006/03/rm

sunrmep http://sun.com/2006/03/rm/client

metro http://java.sun.com/xml/ns/metro/ws-rx/
wsrmp/200702

Table 10.4. Reliable M essaging Configuration Features - L ayout

Feature name

Description

WS-RM 1.0 compatible assertion

WS-RM 1.1+ compatible assertion

Table 10.5. Enable Reliable M essaging + version

Enable Reliable Messaging + version

Specifies that WS-ReliableM essaging protocol MUST be used when send-
ing messages. Defines also the version of the WS-RM protocol to be used.

/wsrnplO: RMAssertion

/wsrnp: RMAssertion

103

http://www.netbeans.org
http://www.netbeans.org
http://www.netbeans.org

Using Reliable Messaging

Table 10.6. Sequence I nactivity Timeout

Sequence Inactivity Timeout

Specifies the time interval beyond which either RM Source or RM Destination may terminate the RM
seguence due to inactivity. The default setting is 600,000 milliseconds (10 minutes). A web service
endpoint will always terminate session whose inactivity timeout has expired. Specified in milliseconds.

/wsrnpl0: RMAssertion/ wsrnplO: I nacti vityTi meout

/ net 35r np: | nact i vi tyTi meout

Table 10.7. Acknowledgement interval

Acknowledgement interval

Specifies the duration after which the RM Destination will transmit an ac-
knowledgement. If omitted, thereis no implied value. Specified in milliseconds.

/wsrnmpl0: RMAsserti on/ wsrnpl0: Acknowl edgenent | nt er val

/ net 35r np: Acknow edgenent | nt er val

Table 10.8. Retransmission | nterval

Retransmission Interval

Specifies how long the RM Source will wait after transmitting a message and before re-
transmitting the message. If omitted, there is no implied value. Specified in milliseconds.

/wsrnmpl0: RMAsserti on/ wsrnpl0: BaseRet ransni ssi onl nterval /
sunrncp: Resendl nt er val

/ metro: Retransm ssi onConfig/ metro: I nterval

Table 10.9. Retransmission I nterval Adjustment Algorithm

Retransmission Interval Adjustment Algorithm

Specifiesthat the retransmission interval will be adjust-
ed using a specific (e.g. exponentia back-off) algorithm.

/wsrmpl0: RMAssertion/ wsrnplO: Exponenti al Backof f

("Exponential backoff" agorithm only)

/ metro: Retransni ssionConfig/nmetro: Al gorithm

Table 10.10. Maximum Retransmission Count

Maximum Retransmission Count

A message is considered to be transferred if its deliv-
ery at the recipient has been acknowledged by the recipient.

If an acknowledgment has not been received within a certain amount of time for a message that has
been transmitted, the infrastructure automatically retransmits the message. The infrastructure tries to
send the message for at most a preconfigured number of times. Not receiving an acknowledgment be-
forethislimit isreached is considered afatal communication failure, and causes the RM session to fail.

N/A

/ metro: Retransm ssi onConfi g/ metro: MaxRetries

104

Using Reliable Messaging

Table 10.11. Close sequence timeout

Close sequence timeout

By default, the call to proxy.close() will not return until all messages have been acknowledged.
RM close timeout is the interval (in milliseconds) that the client runtime will block waiting
for acall to close() to return. If there are still unacknowledged messages after thisinterval is
reached, and the call to close has returned, an error will be logged about messages being lost.

/ sunrntp: C oseTi neout

(client side only)

[metro: O oseSequenceTi neout

Table 10.12. Acknowledgement request interval

Acknowledgement request interval

Defines the suggested minimum time that the sender (RM Source) should allow to elapse
between sending consecutive Acknowledgement request messages to the RM Destination.

/ sunrntp: AckRequest | nt erval

/ metro: AckRequest I nt erval

Table 10.13. Bind RM sequence to security token

Bind RM sequence to security token

Defines the requirement that an RM Sequence MUST be bound to an explicit token that
is referenced from awsse: Security TokenReference in the CreateSequence message.

N/A

/wsrnp: RMAssertion/ wsp: Policy/wsrnp: SequenceSTR

Table 10.14. Bind RM sequence to secured transport

Bind RM sequence to secured transport

Defines the requirement that an RM Sequence MUST be bound to the session(s) of the underlying
transport-level protocol used to carry the CreateSequence and CreateSeguenceResponse message.
(When present, this assertion MUST be used in conjunction with the sp: TransportBinding assertion.)

N/A

/wsrnmp: RMAssertion/ wsp: Pol i cy/ wsrnp: SequenceTransport Security

Table 10.15. Exactly once délivery

Exactly once delivery

Each message is to be delivered exactly once; if a message cannot be delivered then an er-
ror MUST be raised by the RM Source and/or RM Destination. The requirement on an RM
Source isthat it SHOULD retry transmission of every message sent by the Application Source
until it receives an acknowledgement from the RM Destination. The requirement on the RM
Destination is that it SHOULD retry the transfer to the Application Destination of any mes-
sage that it accepts from the RM Source until that message has been successfully delivered,
and that it MUST NOT deliver a duplicate of a message that has already been delivered.

default

105

Using Reliable Messaging

/wsrnp: RMAssertion/ wsp: Policy/
wsr np: Del i ver yAssur ance/ wsp: Pol i cy/ wsr np: Exact | yOnce

Table 10.16. At Most once delivery

At Most once delivery

Each message isto be delivered at most once. The RM Source MAY retry trans-

mission of unacknowledged messages, but is NOT REQUIRED to do so. There-
quirement on the RM Destination isthat it MUST filter out duplicate messages, i.e.

that it MUST NOT deliver aduplicate of a message that has already been delivered.
N/A

/wsrnp: RMAssertion/ wsp: Policy/
wsr np: Del i ver yAssur ance/ wsp: Pol i cy/ wsr np: At Most Once

Table 10.17. At Least once delivery

At Least once delivery

Each message isto be delivered at least once, or else an error MUST be raised by the RM Source and/
or RM Destination. The requirement on an RM Source isthat it SHOULD retry transmission of every
message sent by the Application Source until it receives an acknowledgement from the RM Destina-
tion. The requirement on the RM Destination is that it SHOULD retry the transfer to the Application
Destination of any message that it accepts from the RM Source, until that message has been success-
fully delivered. Thereis no requirement for the RM Destination to apply duplicate message filtering.

/sunrntp: Al | owbupl i cat es

/wsrmp: RMAssertion/ wsp: Policy/
wsr np: Del i ver yAssur ance/ wsp: Pol i cy/ wsrnp: At Least Once

Table 10.18. InOrder delivery

InOrder delivery

Messages from each individual Sequence are to be delivered in the same order they have been sent
by the Application Source. The requirement on an RM Sourceisthat it MUST ensure that the ordinal
position of each message in the Sequence (as indicated by a message Sequence number) is consistent

with the order in which the messages have been sent from the Application Source. The requirement

on the RM Destination isthat it MUST deliver received messages for each Sequencein the order in-
dicated by the message numbering. This DeliveryAssurance can be used in combination with any of
the AtLeastOnce, AtMostOnce or ExactlyOnce assertions, and the requirements of those assertions
MUST also be met. In particular if the AtLeastOnce or ExactlyOnce assertion applies and the RM Des-
tination detects a gap in the Sequence then the RM Destination MUST NOT deliver any subseguent
messages from that Sequence until the missing messages are received or until the Sequenceis closed.

/ sunrnp: O dered

/[wsrnp: RMAssertion/ wsp: Policy/
wsr np: Del i veryAssurance/ wsp: Pol i cy/ wsrnp: | nOr der

Table 10.19. Flow Control

Flow Control

Enables or disables the flow control feature. When enabled, this feature works in conjunc-
tion with the Max Buffer Size setting to determine the maximum number of messages for se-

106

Using Reliable Messaging

guence that can be stored at the endpoint awaiting delivery to the application. Messages may

have to be withheld from the application if ordered delivery isrequired and some of their pre-

decessors have not arrived. If the number of stored messages reaches the threshold specified
in the Max Buffer Size setting, incoming messages bel onging to the sequence are ignored.

/ net 30r np: Rl owCont r ol
/ net 30r np: RnFl owCont r ol

Table 10.20. Maximum Flow Control Buffer Size

Maximum Flow Control Buffer Size

If Flow control is enabled, this value specifies the number of request mes-
sages that will be buffered in the RM session. The default setting is 32.
For more information, see the description of the Flow Control option.

/ net 30r np: Rl owCont r ol / net 30r np: MaxRecei veBuf f er Si ze
/ net 30r np: Rl owCont r ol / net 30r np: MaxRecei veBuf f er Si ze

Table 10.21. Maximum concurrent RM sessions

Maximum concurrent RM sessions

Specifies how many concurrently active RM sessions (measured based on in-
bound RM sequences) the SequenceManager dedicated to the WS End-
point accepts before starting to refuse new requests for sequence creation.

N/A
/ met r o: MaxConcur r ent Sessi ons

Table 10.22. Reliable M essaging Per sistence

Reliable Messaging Persistence

Specifies whether the runtime should use persistent sequence and message storage or not.
N/A
/ metro: Persistent

Table 10.23. Sequence manager maintenace task execution period

Sequence manager maintenace task execution period

Specifies the period (in milliseconds) of a sequence maintenance task ex-
ecution. Sequence maintenance task takes care of terminating inactive se-
guences and removing the terminated sequences from the sequence repository.

N/A
/ netro: Mai nt enanceTaskPeri od

10.5. Creating Web Service Providers and
Clients that use Reliable Messaging

Examples and detailed instructions on how to create web service providers and clients that use reliable
messaging are provided in the following chapters:

107

Using Reliable Messaging

 For an example of creating a web service and a client using a web container and NetBeans IDE, see
Developing with NetBeans.

» For an example of creating aweb service and a client using only a web container, see WS T Example
Using a Web Container Without NetBeans IDE.

10.6. Using Secure Conversation With Reliable
Messaging

If Secure Conversation isenabled for the web service endpoint, theweb service acquiresa Security Context
Token (SCT) for each application message sequence, that is, each message sequenceisassigned adifferent
SCT. The web service then uses that token to sign all messages exchanged for that message sequence
between the source and destination for the life of the sequence. Hence, there are two benefits in using
Secure Conversation with Reliable Messaging:

» The sequence messages are secure while in transit between the source and destination endpoints.

« If therearedifferent usersaccessing dataat the source and destination endpoints, the SCT preventsusers
from seeing someone else's data.

Note

Secure Conversation is a WS-Security option, not areliable messaging option. If Secure Con-
versation is enabled on the web service endpoint, Reliable Messaging uses Security Context
Tokens.

For more information on how to use Secure Conversation, see Using WS T Security.

10.7. High Availability Support in Reliable Mes-
saging

Starting with the Metro 2.1 release [https://eclipse-eedj.github.io/metro-wsit//2.1/] Metro implementa-
tion of reliable messaging supports deployment in clustered environment configurations of the GlassFish
[https://eclipse-eed].github.io/glassfish/] Application Server 3.1 and higher. The only untested and thus
currently officially unsupported reliable messaging feature in an HA environment is in-order message
delivery. For more details see RM section of the WSIT 2.1 Release Notes [https://eclipse-eedj.github.io/
metro-wsit/status-notes/status-notes-2-1-FCS.html#rm].

For a general overview of Metro High Availability support, please consult High Availability Support in
Metro section.

108

https://eclipse-ee4j.github.io/metro-wsit//2.1/
https://eclipse-ee4j.github.io/metro-wsit//2.1/
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/glassfish/
https://eclipse-ee4j.github.io/metro-wsit/status-notes/status-notes-2-1-FCS.html#rm
https://eclipse-ee4j.github.io/metro-wsit/status-notes/status-notes-2-1-FCS.html#rm
https://eclipse-ee4j.github.io/metro-wsit/status-notes/status-notes-2-1-FCS.html#rm

Chapter 11. WS-MakeConnection
support

Table of Contents

11.1.

11.2.

11.1. Introduction t0 WS-MaKeCONNECTIONcocuuiieiiiiiie ittt 109
11.2. Configuring Web Service ENAPOINTc.uuuiiiiiiiiiiii et 109
11.2.1. Configuration via an WS-PoliCy EXPreSSiONcccuuuieeiiiiiieiiiiiiaeeeiineeeeeiinaeeees 109
11.2.2. Configuration via a Java anNOLatiONccoeuuuiriiiinieeeiii e e e e e 110
11.3. Configuring Web Service ClIentiiiiiiiii e e 111

Introduction to WS-MakeConnection

The WS-MakeConnection [http://docs.0asi s-open.org/ws-rx/wsmc/v1.L/wsmce.html] specification defines
aprotocol that allows messages to be transferred between WS-MakeConnection-aware nodes by using a
transport-specific back-channel. The protocol itself is described in a transport-independent manner. This
allowsit to be implemented using different network technologies. To support interoperable Web services,
a SOAP binding is defined within WS-MakeConnection specification.

The WS-MakeConnection mechanism for the transfer of messages between two endpoints is useful in
situations when the sending endpoint is unable to initiate anew connection to the receiving endpoint. Such
situation may typically occur when a connection from a non-adressable client is broken before aresponse
to client's request has been delivered. Rather than discarding the old response, replaying the whole re-
guest/response message exchange and generating a new response, which may be computationally or oth-
erwise resourceintensive, WS-MakeConnection provides away how to uniquely identify non-addressable
endpoints, and amechanism by which undelivered messages destined for those endpoints can be delivered.

Asall of the WS-* technol ogies, WS-MakeConnection mechanism is extensible allowing additional func-
tionality, such as security, to betightly integrated. WS-MakeConnection specification integrates with and
complements the WS-ReliableM essaging, WS-Security, WS-Policy, and other Web services specifica-
tions.

Configuring Web Service Endpoint

11.2.1. Configuration via an WS-Policy expression

As all other WS-* features, WS-MakeConnection can be enabled using a WS-Policy assertion. Unfortu-
nately, unlike many other WS-* features, NetBeans I DE [http://netbeans.org/] in it's current version 6.8
don't provide a nice GUI-based support for enabling/disabling WS-MakeConnection feature on an end-
point. This means that in order to enable WS-MakeConnection, you need to manually put the assertion
into your endpoint's WSIT config file. Here are the steps:

1. Open the existing WSIT config file for the endpoint.
« If no config file has been created for the endpoint yet, you can create an empty one with alittle help

from NetBeans IDE by selecting and unselecting any feature in the QoS dialog or the "Design” tab
of the web service endpoint.

109

http://docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.html
http://docs.oasis-open.org/ws-rx/wsmc/v1.1/wsmc.html
http://netbeans.org/
http://netbeans.org/

WS-MakeConnection support

2. Add the WS-MakeConnection assertion namespace definition into the root XML element of the WSIT
config file:

Example 11.1.
xm ns:wsnt="http://docs. oasi s- open. or g/ ws-r x/ wsnt/ 200702"

3. Create new WS-Policy expression in the config file:

Example 11.2.

<wsp: Policy wsu: | d="MTest EchoPort Bi ndi ngPol i cy" >
<wsp: Exact | yOne>
<wsp: Al | >
<wsam Addr essi ng wsp: Optional ="fal se"/>
<wsnt: MCSupported />
</wsp: Al'l >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

4. Attach newly created WS-Policy expression to the endpoint binding using WS-Policy reference:

Example 11.3.

<bi ndi ng nane="MTest EchoPor t Bi ndi ng" type="tns: McTest Echo" >
<wsp: Pol i cyRef erence URI ="#MTest EchoPort Bi ndi ngPol i cy"/>

</ bi ndi ng>

5. Build and run the service. Service will now have WS-MakeConnection support enabled.

11.2.2. Configuration via a Java annotation

In addition to using WS-Policy expression as discussed in Configuration via an WS-Policy expression,
you may aswell configure WS-M akeConnection support usinga@hkeConnect i onSuppor t ed Java
annotation provided by Metro. Please note, that this annotation is meant to annotate whole classes only.
The resulting Java code for a sample web service would look like this:

Example 11.4. Example of WS-MakeConnection enabled service class using
@M akeConnectionSupported Java annotation

package com sun. netro. nt. servi ce;

i mport com sun. xm . ws. rx. nc. MakeConnect i onSupport ed;
i mport jakarta.jws.WbMet hod,;

i mport jakarta.jws.WbParam

import jakarta.jws.WbService;

@\ebServi ce()
@mkeConnect i onSupport ed
public class MTestEcho {

/**

* Web service operation
>/

110

WS-MakeConnection support

@\ébMet hod(oper ati onName = "echo")
public String echo(@+ebParan{nane = "nessage")
final String nessage) {

return "Received: " + nmessage;
}

}

11.3. Configuring Web Service Client

Oncethe WSendpoint isproperly configured in Metro to support WS-MakeConnecti on protocol messages,
it advertises this ability in it's WSDL descriptor. In case you are developing aclient for such an endpoint
(which advertises WS-MakeConnection support in its WSDL), al the necessary configuration happens
autmatically and you don't need to take any additional steps to enable WS-MakeConnection support on
theclient side.

There are however other web service frameworks that sometimes fail to advertise their advanced capabil-
ities. In case of such an endpoint, which doesn't have the <wsnc: MCSuppor t ed / > assertion specified
inits WSDL descriptor but you know that it DOES support WS-MakeConnection, you can use the JAX-
WS's WS Feature mechanism to explicitly enable WS-MakeConnection support on your client proxy by
passing acom sun. xm . ws. r x. nc. MakeConnect i onSupport edFeat ur e instance as a pa-
rameter into a port getter method:

Example 11.5.

McTest Echo port = null;
try {
McTest EchoServi ce service = new M Test EchoService();
port = service. get McTest EchoPort (
new com sun. xm . ws. r x. nc. MakeConnect i onSupportedFeature());

String nmessage = "Test";
String result = port.echo(nessage);
Systemout.printin("Result = "+result);

} catch (Exception ex) {
ex. printStackTrace();

} finally {
if (port !'=null) {
try {

((java.io.C oseable) port).close();
} catch (java.io.lCException ex) {

ex. printStackTrace();
}

}

Please note once again that passing the
com sun. xm . ws. rx. nc. MakeConnect i onSupport edFeat ur e explicitly is required ON-
LY if the endpoint fails to advertise its support for WS-MakeConnection feature via the
<wsnt: MCSupport ed /> WS-Policy assertion.

111

Chapter 12. Using WSIT Security

Table of

12.1.
12.2.

12.3.

12.4.

12.5.

12.6.

12.7.

12.8.
12.9.

Contents

Configuring Security Using NetBeanS IDEcccouiiiiiiiiiieiiii e 112
Summary of Configuration REQUITEMENESuiiiiiieiiiie e 117
12.2.1. Summary of Service-Side Configuration ReqUIremMentscceevviveererineeeennnnnn. 117
12.2.2. Summary of Client-Side Configuration RequUirementscccceevevevvinieveriinneeennnn. 118
SECUNtY MECHANISMS ... e e 124
12.3.1. Username Authentication with Symmetric Keyccooiiiiiiiiiiiiiiii e 124
12.3.2. Username Authentication with Password Derived Keyscoovvviiiniiiiiiiieeiiinnnn, 124
12.3.3. Mutual CertifiCales SECUMTYcevvuneiiiiie ettt 125
12.3.4. Symmetric Binding with Kerberos TOKeNSvviiiiiiiiiiiii e 125
12.3.5. Transport SECUMLY (SSL) .evruuiieiiiieiiiii ettt ettt e e 125
12.3.6. Message AUthentiCation OVEr SSLviiiiiieiiii e 127
12.3.7. SAML AULhOriZation OVEr SSLcooviiiiiiiiii e 127
12.3.8. ENAOrSiNG CartifiCalecevuunieiiiii et 127
12.3.9. SAML Sender Vouches with CertifiCatesoovevviiiiiiiiiiiiiieece e 127
12.3.10. SAML HOIder Of K@Ycieiiiiiiiiiiieeee et e 128
12.3.11. STSISSUEH TOKEN ...ttt ettt et e e e et e e 128
12.3.12. STS Issued Token with Service Certificatecoovviiiiiiiiiiiiii e 128
12.3.13. STS Issued ENAOrsing TOKENcccouuuieiiiieeeeite ettt 129
Configuring SSL and AUtNOMZEA USEISo.vuiiiiiii et 129
12.4.1. Configuring SSL For Your AppliCatioNScoeuuuiiiiiiieeieie e 130
12.4.2. Adding Users to GlassFiShuuiiiiiiiiiei e 133
Configuring Keystores and TIUSISIONEScveeiuueiiiii et e 134
12.5.1. Specifying Aliases with the Updated SIOresSuuviiiiiiiiiiiiiiieicei e, 136
12.5.2. Configuring the Keystore and TrUSESIOreuuveeiiiiieeiiiiieeeii e e 137
12.5.3. Configuring ValidaOrScoeuuuuiiiiii et 142
Configuring Kerberos for GlassFish and TOMCALoviiiiiiiiiiiiiiieeei e 143
12.6.1. FOr GlaSSFISN ...t 143
12.6.2. FOF TOMCELieeiieitieee ettt ettt et e e e et et e e e e e 144
Securing Operations aNd MESSAOESuuuuiiirii ettt ettt e et e et e e s 144
12.7.1. SUPPOrting TOKEN OPLIONScevuueeiiiiiee ettt ettt 149
Configuring A Secure TOKEN SErVIiCe (STS) ovvuuiiiiiiieiiii et 149
EXample APPHICALIONSo.uiiiiiii et 156
12.9.1. Example: Username Authentication with Symmetric Key (UA) ...cooovvviiiiiinieiininneen. 156
12.9.2. Example: Username with Digest Passwordsooceeveiiieiiiiinneiiiiineeeei e 158
12.9.3. Example: Mutual Certificates Security (MCS)uiiiiiiiiiiiiiiieeeiii e 159
12.9.4. Example: Transport SECUMLY (SSL) ..ovevvniiiiiieiiii e 160
12.9.5. Example: SAML Authorization over SSL (SA) ooevveriiiiiiiiieiei e 162
12.9.6. Example: SAML Sender Vouches with Certificates (SV)ovvvveviiiiiiiiiiiiiiiie. 166
12.9.7. Example: STS Issued TOKEN (STS) .oiviiiiiiiiieiei et 169
12.9.8. Example: BrokKer Trust STS (BT) cevuueeeeeiieiiiiiieiiii e eeees 173
12.9.9. Example: STS Issued Token With SecureConversation (STS+SC)oeevvvvieeiennnnnn. 181
12.9.10. Example: Kerberos Token (Kerb)ueiveiiiiiiiiii e 182

12.1. Configuring Security Using NetBeans IDE

This section describes the following tasks:

112

Using WSIT Security

» To Secure the Service

* To Secure the Client

To Securethe Service

To use the IDE to configure security for a web service and/or a web service operation, perform the fol-
lowing steps.

1. Createor open your web service.

If you need an example of how to create aweb service, refer to Developing with NetBeans.

Note

When creating an application using the wizards in NetBeans IDE and running on Glass-
Fish, the Java EE Version defaults to Java EE 5. This results in an application compliant
with Jakarta Enterprise Web Services Specification, which can beread at https://jakarta.ee/
specifications/enterprise-ws/ [https://jakarta.ee/specificationsg/enterprise-ws/]. If you select
a value other than the default, for example, J2EE 1.4, the application that is created is not
Jakarta Enterprise Web Services compliant, which means that the application is not Jakarta
XML Web Service, but is JAX-RPC.

2. IntheProjectswindow, expand the Web Services node.
3. Right-click the node for the web service you want to secure.
4. Select Edit Web Service Attributes.

When the Web Service Attributes Editor is opened, the Quality of Service options appear (see Web
Service Attributes Editor Page).

113

https://jakarta.ee/specifications/enterprise-ws/
https://jakarta.ee/specifications/enterprise-ws/
https://jakarta.ee/specifications/enterprise-ws/

Using WSIT Security

Figure 12.1. Web Service Attributes Editor Page

E:] Calculater

Configure security, reliability and other WS-* Features in the 'Quality OF Service' tab. Press F1 on a header For details

specific ko its section.

Quality OF Service |

@w

Wersion Compatibility: | .NET 3.5 | METRO 1.3

[] Optimize Transfer OF Binary Data (MTOM)

[7] reliable Message Delivery

Deliver Messages In Exact Order

Advanced. ..

Security Meachanism: :Username Authentication with Symmetric Key

-] [corare.s]

IJsername authentication with symmetric keys for inkegrity and confidentiality protection,

Use Development Defaults

Keystore. .. Truskstare, ., Kerberos...
Walidators. .. Advanced. ..
Act As Secure Token Service (STS) Configure. ..

[] Allow TCP Transpart
[7] Disable Fast Infoset

m

QK

” Cancel ” Help

Select Secure Service.

This option enables WSIT security for al of the operations of aweb service.

For information on how to secure selected operations, refer to Securing Operations and M essages.

Choose a Security M echanism from thelist.

Most of the mechanisms are fully functional without further configuration, however, if you'd like to
customize the mechanism, click Configure to specify the configuration for that mechanism.

Optionsin the Configure dialog are discussed in Security Mechanism Configuration Options.

Select Use Development Defaults.

Select this option to import certificates into the GlassFish keystore and truststore so that they can
be used immediately for development. The WSIT message security mechanisms require the use of
v3 certificates. The default GlassFish keystore and truststore do not contain v3 certificates at this

114

Using WSIT Security

10.

11.

time. In order to use message security mechanisms with GlassFish, it is necessary to obtain keystore
and truststore files that contain v3 certificates and import the appropriate certificates into the default
GlassFish stores.

In addition to importing certificates, when this option is selected adefault user iscreatedinthef i | e
realm with usernamewsi t User .

In a production environment, you should provide your own certificates and user settings, however,
in a development environment you may find these defaults useful.

Specify Keystore, Truststore, STS, SSL, and/or user information as required for the selected
security mechanism.

Refer to the entry for the selected security mechanism in Summary of Service-Side Configuration
Requirements . Thistable summarizes the information that needs to be set up for each of the security
mechanisms.

Click OK to save your changes.
Run theweb application by right-clicking the project node and selecting Run.
Verify the URL of the WSDL file before proceeding with the creation of the web service client.

The client will be created from this WSDL file, and will get the service's security policies through
the web service reference URL when the client is built or refreshed.

To Securethe Client

All of the steps in To Secure the Service need to be completed before you create your web service client.
The service's security policies are defined in its WSDL. Y ou specify this WSDL file when you create the
client application so that the client is configured to work with the service's security mechanism through
the web service reference URL when the client is built or refreshed.

To use the IDE to configure security for aweb service client, perform the following steps.

1

Createaclient for your web service.

If you need an example of how to do this, see Creating a Client to Consume a WSIT-Enabled Web
Service.

If you are creating a client for a mechanism that will use SSL, specify the secure port for run-
ning the client when completing the New Web Service Client step. To do this, type htt ps: //
fully_qualified_hostname : 8181/ rest_of url in the WSDL URL field of the New Web Service
Client wizard. For the example, thisistheway to specify the secure URL for Cal cul at or W5Ser -
Vi ce web service:

https://fully_qualified_hostnane: 8181/ Cal cul at or Appl i cati on/
Cal cul at or WsSer vi ce?wsdl

Note

If you prefer to usel ocal host in place of the fully-qualified hostname when specifying
the URL for the service WSDL, you must follow the workaround described in Transport
Security (SSL) Workaround.

In the Projects window, expand the client node.

115

Using WSIT Security

Expand the Web Service References node.

Right-click the node for the web service reference you want to secure.

Select Edit Web Service Attributes.

When the Web Service References Attributes Editor is opened, select the Quality of Service tab to
display the security options (see Web Service References Attributes Editor Page for Web Service

Clients).

Figure 12.2. Web Service References Attributes Editor Page for Web Service
Clients

. -
(:l CalculatorService [==]

Configure security, reliability and other WS-* Features in the 'Quality OF Service' tab, Use the WSDL Customization tab to

customize WSDL to Java binding. Use the Wsimport Options ko set certain JAXWS and JAXE code generation options. Press

F1 on a header For details specific ta its section,

Quality OF Service | WSDL Customization | Wsimpart Options |

Transport
H Security

[7] Use development defaults
Keystore... Kerberos... Validators...

Authentication Credentials: iStatic -
Default Username:
Defaul: Passwoard:

SAML Callback Handler: Browse. ..

Timestamp Timeaout (s): (300

o]][Cancel][Help

Select Use Development Defaults.

Refer to Summary of Client-Side Configuration Requirements for a summary of what options are
reguired on the client side. The configuration requirements for the client are dependent upon which

security mechanism is specified on the server side.

Click OK to save your changes.

116

Using WSIT Security

The security configuration information is saved in two files under Source PackagesMETA-INF. For
more information on the format and runtime usage of thesefiles, see Client-Side WSIT Configuration
Files.

12.2. Summary of Configuration Requirements

The following sections summarize the options that need to be configured for each of the security mecha-
nismson both the service and client side. The configuration requirementsfor the client are dependent upon
which security mechanism is specified on the server side.

This section covers the following topics:
» Summary of Service-Side Configuration Requirements

» Summary of Client-Side Configuration Requirements

12.2.1. Summary of Service-Side Configuration Require-
ments

Summary of Service-Side Configuration Requirements summarizes the options that need to be configured
for each security mechanism. Each of the columnsis briefly discussed after the table.

Table 12.1. Summary of Service-Side Configuration Requirements

M echanism Key- | Trust- | STS SSL User in Ker-
store | store GlassFish beros
Username Authentication with Sym-| X X
metric Key
Username Authentication with Pass- X
word Derived Keys
Mutual Certificates X X (no
dias)
Symmetric Binding with Kerberos X
Tokens
Transport Security X X
Message Authentication over SSL - X X
Username Token
Message Authentication over SSL - X (no X
X.509 Token dias)
SAML Authorization over SSL X
Endorsing Certificate X X
SAML Sender Voucheswith Certifi-| X X (no
cate dias)
SAML Holder of Key X X (no
dias)
STSIssued Token X X X
STSlssued Tokenwith ServiceCert.| X X X

117

Using WSIT Security

M echanism Key- | Trust- | STS SSL User in Ker-
store | store GlassFish beros
STSIssued Endorsing Token X X X

12.2.2.
ments

Keystore: If this column has an X, select Use Development Defaults, or click the Keystore button and
configure the keystore to specify the alias identifying the service certificate and private key. For the
GlassFish keystores, thefileiskeyst or e. j ks andthealiasisxws- securi ty-server,assuming
that you've updated the GlassFish default certificate stores.

Truststore: If thiscolumn hasan X, select Use Development Defaults, or click the Truststore button and
configure the truststore to specify the alias that contains the certificate and trusted roots of the client.
For the GlassFish keystores, the fileiscacerts. j ks and the aliasis xws- security-client ,
assuming that you've updated the GlassFish default certificate stores.

STS: If this column has an X, you must have a Security Token Service that can be referenced by the
service. An example of an STS can be found in the section To Create and Secure the STS (STS) .
The STSis secured using a separate (non-STS) security mechanism. The security configuration for the
client-side of this application is dependent upon the security mechanism selected for the STS, and not
on the security mechanism selected for the application.

SSL : To use a mechanism that uses secure transport (SSL), you must configure the system to point to
the client and server keystore and truststore files. Stepsfor doing this are described in Configuring SSL
For Y our Applications .

User in GlassFish : To use a mechanism that requires a user database for authentication, you can add
a user to the file realm of GlassFish. Select Use Development Defaults, or follow the instructions for
doing this at Adding Usersto GlassFish.

Kerberos : This option is only valid for 'Symmetri Binding with Kerberos Tokens' Profile. Click the
Kerbeos button to specify the login module to be used for this service. Login Modules can be specified
in $GLASSFISH_HOM E/domains/domainl/config/login.conf for GlassFish. An example showing use
of Kerberos Tokens can be found at Example: Kerberos Token (Kerb).

Summary of Client-Side Configuration Require-

Summary of Client-Side Configuration Requirements summarizes the options that need to be configured
for each of the security mechanisms on the client-side. Each of the columns is briefly discussed after the
table.

Table 12.2. Summary of Client-Side Configuration Requirements

M echanism Key- TrustiDefault User| SAML STS | SSL User in Ker-

store |store Callback GlassFish |beros
Handler

Username Authentication X X X

with Symmetric Key

Username Authentication X X

with Password Derived

Keys

Mutual Certificates X X

118

Using WSIT Security

M echanism Key- TrustiDefault User| SAML STS | SSL User in Ker-

store |store Callback GlassFish |beros
Handler

Symmetric Binding with X

Kerberos Tokens

Transport Security X X

Message Authentication X X X

over SSL - Username To-

ken

Message Authentication| X X

over SSL - X.509 Token

SAML Authorizationover| X X X X

SSL

Endorsing Certificate X X

SAML Sender Vouches| X X X

with Certificate

SAML Holder of Key X X X

STS Issued Token X X X

STS lIssued Token with| X X X

Service Certificate

STSlssued Endorsing To-| X X X

ken

» Keystore: If this column has an X, select Use Development Defaullts, or click Keystore to configure
the keystore to point to the alias for the client certificate. For the GlassFish keystores, the keystore
fileiskeyst ore. j ks andtheadiasisxws- security-cli ent,assuming that you've updated the
GlassFish default certificate stores.

Truststore: If this column has an X, select Use Development Defaults, or click Truststore to configure
the truststore that contains the certificate and trusted roots of the server. For the GlassFish keystores,
thefileiscacerts. j ks andthediasisxws- securi ty-server , assuming that you've updated
the GlassFish default certificate stores as described in To Manually Update GlassFish Certificates.

When using an STS mechanism, the client specifies the truststore and certificate alias for the STS, not
the service. For the GlassFish stores, thefileiscacert s. j ks andthediasiswssi p.

Default User: When thiscolumn hasan X, you must configure either adefault username and password, a
UsernameCallbackHandler, or leave these options blank and specify auser at runtime. Moreinformation
on these options can be found at Configuring Username A uthentication on the Client.

SAML Callback Handler : When this column has an X, you must specify a SAML Callback Handler.
Examples of SAML Callback Handlers are described in Example SAML Callback Handlers.

STS: If this column has an X, you must have a Security Token Service that can be referenced by the
service. An exampleof an STS can befound inthe sectionTo Create and Securethe STS(STS). The STS
is secured using a separate (non-STS) security mechanism. The security configuration for the client-
side of this application is dependent upon the security mechanism selected for the STS, and not on the
security mechanism selected for the application. Note that on the service side, it is optionally to set
Issuer for the STSto be used. Y ou only need to configure the STSinformation on theclient sideif I ssuer
if not available in the service wsdl. If both configured, the service side Issuer takes high priority.

119

Using WSIT Security

e S9_: To use amechanism that uses secure transport (SSL), you must configure the system to point to
the client and server keystore and truststore files. Steps for doing this are described in Configuring SSL
For Your Applications.

e User in GlassFish: To use a mechanism that requires a user database for authentication, select Use
Development Defaults, or add auser to thef i | e ream of GlassFish. Instructions for doing this can
be found at Adding Users to GlassFish.

» Kerberos: Thisoption isonly valid for 'Symmetric Binding with Kerberos Tokens' profile. Click Ker-
beros button to configure the Login Module and Service Principal to be used by client, and if creden-
tial delegation should be set. An example showing use of Kerberos Tokens can be found at Example:
Kerberos Token (Kerb).

12.2.2.1. Configuring Username Authentication on the Client

On the client side, a user name and password must be configured for some of the security mechanisms.
For this purpose, you can use the default Username and Password Callback Handlers (when deploying to
GlassFish), specify aSAML Callback Handler, specify adefault user name and password for devel opment
purposes, create and specify your own Callback Handlers if the container you are using does not provide
defaults, or specify the username and password dynamically at runtime. When using any of these options,
you must create an authorized user on GlassFish using the Admin Console, as described in Adding Users
to GlassFish.

To Configure Username Authentication on the Client

Once you've created an authorized user and determined how your application needs to specify the user,
configure the Username Authentication options as follows.

1. IntheProjectswindow, expand the node for the web service client.
2. Expand the Web Service References node.

3. Right-click the node for the web service reference for which you want to configure security
options.

4. Select Edit Web Service Attributes.
5. Select the Quality of Servicetab to display the WSIT Security options.

6. Expand the Security section to specify the user name and password information asrequired by
the service. The dialog appear s as shown in Quality of Service - Client - Security.

120

Using WSIT Security

Figure 12.3. Quality of Service - Client - Security

. -
(:l CalculatorService [==]

Configure security, reliability and other WS-* Features in the 'Quality OF Service' tab, Use the WSDL Customization tab to

customize WSDL to Java binding. Use the Wsimport Options ko set certain JAXWS and JAXE code generation options. Press

F1 on a header For details specific ta its section,

Quality OF Service | WSDL Customization | Wsimpart Options |

Transport
H Security

[7] Use development defaults
Keystore... Kerberos... Validators...

Authentication Credentials: iStatic -

Default Username:

Defaul: Passwoard:
Browse...

SAML Callback Handler:

Timestamp Timeaout (s): (300

o]][Cancel][Help

7. Thefollowing options are available.

Note

Currently the GlassFish Cal | backHandl er cannot handle the following: SAML Call-
backs and Require ThumbPrint Reference assertions under an X.509 Token. This may be

addressed in a future milestone.

e Use Development Defaults:

Select this option to import certificatesinto the GlassFish keystore and truststore so that they can
be used immediately for development. The WSIT message security mechanisms require the use
of v3 certificates. The default GlassFish keystore and truststore do not contain v3 certificates at
thistime. In order to use message security mechanisms with GlassFish, it is necessary to obtain
keystore and truststore files that contain v3 certificates and import the appropriate certificates

into the default GlassFish stores.

121

Using WSIT Security

In addition to importing certificates, when this option is selected a default user is created in the
fil e realmwith usernamewsi t User .

In a production environment, you should provide your own certificates and user settings, how-
ever, in adevelopment environment you may find these defaults useful.

e Authentication Credentials: Select Static or Dynamic. Select Static to supply a static username
and password, or select Dynamic and specify the Username and Password CallbackHandlers.
Select Staticif youwant tofill in the exact user credential sthat the client is providing, and which
cannot be changed after deployment. Static is useful to devel oping and testing applications prior
to deployment. Select Dynamic to use CallbackHandlers to provide a dynamic way to provide
credentials. Dynamic is useful if the credentials need to be obtained from some third party, for
example, or if the devel oper doesn't want to store the user name and password in a configuration
file because it might introduce a security risk.

e Default Username, Default Password : These options are available when Static is selected as
the Authentication Credential. Type the name of an authorized user and the password for this
user. This option is best used only in the development environment. When the Default User-
name and Default Password are specified, the username and password are stored in thewsi t -
client.xm filein clear text, which presents a security risk. Do not use this option for pro-
duction.

e Default Username Callback Handler, Default Password Callback Handler : These options are
available when the Authentication Credential is Dynamic. If you create JSR-109-compliant web
services and web service clients that run under an Application Server container (JSR-109 de-
ployment), the container handles the callbacks and you do not need to configure Callback Han-
dlersof your own. If you are using another container, select the Browse button to select the class
implementing thej avax. security. aut h. cal | back. Cal | backHandl er interface.

e SAML Callback Handler : To use a SAML Callback Handler, you need to create one, as there
isno default. Referencesto example SAML Callback Handlers are provided in Example SAML
Callback Handlers. An example that uses a SAML Callback Handler can be found in Example:
SAML Authorization over SSL (SA).

o Timestamp Timeout: This property specifies the duration(in seconds) for which timestamp
should be considered valid. The default is’5 mins(300 seconds).

12.2.2.2. Example SAML Callback Handlers

Creating a SAML Callback Handler is beyond the scope of this document. However, the following web
pages may be helpful for this purpose:

* A client-side configuration, which includes a SAML Callback Handler, can be viewed at the following
URL:

https://github.com/eclipse-eedj/metro-wsit/bl ob/master/wsit/tests/e2e/testcases/xwss/s11/
resources/wsit-client.xml

» Anexample of aSAML Callback Handler can be viewed and/or downloaded from the following URL :

http://xwss.java.net/serviets/
ProjectDocumentL ist?fol derl D=6645& expandFol der=6645& fol derl D=6645

» An example application in this tutorial that uses a SAML Callback Handler can be found in Example:
SAML Authorization over SSL (SA) .

122

https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/tests/e2e/testcases/xwss/s11/resources/wsit-client.xml
https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/tests/e2e/testcases/xwss/s11/resources/wsit-client.xml
http://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
http://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645

Using WSIT Security

When writing SAML Callback Handlers for different security mechanisms, set the subject confirmation
method to SV (Sender Vouches) or HOK (Holder of Key) and the appropriate SAML Assertion version
depending on the SAML version and SAML Token Profile selected when setting the security mechanism
for the service. When the subject confirmation method isHOK, akeystore and truststore file must be con-
figured in the SAML CallbackHandler. When the method is SV, you can either comment out the keystore
and truststore information, or leave it, asit will not be used.

For example, the following code snippet for one of the SAML CallbackHandlerslisted above demonstrates
how to set the subject confirmation method and sets the SAMLAssertion version to 1.0, profile 1.0.

Example 12.1.

if (callbacks[i] instanceof SAM.Cal | back) {
try {

SAM_Cal | back sam Cal | back = (SAM.Cal | back) cal | backs[i];

/*
Set confirmation Method to SV [SenderVouches] or
HOK[Hol der of Key]
*/
sanl Cal | back. set Confi r mati onMet hod(sani Cal | back
. SV_ASSERTI ON_TYPE) ;

if (sam Cal |l back. get Confirmati onMet hod(). equal s
(sam Cal | back. SV_ASSERTI ON_TYPE)) {

sam Cal | back. set Asserti onEl enent
(creat eSVSAMLAssertion());

svAssertion_sam 10 = saml Cal | back. get Asserti onEl enent () ;
/*
sani Cal | back. set Asserti onEl ement

(creat eSVSAMLAssertion20());
svAssertion_sam 20 =

sam Cal | back. get Asserti onEl enent () ;

*/
se if (sam Cal | back. get Confi rnmati onMet hod() . equal s

(sam Cal | back. HOK_ASSERTI ON_TYPE)) {

-
@

san Cal | back. set Asserti onEl ement

(creat eHOKSAMLAssertion());
hokAssertion_sam 10 = sam Cal | back

.get AssertionEl ement ();
/*
san Cal | back. set Asserti onEl ement

(creat eHOKSAMLAssertion20());
hokAssertion_san 20 =
sam Cal | back. get Asserti onEl enent () ;

*/

} catch (Exception e) {
e. printStackTrace();

} else {
t hr ow unsupport edCal | back;
}

123

Using WSIT Security

12.3. Security Mechanisms

This section describes security mechanisms you can implement with WSIT. This section provides an
overview of the following mechanisms:

» Username Authentication with Symmetric Key
» Username Authentication with Password Derived Keys
e Mutual Certificates Security

» Symmetric Binding with Kerberos Tokens
 Transport Security (SSL)

» Message Authentication over SSL

* SAML Authorization over SSL

» Endorsing Certificate

* SAML Sender Vouches with Certificates

» SAML Holder of Key

» STSIssued Token

» STSIssued Token with Service Certificate

» STSIssued Endorsing Token

A table that summarizes the configuration options on the server side is available in Summary of Ser-
vice-Side Configuration Requirements.

Some common communication issues that need to be addressed using security mechanisms are discussed
in Using Security Mechanisms.

12.3.1. Username Authentication with Symmetric Key

The Username Authentication with Symmetric Key mechanism protects your application for integrity and
confidentiality. Symmetric key cryptography relies on asingle, shared secret key that is used to both sign
and encrypt a message. Symmetric keys are usually faster than public key cryptography.

For this mechanism, the client does not possess any certificate/lkey of his own, but instead sends its user-
name/password for authentication. The client shares a secret key with the server. The shared, symmetric
key is generated at runtime and encrypted using the service's certificate. The client must specify the alias
in the truststore by identifying the server's certificate alias.

See Also: Example: Username Authentication with Symmetric Key (UA).

12.3.2. Username Authentication with Password Derived
Keys

Thisfeature is same as "Username Authentication with Symmetric Key", except that the protection token
is Username Token.This feature relies on asingle, shared secret key that is derived using password, salt(a
16 byte random array),iterations(an int value). This key will be used for signing and encrypting a message.

124

Using WSIT Security

For this mechanism, the client does not need to have any certificatelkey of his own.A 160 bit secret
key will be generated using password,salt and iterations. This secret key will be used for signature/en-
cryption. In the request the username,salt and iterations will be send to the server.The server gener-
ates the same key using the password(which it already has),salt and iterations. Using this key the serv-
er is able to decrypt the message and verify the signature.The default value for iterations is 1000.Cur-
rent Netbeans versions doesn't show this feature in the security features list.So for a detailed explana-
tion about this feature and to know how to configure this, please visit the blog: http://blogs.sun.com/
SureshMandal apu/entry/passwordderivedkeys support_in_metro [http://blogs.sun.com/SureshMandal a
pu/entry/passwordderivedkeys support_in_metro]

12.3.3. Mutual Certificates Security

The Mutual Certificates Security mechanism adds security through authentication and message protection
that ensures integrity and confidentiality. When using mutual certificates, a keystore and truststore file
must be configured for both the client and server sides of the application.

See Also: Example: Mutual Certificates Security (MCS).

12.3.4. Symmetric Binding with Kerberos Tokens

Symmetric Binding with Kerberos Tokens does client authentication using Kerberos Tokens and integrity
and confidentiality protection using symmetric keys generated with Kerberos V5 Protocol. This profile
assumes that Kerberos authentication is supported by the underlying platform and a KDC is configured.
When using Kerberos Tokens Profile, a Login Module must be configured for the service, and a Login
Module and Service Principal must be specified for the client.

Note

Kerberosissupported in Metro since 1.1 release. Netbeans support is available for Kerberosfrom
Metro 1.3 and Netbeans 6.5 release. Kerberosis NOT supported on AlX systems.

See Also: Example: Kerberos Token (Kerb).

12.3.5. Transport Security (SSL)

The Transport Security mechanism protects your application during transport using SSL for authentication
and confidentiality. Transport-layer security is provided by the transport mechanisms used to transmit
information over the wire between clients and providers, thus transport-layer security relies on secure
HTTPtransport (HTTPS) using Secure Sockets Layer (SSL). Transport security isapoint-to-point security
mechanism that can be used for authentication, message integrity, and confidentiality. When running over
an SSL -protected session, the server and client can authenticate one another and negotiate an encryption
algorithm and cryptographi c keys before the application protocol transmitsor receivesitsfirst byte of data.
Security is "live" from the time it leaves the consumer until it arrives at the provider, or vice versa. The
problem is that it is not protected once it gets to its destination. For protection of data after it reaches its
destination, use one of the security mechanisms that uses SSL and also secures data at the message level.

Digital certificates are necessary when running secure HTTP transport (HTTPS) using Secure Sockets
Layer (SSL). The HTTPS service of most web servers will not run unless a digital certificate has been
installed. Digital certificates have already been created for GlassFish, and the default certificates are suf-
ficient for running this mechanism, and are required when using Atomic Transactions (see Using Atomic
Transactions). However, the message security mechanisms require anewer version of certificatesthanis
available with GlassFish. Y ou can download valid keystore and truststore files for the client and server as
described in To Manually Update GlassFish Certificates.

125

http://blogs.sun.com/SureshMandalapu/entry/passwordderivedkeys_support_in_metro
http://blogs.sun.com/SureshMandalapu/entry/passwordderivedkeys_support_in_metro
http://blogs.sun.com/SureshMandalapu/entry/passwordderivedkeys_support_in_metro
http://blogs.sun.com/SureshMandalapu/entry/passwordderivedkeys_support_in_metro

Using WSIT Security

To use this mechanism, follow the stepsin Configuring SSL For Y our Applications.

See Also: Example: Transport Security (SSL).

12.3.5.1. Transport Security (SSL) Workaround

Thisnote appliesto caseswhereht t ps isthetransport protocol used between aWSIT client and asecure
web service using transport binding, and you are referencing | ocal host when creating the client.

Note

If you use the fully-qualified hostname (FQHN) in the URL for the service WSDL when you are
adding the web service client to the client application, this workaround is not required. It is only
required when you specify | ocal host inthe URL for the service WSDL .

During development (not production) it is sometimes convenient to use certificates whose CN (Common
Name) does not match the host name in the URL.

A developer would want to use a CN which is different from the host name in the URL in WSIT when
using ht t ps addressesin Dispatch clientsand duringwsi npor t . The below mentioned workaround is
only for the Dispatch clients, which are also used in WS-Trust to communicate with STS. This has to be
done even if the client's main service is not on https, but only the STSis on https.

Java by default verifies that the certificate CN (Common Name) is the same as host name in the URL. If
the CN in the certificate is not the same as the host name, your web service client fails with the following
exception:

Example 12.2.

jakarta.xm .ws. WebSer vi ceException: java.io.| OException:
HTTPS host name wrong: shoul d be <hostnanme as in the certificate>

The recommended way to overcomethisissueisto generate the server certificate with the Common Name
(CN) matching the host name.

Towork around thisonly during devel opment, in your client code, you can set the default host name verifier
to a custom host name verifier which does a custom check. An example is given below. It is sometimes
necessary to include this in the static block of your main Java class as shown below to set this verifier
before any connections are made to the server.

Example 12.3.

static {
/ 1 WORKAROQUND. TO BE REMOVED.
javax. net.ssl . Htt psURLConnecti on. set Def aul t Host naneVeri fi er (
new j avax. net.ssl . Host nameVeri fier(){
public bool ean verify(String hostnane,
javax. net. ssl . SSLSessi on ssl Session) {
i f (hostnane. equal s("nytargethostnane")) {
return true;
}

return fal se;

1)

126

Using WSIT Security

}

Please remember to remove this code once you install valid certificates on the server.

12.3.6. Message Authentication over SSL

The Message Authentication over SSL mechanism attaches a cryptographically secured identity or au-
thentication token with the message and use SSL for confidentiality protection.

By default, a Username Supporting Token will be used for message authentication. To use an X.509 Sup-
porting Token instead, click the Configure button and select X509. Under this scenario, you will need to
configure your system for using SSL as described in Configuring SSL For Y our Applications.

12.3.7. SAML Authorization over SSL

The SAML Authorization over SSL mechanism attaches an authorization token with the message and
uses SSL for confidentiality protection. In this mechanism, the SAML token is expected to carry some
authorization information about an end user. The sender of thetoken isactually vouching for thecredentials
in the SAML token.

To use this mechanism, configure SSL on the server, as described in Configuring SSL For Y our Applica
tions, and, on the clients side, configure a SAML CallbackHandler as described in Example SAML Call-
back Handlers.

See Also: Example: SAML Authorization over SSL (SA).

12.3.8. Endorsing Certificate

This mechanism uses secure messages using symmetric key for integrity and confidentiality protection,
and uses an endorsing client certificate to augment the claims provided by the token associated with the
message signature. For this mechanism, the client knows the service's certificate, and requests need to be
endorsed/authorized by a special identity. For example, all requests to a vendor must be endorsed by a
purchase manager, so the certificate of the purchase manager should be used to endorse (or counter sign)
the original request.

12.3.9. SAML Sender Vouches with Certificates

This mechanism protects messages with mutual certificates for integrity and confidentiality and with a
Sender Vouches SAML token for authorization. The Sender V ouches method establishes the correspon-
dence between a SOAP message and the SAML assertions added to the SOAP message. The attesting
entity provides the confirmation evidence that will be used to establish the correspondence between the
subject of the SAML subject statements (in SAML assertions) and SOAP message content. The attesting
entity, presumed to be different from the subject, vouches for the verification of the subject. The receiver
has an existing trust relationship with the attesting entity. The attesting entity protects the assertions (con-
taining the subject statements) in combination with the message content against modification by another
party. For more information about the Sender V ouches method, read the SAML Token Profile document
at http://docs.oasis-open.org/wss/oasi s-wss-saml-token-profile-1.0.pdf .

For this mechanism, the SAML tokenisincluded as part of the message signature as an authorization token
and is sent only to the recipient. The message payload needs to be signed and encrypted. The requestor is
vouching for the credentials (present in the SAML assertion) of the entity on behalf of which the requestor
isacting.

127

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

Using WSIT Security

The initiator token, which is an X.509 token, is used for signature. The recipient token, which is also an
X.509 token, is used for encryption. For the server, this is reversed, the recipient token is the signature
token and the initiator token is the encryption token. A SAML token is used for authorization.

See Also: Example: SAML Sender Vouches with Certificates (SV).

12.3.10. SAML Holder of Key

This mechanism protects messages with a signed SAML assertion (issued by a trusted authority) carry-
ing client public key and authorization information with integrity and confidentiality protection using
mutual certificates. The Holder-of-Key (HOK) method establishes the correspondence between a SOAP
message and the SAML assertions added to the SOAP message. The attesting entity includes a signature
that can be verified with the key information in the confirmation method of the subject statements of
the SAML assertion referenced for key info for the signature. For more information about the Holder of
Key method, read the SAML Token Profile document at http://docs.oasis-open.org/wss/oasi s-wss-saml-
token-profile-1.0.pdf .

Under this scenario, the service does not trust the client directly, but requires the client to send a SAML
assertion issued by aparticular SAML authority. The client knows the recipient's public key, but does not
share adirect trust relationship with the recipient. The recipient has a trust relationship with the authority
that issuesthe SAML token. Thereguest issigned with the client's private key and encrypted with the server
certificate. The response is signed using the server's private key and encrypted using the key provided
within the HOK SAML assertion.

12.3.11. STS Issued Token

This security mechanism protects messages using atoken issued by atrusted Secure Token Service (STS)
for message integrity and confidentiality protection.

An STSisaservicethat implementsthe protocol defined inthe WS-Trust specification (you can find alink
to this specification at https.//eclipse-eedj.github.io/metro-wsit [https:.//eclipse-eedj.github.io/metro-wsit/]
). This protocol defines message formats and message exchange patterns for issuing, renewing, canceling,
and validating security tokens.

Service providers and consumers are in potentially different managed environments but use asingle STS
to establish a chain of trust. The service does not trust the client directly, but instead trusts tokens issued
by adesignated STS. In other words, the STSistaking on the role of asecond service with which theclient
has to securely authenticate. The issued tokens contain akey, which is encrypted for the server and which
is used for deriving new keys for signing and encrypting.

To use this mechanism for the web service, you simply select this option as your security mechanism.
However, you must have a Security Token Servicethat can be referenced by the service. An example of an
STS can befound in the section To Create and Securethe STS (STS) . In this section, you select a security
mechanism for the STS. The security configuration for the client-side of this application is dependent
upon the security mechanism selected for the STS, and not on the security mechanism selected for the
application. The client truststore must contain the certificate of the STS, which has the alias of wssi p if
you are using the updated GlassFish certificates.

See Also: Example: STS Issued Token (STS).

12.3.12. STS Issued Token with Service Certificate

Thissecurity mechanismissimilar tothe onediscussed in STSIssued Token, with the difference being that
in addition to the service requiring the client to authenticate using a SAML token issued by a designated
STS, confidentiality protection is achieved using a service certificate. A service certificate is Unhandled

128

http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/

Using WSIT Security

tag caution used by a client to authenticate the service and provide message protection. For GlassFish, a
default certificate of slas isinstalled.

To use this mechanism for the web service, you simply select this option as your security mechanism.
However, you must have a Security Token Servicethat can be referenced by the service. An example of an
STScan befound in the section To Create and Securethe STS (STS) . In this section, you select a security
mechanism for the STS. The security configuration for the client-side of this application is dependent
upon the security mechanism selected for the STS, and not on the security mechanism selected for the
application. The client truststore must contain the certificate of the STS, which has the alias of wssi p if
you are using the updated GlassFish certificates.

12.3.13. STS Issued Endorsing Token

12.4.

This security mechanism is similar to the one discussed in STS Issued Token , with the difference being
that the client authenticates using a SAML token that isissued by a designated STS. An endorsing token
is used to sign the message signature.

In this mechanism, message integrity and confidentiality are protected using ephemeral keys encrypted
for the service. Ephemeral keys use an agorithm where the exchange key value is purged from the cryp-
tographic service provider (CSP) when the key handle is destroyed. The service requires messages to be
endorsed by a SAML token issued by a designated STS.

Service providers and consumers are in potentially different managed environments. For this mechanism,
the service requires that secure communications be endorsed by atrusted STS. The service does not trust
the client directly, but instead trusts tokens issued by a designated STS. In other words, the STSistaking
on the role of a second service with which the client has to securely authenticate.

For this mechanism, authentication of the client is achieved in this way:

» The client authenticates with the STS and obtains the necessary token with credentials.
» Theclient'srequest is signed and encrypted using ephemeral key K.

» Theserver'sresponseis signed and encrypted using the same K.

* The primary signature of the request is endorsed using the issued token.

To use this mechanism for the web service, you simply select this option as your security mechanism.
However, you must have a Security Token Servicethat can be referenced by the service. An example of an
ST'S can befound in the section To Create and Securethe STS (STS) . In this section, you select a security
mechanism for the STS. The security configuration for the client-side of this application is dependent
upon the security mechanism selected for the STS, and not on the security mechanism selected for the
application. The client truststore must contain the certificate of the STS, which has the alias of wssi p if
you are using the updated GlassFish certificates.

Configuring SSL and Authorized Users

This section discusses configuring security for your web service and web service client using the WSIT
security mechanisms. Some of these mechanisms require some configuration outside of NetBeans IDE.
Depending upon which security mechanism you plan to use, some of the following tasks will need to be
compl eted:

« If you are using the GlassFish container and message security, you must update the GlassFish keystore
and truststore by importing v3 certificates. The procedure for updating the certificates is described in
To Manually Update GlassFish Certificates.

129

Using WSIT Security

« If you are using a security mechanism that requires a user to enter a user name and password, create

authorized users for your container. Steps for creating an authorized user for the GlassFish container
are described in Adding Usersto GlassFish.

» To use a mechanism that uses secure transport (SSL), you must configure the system to point to the

client and server keystore and truststore files. Steps for doing this are described in Configuring SSL
For Your Applications.

This section covers the following topics:

» Configuring SSL For Y our Applications

» Adding Usersto GlassFish

12.4.1. Configuring SSL For Your Applications

This section describes adding the steps to configure your application for SSL. These steps will need to be
accomplished for any application that uses one of the mechanisms:

» Transport Security (SSL) (see Example: Transport Security (SSL))

» Message Authentication over SSL

» SAML Authorization over SSL (see Example: SAML Authorization over SSL (SA))

To Configure SSL for Your Application

Thefollowing steps are generic to any application, but have example configurationsthat will work with the
tutorial examples, in particular, Example: SAML Authorization over SSL (SA) and Example: Transport
Security (SSL).

To configure SSL for your application, follow these steps.

1

Select one of the mechanismsthat require SSL.

Theseinclude Transport Security (SSL), Message Authentication over SSL, andSAML Authorization
over SSL.

Server Configuration

e GlassFishisaready configured for SSL. No further SSL configuration is necessary if you are
using Transport Security. However, if you are using one of the Message Security mechanisms
with SSL, you must update the GlassFish certificates as described in To Manually Update Glass-
Fish Certificates.

* Configure auser on GlassFish as described in Adding Users to GlassFish.
Client Configuration

For configuring your system for SSL in order to work through the examplesin thistutorial, the same
keystore and truststore files are used for both the client and the service. This makes it unnecessary
to set system properties to point to the client stores, as both GlassFish and NetBeans IDE are aware
of these certificates and point to them by default.

In general, for the client side of SSL you will not be using the same certifi-
cates for the client and the service. In that case, you need to define the client cer-

130

Using WSIT Security

tificate stores by setting the system properties - Dj avax. net.ssl.trustStore , -
D avax. net. ssl.keyStore , -Djavax. net.ssl.trust StorePassword , and -
D avax. net. ssl . keySt or ePasswor d in the application client container.

You can specify the environment variables for keystore and truststore by setting the environment
variable VMARGS through the shell environment or inside an Ant script, or by passing them in when
you start NetBeans IDE from the command line. For example, in the latter case, you would specify
the property settings as follows:;

net beans-i nstal |l / bi n/ net beans. exe

-J- Dj avax. net . ssl . trust Store=as-install/domai ns/ domai n1/ confi g/ cacerts.jks
-J- Dj avax. net . ssl . keySt or e=as-i nstal | / donai ns/ donai n1/ confi g/ keystore.jks
-J- Dj avax. net . ssl . trust St or ePasswor d=changei t

-J- D avax. net. ssl . keySt or ePasswor d=changei t

Use the hard-coded path to the keystore and truststore files, not variables.

For the SSL mechanism, the browser will prompt you to accept the server adliasslas.

Service Configuration

Torequirethe serviceto usethe HTTPS protocol, you must select a security mechanism that uses SSL

(as described in a previous step), and you have to specify the security requirements in the service's

application deployment descriptor. Thisfileisej b-j ar. xm for aweb servicethat isimplemented

asan EJB endpoint, andweb. xm for aweb serviceimplemented asaservlet. To specify the security
information, follow these steps:

a. From your web service application, expand Web Pages | WEB-INF.

b. Double-click web. xm (or ej b-j ar. xm)toopenitintheeditor.

c. Select the Security tab.

d. OntheSecurity Constraintsline, expand thenodefor SSL transport for Calculator W SSer -
vice. Thiswill display when a security mechanism that requires SSL is selected. This con-
straint will be sufficient for the example applications. This sections walks you through
making some changesin the event that you would like to customize the security constraint
for your application.

e. Under Web Resour ce Collection, click Edit.

f. Changethe URL Pattern to be protected (for example, / *). Select which HTTP Methods
to protect, for example, POST. Click OK to close thisdialog.

g. Unselect Enable Authentication Constraint. Ensurethat the Enable User Data Constraint
box is checked. Verify that CONFIDENTIAL is selected for the Transport Guarantee to
specify that the application uses SSL because the application requiresthat data be trans-
mitted so asto prevent other entities from observing the contents of the transmission.

The IDE appears as shown in Deployment Descriptor Page.

131

Using WSIT Security

Figure 12.4. Deployment Descriptor Page
General Servlets Filters Pages References Security HiAL I [

= 85L transport for CalculatorWsService Remove |

Display Mame: |SSL transport for CalculatorWSService

‘Web Resource Collection:

Marme URL Patterm HTTP Method Description

SecUre Area

Add... | Edit... | Remove

[Enahle Authentication Constraint

Description: |

Role Mameis): | Edlit |

¥ Enzble User Data Constraint

Descriptiorn: I

Transport Guarantee: ICONFIDENTIAL VI

h. Click the XML tab to display the additions to web. xm . The security constraint looks
likethis:

Example 12.4.

<security-constraint>
<di spl ay- nane>Constr ai nt 1</ di spl ay- name>
<web-resource-col | ecti on>
<web- r esour ce- nane>Cal c\WebResour ce</ web- r esour ce- nane>
<descri ption/ >
<url-pattern>/*</url-pattern>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resource-col | ecti on>
<user - dat a- constrai nt >
<descri ption/ >
<transport - guar ant ee>CONFI DENTI AL</t r ansport - guar ant ee>
</ user-dat a- const rai nt >
</security-constraint>

i. When you run this project (right-click, select Run), the browser will ask you to accept the
server certificate of slas . Accept thiscertificate. The WSDL appearsin the browser.

Creating a Client

When creating your client application, use the fully-qualified hostname to specify the secure WSDL
location (useht t ps: // fully_qualified_hosthame: 8181/ Cal cul at or Appl i cati on/ Cal -
cul at or WSer vi ce?wsdl , for example, inplaceof htt p: / /| ocal host : 8080/ Cal cu-
| at or Appl i cati on/ Cal cul at or WsSer vi ce?wsdl).

In some cases, you might get an eror didog telling you that the URL
https:// fully qualified hostname : 8181/ Cal cul at or Appl i cati on/ Cal cul at or -

132

Using WSIT Security

WSSer vi ce?wsdl couldn't be downloaded. However, this is the correct URL, and it does load
when you run the service. So, when this error occurs, repeat the steps that create the Web Service
Client using the secure WSDL. The second time, the web service reference is created and you can
continue creating the client.

12.4.2. Adding Users to GlassFish

This section describes the following tasks:

* To Add aUser to GlassFish for Devel opment

* To Add Usersto GlassFish Using the Admin Console

* To Add Usersto GlassFish From the Command Line

To Add a User to GlassFish for Development

To create auser in the GlassFish file realm to be used for testing and devel opment purposes, follow these

steps.

1. In NetBeansIDE, right-click the web service, select Edit Web Service Attributes.
2. Select Secure Service.

3. Select Use Development Defaults.

In addition to setting up keystore and truststore files, this option creates a default user on GlassFish.
The user hasthe namewsi t User and the password of changei t .

To Add Usersto GlassFish Using the Admin Console

To add users to GlassFish using the Admin Console, follow these steps.

1

2.

Start GlassFish if you haven't already done so.
Start the Admin Consoleif you haven't already done so.

You can start the Admin Console by starting a web browser and specifying the URL htt p://
| ocal host : 4848/ asadni n . If you changed the default Admin port during installation, typethe
correct port number in place of 4848.

Tologintothe Admin Console, typetheuser nameand password of auser intheadm n-real m
who belongsto theasadm n group.

The name (‘admi n) and password (adm nadm n) entered during installation will work, as will
any users added to this realm and group subsequent to installation.

Expand the Configuration node in the Admin Console tree.
Expand the Security nodein the Admin Consoletree.
Expand the Realms node, then select thef i | e realm.
Click the Manage User s button.

Click New to add a new user to therealm.

Typethe correct information into the User 1D, Password, and Group(s) fields.

133

Using WSIT Security

12.5

The example applications reference a user with the following attributes:
e UserID=wsitUser
e GrouplList=wsit
* New Password = changei t
e Confirm New Password = changei t
10. Click OK to add thisuser tothelist of usersin therealm.

11. Click Logout when you have completed thistask.

To Add Usersto GlassFish From the Command Line
1. MakesureGlassFish isrunning, then typethe following command:
as-install/bin/asadmn create-file-user --groups wsit wsitUser

2. When you are prompted for the password, typechangei t .

Configuring Keystores and Truststores

This section describes configuring keystores and truststores. Security mechanisms that use certificates
require keystore and truststore files for deployment.

» For GlassFish, default keystore and truststore files come bundled. However, WSIT security mecha-
nisms for message security require X.509 version 3 certificates. GlassFish contains version 1 certifi-
cates. Therefore, to enable the WSIT applications to run on GlassFish, you will need to follow the in-
structions in To Manually Update GlassFish Certificates .

» For Tomcat, keystore and truststore files do not come bundled with this container, so they must be
provided. You can download valid keystore and truststore files for the client and server from http://
Xwssjava.net/ .

This section covers the following topics:
» To Automatically Update GlassFish Certificates

» To Manualy Update GlassFish Certificates

Specifying Aliases with the Updated Stores
» Configuring the Keystore and Truststore

» Configuring Validators

To Automatically Update GlassFish Certificates

Y ou can have NetBeans automatically update the GlassFish certificates to the version needed to work with
message security. To do this, follow these steps:

1. In NetBeansIDE, right-click the web service, select Edit Web Service Attributes.

2. Select Secure Service.

134

http://xwss.java.net/
http://xwss.java.net/

Using WSIT Security

Select Use Development Defaults.

This option imports certificates into the GlassFish keystore and truststore so that they can be used
immediately for development.

In a production environment, you should provide your own certificates and user settings, however,
in a development environment you may find these defaults useful.

To Manually Update GlassFish Certificates

The WSIT message security mechanisms require the use of v3 certificates. The default GlassFish keystore
and truststore Unhandled tag varname do not contain v3 certificates at this time (but should before FCS).
(GlassFish instances installed using JDK 1.6 do have a v3 certificate but the certificate lacks a particu-
lar extension required for supporting some secure WSIT mechanisms.) In order to use message security
mechanisms with GlassFish, it is necessary to download keystore and truststore files that contain v3 cer-
tificates and import the appropriate certificates into the default GlassFish stores.

Note

The XWSS keystores are sample keystores containing sample v3 certificates. These sample key-
stores can be used for development and testing of security with WSIT technology. Once an ap-
plication isin production, you should definitely use your own v3 certificates issued by atrusted
authority. In order to use WSIT security on GlassFish, you will haveto import your trusted stores
into GlassFish's keystore and specify those certificates from NetBeans I DE.

To manually update the GlassFish certificates, follow these steps.

1.

Download thezip filethat containsthecertificatesand the Ant scripts(copyv3. zi p) by going
to thisURL:

https://xwss.java.net/serviets/
ProjectDocumentL ist?fol derl D=6645& expandFol der=6645& fol derl D=6645

Unzip thisfileand changeinto itsdirectory, copyv3 .

Set the variable to the location where GlassFish isinstalled, as described in the READMVE. t xt
filein thisdirectory.

From the copyv3 directory, execute the Ant command that will copy the keystore and trust-
storefilestotheappropriatelocation, and import theappr opriatecertificatesinto the GlassFish
keystore and truststore.

This Ant command is as follows:

as-install/lib/ant/bin/ant

The command window will echo back the certificates that are being added to the keystore and trust-
store files, and should look something like this:

[echo] WARNING currently we add non-CA certs to GF truststore, this
will not be required in |ater releases when WBI T starts supporting
Cert Store(s)

[java] Added Key Entry :xws-security-server

[java] Added Key Entry :xws-security-client

[java] Added Trusted Entry :xwss-certificate-authority

[java] Added Key Entry :wssip

[java] Added Trusted Entry :xws-security-client

135

https://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
https://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645

Using WSIT Security

[java] Added Trusted Entry :xws-security-server

[java] Added Trusted Entry :wssip

[echo] Adding JVM Option for https outbound alias, this will take at |east
One M nute.

5. Toverify that the updates wer e successful, follow these steps:

a. Changetothedirectory containing the GlassFish keystore and truststorefiles, as-i n-
stall /donai ns/donai nl/config

b. Verify that the v3 certificate has been imported into the GlassFish truststore. To do this,
run thefollowing keyt ool command (all on oneline):

j ava- hone/ bi n/ keytool -1list -keystore cacerts.jks -alias wssip -
st orepass changei t

If the certificates are successfully updated, your response will look something like this:
wssi p, Aug 20, 2007, trustedCertEntry,
Certificate fingerprint (MD5):
1A: OE: E9: 69: 7D: DO: 80: AD: 5C: 85: 47: 91: EB: OD: 11: B1
If the certificates were not successfully update, your response will look something like this:

keytool error: java.lang. Exception: Alias <wssip> does not exi st

c. Verify that the v3 certificate has been imported into the GlassFish keystore. To do this,
run thefollowing keyt ool commands:

j ava- hone/ bi n/ keyt ool -1ist -keystore keystore.jks
-alias xws-security-server -storepass changeit
j ava- hone/ bi n/ keyt ool -1ist -keystore keystore.jks

-alias xws-security-client -storepass changeit

If the certificates were successfully updated, your response should look something like this:
XWs-security-server, Aug 20, 2007, PrivateKeyEntry,
Certificate fingerprint (MD5):
E4: E3: A9: 02: 3C: BO: 36: OC: C1: 48: 6E: OE: 3E: 5C: 5E: 84
If your certificates were not successfully updated, your response will look more like this:

keytool error: java.lang. Exception: Alias <xws-security-server> does
not exi st

12.5.1. Specifying Aliases with the Updated Stores
The configuration of the aliases for all containers (Tomcat, GlassFish) and for all applications (JSR-109-

compliant and non-JSR-109-compliant), except for applications that use a Security Token Service (STS)
mechanism, is as shown in Keystore and Truststore Aliases .

Table 12.3. Keystore and Truststore Aliases

Keystore Alias Truststore Alias
Client-Side Configuration Xws-security-client XWSs-security-server
Server-Side Configuration XWSs-security-server XWs-security-client

136

Using WSIT Security

The configuration of the aliases for applications that use a Security Token Service (STS) mechanismisas
shown in Keystore and Truststore Aliases for STS.

Table12.4. Keystore and Truststore Aliasesfor STS

Keystore Alias Truststore Alias
Client-Side Configuration XWS-security-client XWS-Security-server
STS Configuration XWs-security-client wssip

12.5.2. Configuring the Keystore and Truststore

NetBeans IDE already knows the location of the default keystore file and its password, but you need to
specify which aliasis to be used. The following sections discuss configuring the keystore on the service
and on the client.

To Configurethe Keystore on a Service Automatically

To have NetBeans I DE configure the keystore to its default values, follow these steps.

1. InNetBeans|DE, right-click the web service, select Edit Web Service Attributes.
2. Select Secure Service.

3. Select Use Development Defaults.

This option imports certificates into the GlassFish keystore and truststore so that they can be used
immediately for development. This option also insertsthe location and alias of the keystore and trust-
store filesinto the configuration file.

In a production environment, you should provide your own certificates and user settings, however,
in a development environment you may find these defaults useful.

To Configurethe Keystore on a Service Manually

A keystore is a database of private keys and their associated X.509 certificate chains authenticating the
corresponding public keys. A key is a piece of information that controls the operation of a cryptographic
algorithm. For example, in encryption, a key specifies the particular transformation of plaintext into ci-
phertext, or vice versaduring decryption. Keys are used in digital signatures for authentication.

To configure a keystore on a service, perform the following steps.

1. Check thetablein Summary of Service-Side Configuration Requirementsto seeif a keystore
needsto be configured for the selected security mechanism. If so, continue.

2. Right-click the web service and select Edit Web Service Attributes.
The Web Service Attributes editor is displayed.
3. Enable Secure Service, then select a security mechanism.

4. Check thetablein Summary of Service-Side Configuration Requirementsto seewhat keystore
configuration, if any, isrequired for that mechanism.

5. Unselect Use Development Defaults.

6. Click the Keystorebutton. The dialog shown in Keystore Configuration Dialog displays.

137

Using WSIT Security

Figure 12.5. Keystore Configuration Dialog

£ Keystore Configuration x|

Location: shidomains'domainlyconfighkeystore. jks Browse, ., |

Keystore Password: [**Hseses

Alias: Wws-SecUriby-server W |

Key Passward:

4 Caricel

Depending on what isrequired for the selected mechanism, you may specify the following in-
formation in the Keystore Configuration dialog:

» KeystorePassword : Specifiesthe password for the keystorefile. If you are running under Glass-
Fish, GlassFish's password is aready entered. If you have changed the keystore's password from
the default, you must specify the correct value in this field.

e LoadAliases: Click the Load Aliases button to popul ate the Aliasfield with the aliases contained
in the keystore file. The Location and Store Password fields must be specified correctly for this
option to work.

« Alias: Specifiesthealias of the certificate in the specified keystore to be used for authentication.
Refer to the table in Specifying Aliases with the Updated Stores to determine which alias to
choose for the selected security mechanism.

* Key Password : Specifies the password of the key within the keystore. For this sample, leave
thisblank. For thisfield, the default assumes the key password isthe same as the store password,
so you only need to specify this field when the key password is different.

Note

The Key Password field enables you to specify a password for the keystore used by
the application. When specified, this password is stored in a WSIT configuration file
in clear text, which is a security risk. Setting the keystore password in the develop-
ment environment is fine, however, when you go into production, remember to use the
container's Callback Handler to obtain the keys from the keystore. This eliminates the need
for the keystore passwords to be supplied by the users. You can also specify the pass-
words for keystores and truststores by specifying a Callback Handler class that implements
thej avax. security. aut h. cal | back. Cal | backHandl er interface in the Key
Password or Store Password fields.

When creating JSR-109-compliant application, GlassFish will only use the default CallbackHandlers
and Validators, and you cannot override the location of the keystore and truststore files. Any attempt
to override the default location will be ignored. You do, however, need to specify the keystore and
truststore locations in these dialogsin order to specify the alias.

138

Using WSIT Security

When creating non-JSR-109-compliant application, you can specify the passwords for key-
stores and truststores by specifying a Cal | backHandl er class that implements the
j avax. security. aut h. cal | back. Cal | backHandl er interface in the Key Password or
Store Password fields.

8. Click OK to closethedialog.

To Configurethe Truststore on a Service Automatically

To have NetBeans | DE configure the truststore to its default values, follow these steps.

1. InNetBeans|DE, right-click the web service, select Edit Web Service Attributes.
2. Select Secure Service.

3. Select Use Development Defaults.

This option imports certificates into the GlassFish keystore and truststore so that they can be used
immediately for development. This option also inserts the location and alias of the keystore and trust-
store filesinto the configuration file, when required for a selected security mechanism.

In a production environment, you should provide your own certificates and user settings, however,
in a development environment you may find these defaults useful.

To Configurethe Truststore on a Service Manually

A truststore is a database of trusted entities and their associated X.509 certificate chains authenticating
the corresponding public keys.

The truststore contains the Certificate Authority (CA) certificates and the certificates of the other party
to which this entity intends to send encrypted (confidential) data. This file must contain the public key
certificates of the CA and the client's public key certificate. Any kind of encryption without WS-Secure-
Conversation will generally require that atruststore be configured on the client side. Any kind of signature
without WS-SecureConversation will generally require atruststore on the server side.

Note

For this release, place the trusted certificates of other parties in GlassFish's truststore,
cacerts.j ks . Thisisnot normally arecommended practice because any certificate you add
tothecacerts. j ks file effectively means it can be a trusted root for any and all certificate
chains, which can be a security problem. In future releases, trusted certificates from other parties
will be placed in a certstore, and only trusted roots will be placed insidecacerts. j ks .

To set the truststore configuration options on a service, perform the following steps.

1. Check thetablein Summary of Service-Side Configuration Requirementsto seeif atruststore
isrequired for the selected security mechanism. If so, continue.

2. Right-click the web service and select Edit Web Service Attributes.
The Web Service Attributes editor is displayed.
3. Enable Secure Service.

4. Unselect Use Development Defaults.

139

Using WSIT Security

5.
6.

7.

Click the Truststore button.

On the Truststore Configuration page, specify the following options:

Location : By default, thelocation and name of thetruststorethat storesthe public key certificates
of the CA and the client's public key certificate is already entered. The GlassFish truststore file
isas-install /domai ns/domai nl/config/cacerts.jks.

Sore Password : Specifies the password for the truststore. If you are using GlassFish, the value
of changei t isaready entered. If you have changed the value of the truststore password, you
must type the new value in thisfield.

Note

The Store Password field enables you to specify a password for the truststore used by
the application. When specified, this password is stored in a WSIT configuration file
in clear text, which is a security risk. Setting the truststore password in the develop-
ment environment is fine, however, when you go into production, remember to use
the container's Callback Handler to obtain the keys from the truststore. This eliminates
the need for the truststore passwords to be supplied by the users. Y ou can aso speci-
fy the passwords for keystores and truststores by specifying a CallbackHandler class
that implementsthej avax. securi ty. aut h. cal | back. Cal | backHandl er

interface in the Key Password or Store Password fields.

When creating JSR-109-compliant application, GlassFishwill only usethedefault Call-
backHandlers and Validators, and you cannot override the location of the keystore and
truststore files. Any attempt to override the default location will be ignored. Y ou do,
however, need to specify the keystore and truststore locations in these dialogsin order
to specify the dlias.

Load Aliases: Click the L oad Aliasesbutton to popul atethe Aliasfield with the aliases contai ned
in the truststore file. The Location and Store Password fields must be specified correctly for this
option to work.

Alias : Unhandled tag tip Specifies the peer alias of the certificate in the truststore that is to be
used when the client needs to send encrypted data. Refer to the table in Specifying Aliases with
the Updated Stores to determine which alias is appropriate for the sel ected security mechanism.
A truststore contains trusted other-party certificates and certificates of Certificate Authorities
(CA). A peer diasis the alias of the other party (peer) that the sending party needs to use to
encrypt the request.

Click OK to closethe dialog.

To ConfiguretheKeystore and Truststore on a Client

On the client side, a keystore and truststore file must be configured for some of the security mechanismes.
Refer to thetablein Summary of Client-Side Configuration Requirementsfor information on which mech-
anisms require the configuration of keystores and truststores.

If the mechanism configured for the service requires the configuration of keystores and truststores, follow
these steps.

1

2.

Check the table in Summary of Client-Side Configuration Requirements to see if a keystore
needsto be configured for the client for the selected security mechanism. If so, continue.

In the Projects window, expand the node for the web service client.

140

Using WSIT Security

Expand the Web Service References node.

Right-click the node for the web service reference for which you want to configure security
options.

Select Edit Web Service Attributes.

When the Web Service References Attributes Editor is opened, select the Quality of Service tab to
display the WSIT Security options.

Click Keystore or Truststore to specify the keystore or truststore information if required by
the service.

Depending on what isrequired for the selected mechanism, you may specify the following in-
formation:

Keystore Location : The directory and file name containing the certificate key to be used to
authenticate the client. By default, the location is already set to the default GlassFish keystore,
as-install /domai ns/donai nl/confi g/ keystore.jks

Keystore Password : The password for the keystore used by the client. By default, the password
for the GlassFish keystoreis already entered. This passwordischangei t .

Note

When specified, this password is stored in aWSIT configuration filein clear text. Set-
ting the keystore password in the development environment is fine, however, when
you go into production, remember to use the container's default Cal | backHan-
dl er to obtain the keys from the keystore. This eliminates the need for the key-
store passwords to be supplied by the users. You can also specify the passwords for
keystores and truststores by specifying aCal | backHandl er class that implements
thej avax. security. aut h. cal | back. Cal | backHandl er interface in the
Keystore Password, Truststore Password, or Key Password fields.

Load Aliases : Click this button to populate the Alias list with all of the certificates available
in the selected keystore. This option will only work if the keystore location and password are
correct.

Keystore Alias: Select the aliasin the keystore. Refer to the table in Specifying Aliases with the
Updated Stores to determine which aliasis appropriate for the selected security mechanism.

Key Password : If the client key has been password-protected, type the password for this key.
The GlassFish certificate key password ischangei t .

Truststore Location : Thedirectory and file name of the client truststore containing the certificate
of the server. By default, thisfield pointsto the default GlassFish truststore, as-instal |l /
domai ns/ dommi nl/ confi g/ cacerts. jks.

Truststore Password ;: The password for thetruststore used by the client. By default, the password
for the GlassFish truststore is already specified. The passwordischangei t .

Note

When specified, this password is stored in aWSIT configuration filein clear text. Set-
ting the truststore password in the development environment is fine; however, when
you go into production, remember to use the container's default Cal | backHan-

141

Using WSIT Security

dl er to obtain the keys from the keystore. This eliminates the need for the key-
store passwords to be supplied by the users. You can also specify the passwords for
keystores and truststores by specifying aCal | backHandl er class that implements
thej avax. security. aut h. cal | back. Cal | backHandl er interface in the
Keystore Password, Truststore Password, or Key Password fields.

* Load Aliases : Click this button to populate the Alias list with al of the certificates available
in the selected keystore. This option will only work if the truststore location and password are
correct.

e Truststore Alias: Select the alias of the server certificate and private key in the client truststore.
Refer to the table in Specifying Aliases with the Updated Stores to determine which alias is
appropriate for the selected security mechanism.

8. Click OK toclosethedialog.

12.5.3. Configuring Validators

A validator isan optional set of classes used to check the validity of atoken, a certificate, atimestamp, or
a username and password. The Validators button will be enabled when @l of the following are true:

» Security is enabled for the service.

e Target server for the service is not GlassFish.

» Development defaults are disabled.

» Security profile for the service is not one of the three STS based profiles.

Applicationsthat run under a GlassFish 9.1 or higher container do not need to configure Callback Handlers
and Validatorswhen using the IDE with WSIT enabled. Thisisbecause the container handlesthe callbacks
and validation. Y ou only need to make sure that the certificates are available at locations that GlassFish
requires and/or create authorized users using the Admin Console (described in Adding Usersto GlassFish.

Validators are always optional because there are defaults in the runtime (regardless of the container and
regardless of whether the application is a JSR-109 or a non-JSR-109 deployment.) For non-JSR-109 de-
ployment, you only need to specify a validator when you want to override the default validators. For
JSR-109 deployments, there is no point in specifying an overriding validator, as these will be overridden

back to the defaults by GlassFish, thusthe Validators button is not avail able when the sel ected web service
is a JSR-109-compliant application.

To Set Validator Configuration Options

To set the validator configuration options for a non-JSR-109-compliant application (such as a Java SE
client), perform the following steps.

1. Right-click theweb service and select Edit Web Service Attributes.
The Web Service Attributes editor is displayed.

2. Enable Secure Service.

3. Unselect Use Development Defaults.

4. Click theValidator button.

142

Using WSIT Security

5. OntheValidator Configuration page, specify the following options, when necessary:

e UsernameValidator : Specifiesthevalidator classto be used to validate username and password
on the server side. Thisoption is only used by aweb service.

Note

When using the default Username V alidator, make sure that the username and password
of the client are registered with GlassFish (using Admin Console, described in Adding
Users to GlassFish) if using GlassFish, or isincluded in thet ontat - users. xm
fileif using Tomcat.

« Timestamp Validator : Specifies the validator class to be used to check the token timestamp to
determine whether the token has expired or is till valid.

e Certificate Validator : Specifiesthe validator classto be used to validate the certificate supplied
by the client or the web service.

e SAML Validator: Specifiesthe validator class to be used to validate SAML token supplied by
the client or the web service.

6. Click OK to closethedialog.

12.6. Configuring Kerberos for GlassFish and
Tomcat

This section explains how to setup GlassFish or Tomcat to use Kerberos Authentication. It assumes that
the underlying infrastructure has Kerberos Authentication available. If you need information on how to
setup Kerberos in Solaris or Ubuntu Linux environments, refer to the following links:

e Solaris 10: Installing a Kerberos KDC [http://blogs.sun.com/tdh/entry/installing_a kerberos kdc_and]
» Ubuntu Linux: Kerberos On Ubuntu [http://www.alittletooqui et.net/text/kerberos-on-ubuntu/]

Note that in a Windows environment you can set up a Kerberos KDC only on Window Server editions
2000, 2003 and 2008. The KDC is bundled in these editions with its own Kerberos implementation as
part of Active Directory. You can not install MIT Kerberos KDC on Windows. A Windows XP/Vista
system can act as a client of the Windows Server editions KDC. Alternatively, you can install a client
module of MIT Kerberos for Windows -- see Kerberos for Windows Release 3.2.2 [http://web.mit.edu/
Kerberogkfw-3.2/kfw-3.2.2.html].Y ou can then use the client module to authenticate against a KDC that
was set up on a UNIX system.

12.6.1. For GlassFish

Specify the JAAS login modules to be used for Kerberos in the $GLASSFISH_HOM E/domains/do-
mainl/config/login.conf file, asfollows:

Ker berosC i ent {
com sun. security. aut h. rodul e. Kr b5Logi nMbdul e requi red
useTi cket Cache=t rue

}

Ker ber osSer ver {

143

http://blogs.sun.com/tdh/entry/installing_a_kerberos_kdc_and
http://blogs.sun.com/tdh/entry/installing_a_kerberos_kdc_and
http://www.alittletooquiet.net/text/kerberos-on-ubuntu/
http://www.alittletooquiet.net/text/kerberos-on-ubuntu/
http://web.mit.edu/Kerberos/kfw-3.2/kfw-3.2.2.html
http://web.mit.edu/Kerberos/kfw-3.2/kfw-3.2.2.html
http://web.mit.edu/Kerberos/kfw-3.2/kfw-3.2.2.html

Using WSIT Security

com sun. security. aut h. rodul e. Kr b5Logi nMbdul e requi red
useKeyTab=t rue keyTab="/etc/krb5. keyt ab"
doNot Pronpt =t rue st oreKey=true
princi pal ="websvc/ servi ce@ NDI A. SUN. LOCAL";
}

You can give any names to the login modules, that is, instead of KerberosClient and KerberosServer.
Y ou need to refer to these names in the <sc:KerberosConfig> assertion in the WSDL file and in the wsit-
client.xml file.

Also edit the principal in KerberosServer to the service principal that you created, and specify the correct
location of krb5.keytab file.

12.6.2. For Tomcat

GlassFish picks the login modules from $GLA SSH SH_HOM E/domains/domainl/config/login.conf. In
Tomcat we need to specify the file explicitly using java.security.auth.login.config system property. Here
are the steps:

» Create afilejaas.conf , and placeitin $CATALINA_HOME/conf. Here's what jaas.conf looks like:

Ker berosCient {
com sun. security. aut h. rodul e. Kr b5Logi nMbdul e requi red
useTi cket Cache=tr ue;

}

Ker ber osServer {
com sun. security. aut h. rodul e. Kr b5Logi nMbdul e requi red
useKeyTab=t rue keyTab="/etc/krb5. keyt ab"
doNot Pronpt =t rue st oreKey=true
pri nci pal ="websvc/ servi ce@ NDI A. SUN. COM';

}

« Add following line to the catalina.sh script (or specify the mentioned JAVA_OPTS property):

JAVA OPTS="$JAVA OPTS "-Dj ava. security. auth. | ogin. confi g=$CATALI NA_ HOVE/
conf/j aas. conf

» Specify the following system property in your client code:

-Dj ava. security. policy=${tontat. home}/conf/catalina.policy
-Dj ava. security. auth. |l ogin. config=${tontat. hone}/conf/jaas. conf

12.7. Securing Operations and Messages

This section explains how to specify security mechanisms at the operation level and at the message level.

Y ou can specify security mechanisms at the following levels:

e Operation
At times, you may need to configure different operations with different supporting tokens. Y ou may
wish to configure security at the operation level, for example, in the situation where only one operation
requires a UsernameToken to be passed and the rest of the operations do not require this, or in the

situation where only one operation needs to be endorsed by a specia token and the others do not.

* Input Message and Output Message

144

Using WSIT Security

Security mechanisms at thislevel are used to specify what isbeing protected and the level of protection
required.

Inthissection, you can specify parts of amessagethat requireintegrity protection (digital signature) and/
or confidentiality (encryption). When you do this, the specified part of the message, outside of security
headers, requires signature and/or encryption. For example, a message producer might submit an order
that containsan or der | Dheader. The producer signsand/or encryptstheor der | Dheader (the SOAP
message header) and the body of the request (the SOAP message body). Parts that can be signed and/
or encrypted include the body, the header, the local name of the SOAP header, and the namespace of
the SOAP header.

You can also specify arbitrary elements in the message that require integrity protection and/or confi-
dentiality. Because of the mutability of some SOAP headers, amessage producer may decide not to sign
and/or encrypt the SOAP message header or body as awhole, but instead sign and/or encrypt elements
within the header and body. Elements that can be signed and/or encrypted include an X Path expression
or aURI which indicates the version of XPath to use.

This section covers the following topics:

To Specify Security at the Operation, Input Message, or Output Message Level

Supporting Token Options

To Specify Security at the Operation, Input Message, or Output Message L evel

To specify security mechanisms at the level of the operation, input message, or output message, perform
the following steps.

1.

Right-click the web service and select Web Service Attributes.
The Web Service Attributes editor is displayed.

Select Secure Service.

Select a security mechanism.

The following mechanisms do not support Input message level protection:
e Username Authentication with Symmetric Key

e Username Authentication with Password Derived Keys

e Transport Security (SSL)

e Message Authentication over SSL

e SAML Authorization over SSL

e SAML Sender Voucheswith Certificates

Expand the operation Operation node (for example, theadd Oper at i on node.) It should look
like Web Service Attributes Editor Page: Operation Level.

145

Using WSIT Security

Figure 12.6. Web Service Attributes Editor Page: Operation L evel

-

GCaIcuIatnr @ i

Configure security, reliabiliby and other WS-* Features in the 'Quality OF Service' tab. Press F1 on a
header for details specific ko its sectian,

-

Quality OF Service

H+< add Operation

E add

Transaction: .Ncul: Supported v.

E Input Message

Authentication Token:
[7] signed
[] Endarsing
[7] Encrypted

[Message Parks...

m

' Output Message

[Message Parks...

[k. H Cancel H Help

Expand the operation section.
The section will be grayed out if Secure Serviceis not selected.

Select an option from the Transactions list to specify a level at which transactions will be se-
cured.

For this release, transactions will only use SSL for security. Transactions are discussed in Using
Atomic Transactions.

Expand the Input M essage section.
This section will be grayed out if Secure Serviceis not selected.

Specify the following options, as appropriate:

146

Using WSIT Security

e Authentication Token : Specifies which supporting token will be used to sign and/or encrypt the
specified message parts. Optionsinclude Username, X509, SAML, Issued, or None. For further
description of these options, read Supporting Token Options.

e Sgned : Specifies that the authentication token must be a signed, supporting token. A signed,
supporting token is signed by the primary signature token and is part of primary signature.

e Endorsing : Specifies that the authentication token must be endorsed. With an endorsing sup-
porting token, the key represented by the token is used to endorse/sign the primary message
signature.

e Encrypted: Specifies that the authentication token must be an encrypted supporting token.

One can select any (or none) combination of the three options above. If both Signed and Endorsing
are selected, the authenti cation token must be a signed, endorsing, supporting token. In this situation,
the token is signed by the primary signature. The key represented by the token is used to endorse/sign
the primary message signature. If Encrypted is selected aswell, the supporting token isal so encrypted
in the request message.

9. For thelnput Message and/or Output M essage, click the M essage Parts button to specify which
parts of the message need to be encrypted, signed, and/or required.

See the following section for more information on the options in the Message Parts dial og.

The Message Parts dialog appears. It should look like Web Service Attributes Editor Page: Message
Parts.

Figure 12.7. Web Service Attributes Editor Page: M essage Parts

r

@) Message Parts [22]

Message Part Sign Encrypt Require [Add Body]
Body 0 - [Add Header...]
To (Addressing) (& [

From (Address. .. [[[Add ¥Path]
FaultTo (Addr... [[

ReplyTo (Addr... [W | Add Atachments |
MessagelD (A... [(&} L

RelatesTo (Ad... (& [&] 3 [Remave]
Action (Addre. .. [[}

AckRequested. .. [[}

Sequencelckn. .. [[l

Sequence (RM) [[l i

CreateSequen... [[-

[oK] [Cancel

10. Click in a checkbox to the right of the message part or element that you would like to sign,
encrypt or require.

147

Using WSIT Security

11

12.

13.

14.

15.

16.

e Select Signto specify the parts or elements of amessage that requireintegrity protection (digital
signature).

e Select Encrypt to specify the parts or elements of amessage that require confidentiality (encryp-
tion).

e Select Require to specify the set of parts and/or el ements that a message must contain.
Click Add Body to add arow for the message body.
Thiswill only be necessary if the row has been removed.

Click Add Header to add arow for either a specific SOAP header part or for all SOAP header
parts.

Thiswill only be necessary if the SOAP header row in question has been deleted. The header parts
that are available to sign and/or encrypt before clicking the Add Header button include To (Ad-
dressing), From (Addressing), FaultTo (Addressing), ReplyTo (Addressing), Messagel D (Address-
ing), RelatesTo (Addressing), and Action (Addressing). After clicking Add Header, and then click-
ing All Headers, you may also specify AckRequested (RM), SequenceA cknowledgement (RM), and
Sequence (RM).

Click Add Attachmentsto add arow the SOAP attachments.

Thisis useful if the web service has MIME attachments which should be protected. All the attach-
ments in the message are secured on selecting this option. This option is only available for the spec-
ification version of Security Policy, supported in Netbeans IDE from 6.5 version.

Note

Attachments Protectionisnot supported in .NET 3.0 and 3.5. Soitishest to avoid thisfeature
for interop with .NET.

There are no XPath elements displayed by default. Click Add XPath to add rows that enable
you to specify signature and/or encryption for an XPath expression or a URI which indicates
the version of XPath to use.

By default, the Required field is selected. Thisis an editable field. Double-click the XPath row to
specify the XPath expression or URI. Only one XPath element is allowed.

Note

There is a limitation when specifying XPath elements. To use XPath elements, switch
off Optimize Security manually by adding the di sabl eSt r eanm ngSecuri ty policy
assertion. For information on how to do this, refer to http://blogs.sun.com/venu/ [https.//
blogs.oracle.com/ashutosh/entry/custom_security policy assertions _in] for more informa-
tionondi sabl eSt ream ngSecurity.

Toremove an element, select it in the Message Part section, and then click Remove to remove
it from message security.

Click OK to save these settings.

148

https://blogs.oracle.com/ashutosh/entry/custom_security_policy_assertions_in
https://blogs.oracle.com/ashutosh/entry/custom_security_policy_assertions_in
https://blogs.oracle.com/ashutosh/entry/custom_security_policy_assertions_in

Using WSIT Security

12.7.1. Supporting Token Options

Y ou can use one of the following options for supporting tokens:

» Username Token: A username token is used to identify the requestor by their username, and optionally
using a password (or shared secret, or password equivalent) to authenticate that identity. When using
a username token, the user must be configured on GlassFish. For information on configuring users on
GlassFish, read Adding Usersto GlassFish.

» X.509 Certificate: An X.509 certificate specifies a binding between a public key and a set of attributes
that includes (at least) a subject name, issuer name, serial number, and validity interval. An X.509
certificate may be used to validate a public key that may be used to authenticate a SOAP message or to
identify the public key with a SOA P message that has been encrypted. When this option is selected, you
must specify a truststore. For information on specifying a truststore, read To Configure the Truststore
on a Service Manually.

* Issued Token : Anissued token is atoken issued by atrusted Secure Token Service (STS). The service
does not trust the client directly, but instead trusts tokens issued by a designated STS. In other words,
the STSistaking on the role of a second service with which the client has to securely authenticate. The
issued tokens contain akey, which is encrypted for the server and which is used for deriving new keys
for signing and encrypting.

e SAML Token: A SAML Token uses Security Assertion Markup Language (SAML) assertionsas security
tokens.

12.8. Configuring A Secure Token Service
(STS)

A Secure Token Service (STS) is a Web service that issues security tokens. That is, it makes assertions
based on evidence that it trusts, to whoever trusts it (or to specific recipients). To communicate trust, a
service requires proof, such asasignature, to prove knowledge of a security token or set of security tokens.
A serviceitself can generate tokens or it can rely on a separate STS to issue a security token with its own
trust statement (note that for some security token formats this can just be a re-issuance or co-signature).
Thisformsthe basis of trust brokering.

Theissued token security model includesatarget service, aclient, and atrusted third party called a Security
Token Service (STS). Policy flowsfrom serviceto client, and from STSto client. Policy may be embedded
inside an issued token assertion, or acquired out-of-hand. There must be an explicit trust relationship
between the service and the STS and the client and the STS. There does not need to be atrust relationship
between the client and service.

When the web service being referenced by the client uses any of the STS security mechanisms (refer to
tables in Summary of Service-Side Configuration Requirements and Summary of Client-Side Configura-
tion Requirements), an STS must be specified. Y ou can specify the STSin the following ways.

» On the service side, specify the endpoint of the Issuer element and/or specify the Issuer Metadata Ex-
change (Mex) address of the STS.

If you need to create athird-party STS, follow the stepsin To Create a Third-Party STS.
For more information on managing the STS, see Managing multiple services with Metro based STS .

If you already have an STS that you want to use, follow the stepsin To Specify an STS on the Service
Side.

149

Using WSIT Security

An example that creates and uses an STS can be found at Example: STS Issued Token (STS) .

An example that shows how to achieve the trust brokering between different domains using an STS can
be found at Example: Broker Trust STS (BT) .

An example that shows how to use SecureConversation with an STS can be found at Example: STS
Issued Token With SecureConversation (STS+SC) .

* Ontheclient side, specify theinformation for apreconfigured STS. Thisismainly used for alocal STS
that is in the same domain as the client. Configuring the STS for the client is described in To Specify
an STS on the Client Side..

This section covers the following topics:
» To Create aThird-Party STS

» To Specify an STS on the Service Side
» To Specify an STS on the Client Side

ToCreatea Third-Party STS

Usethe STSwizard to create an STS. When using the STSwizard, provide the name of the STSimplemen-
tation class. This class must extend com sun. xm . ws. security.trust. sts. BaseSTSI npl .
After completing the steps of the wizard, your application will contain a new service that is an STS and
includes a provider implementation class, STS WSDL, and a WSIT configuration file with a predefined
set of policies.

To use the STS wizard to create an STS, follow these steps.

Createa new project for the STS by selecting File | New Project.
Select Java Web, then Web Application, then Next.

Type a Project Name, then Next, then the desired Server. Click Finish.
Right-click the STS Project, and select New, then select Other.

Select Web Servicesfrom the Categorieslist.

Select Secure Token Service (STS) from the File Type(s) list.

Click Next.

Type a name for the Web Service Class Name.

© o N o o &~ w0 DdD P

Typeor select a namefor the Package list.

=
©

Click Finish.

The IDE takes awhile to create the STS. When created, it appears under the project's Web Services
node asyour_STSSer vi ce , and the Javafile appearsin the right pane.

11. The STSwizard createsan implementation of the provider class.

12. Back in the Projects window, expand the STS project folder, expand the Web Services node,
right-click on the web service, and select Edit Web Service Attributesto configurethe STS.

13. Select the" Version Compatibility” to" .NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

150

Using WSIT Security

14. Makesure Secure Serviceis selected.

15. Select a Security Mechanism that isNOT one of the STS mechanisms. The example application
uses Username Authentication with Symmetric Key.

16.

17.

Select the Configure button. For the Algorithm Suite option, specify a value that matchesthe
value of theweb service. Set the Key Sizeto 128 if you have not configured Unlimited Strength
Encryption. Select OK to close the configuration dialog.

Note

Some of the agorithm suite settings require that Unlimited Strength Encryption be con-
figured in the Java Runtime Environment (JRE), particularly the algorithm suites that use
256 bit encryption. Download the Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files. Installation instructions are provided in the JCE zip file. You
can download JCE from this URL: http://www.oracle.com/technetwork/javaljavase/down-
loads/index.html

Make sure Act as Secure Token Service (STYS) is selected.

The default values will create avalid STS.

Optionally, you can change the following configuration options by clicking the Configure button:

Issuer : Specify an identifier for the issuer for the issued token. This value can be any string that
uniquely identifiesthe STS, for example, MySTS..

Contract Implementation Class : Specify the actual implementation class for the WSTr ust -
Contr act interface that will handle token issuance, validation, and the like. Default value
iscom sun. xm . ws. security.trust.inpl.WTRust Contract| npl forissuing
SAML assertions, or click Browse to browse to another contract implementation class.

Life Time of Issued Tokens: Thelife span of the token issued by the STS. Default valueis 36,000
ms.

Encrypt Issued Key : Select this option if the issued key should be encrypted using the service
certificate. Default istrue.

Encrypt I ssued Token : Select thisoption if theissued token should be encrypted using the service
certificate. Default isfalse.

Optionally, to add one or more Service Providers that have a trust relationship with the STS, click
the Add button, and specify the following configuration options:

Provider Endpoint URI : The endpoint URI of the service provider.
Certificate Alias : The alias of the certificate of the service provider in the keystore.

Token Type : The type of token the service provider requires, for example,
urn: oasi s: nanes:tc: SAML1. 0: assertion.

Key Type: Thetypeof key the service provider requires. The choicesare public key or symmetric
key. Symmetric key cryptography relies on a shared secret and is usually faster than public key
cryptography. Public key cryptography relies on akey that ismade public to al and is primarily
used for encryption but can be used for verifying signatures.

18. Click OK toclosethe Select STS Service Provider dialog, if open.

151

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Using WSIT Security

19. Click OK toclosethe STS Configuration dialog, if open.
20. Click the Keystore button to configurethe keystore.

If you are using the GlassFish stores, click the Load Aliases button and select wssi p . Otherwise,
browse to the location of your keystore and enter the relevant information.

Click OK to close the dialog.

21. Right-click the STSProject and select Properties. Select the Run category, and type the follow-
ing in the Relative URL field: / your_STS Ser vi ce?wsdl .

22. RuntheProject (right-click the Project and select Run). The STSWSDL displaysin a browser
window.

Note

If you are receiving compilation errors during the build, you may need to update your JRE's
JAX-WS version to the latest release version. See Section 2.6, “Using Eclipse implementa-
tion of Jakarta XML Web Services/ Metro with Java SE” for more details.

Check Building custom STS to build a custom STS to control the user attributes to be included in the
SAML assertion.

Managing multiple serviceswith Metro based STS

Metro based STS can be used to secure multiple services. One need to register a service provider to an
STS before the issued tokens of the STS can be used for that service.

Each resgisted service comes up as a ServiceProvide in the STSConfiguration:

Example 12.5.

<t c: STSConfi gurati on
xm ns:tc="http://schemas. sun. conf ws/ 2006/ 05/ trust/server"
encrypt | ssuedKey="true" encryptlssuedToken="fal se">
<tc:LifeTi me>36000</tc: LifeTi me>
<tc: Contract>com sun.xm . ws. security.trust.inpl.WTrustContract!npl
</tc: Contract>
<tc:lssuer>SunSTS</tc:|ssuer>
<tc: Servi ceProvi ders>
<tc: Servi ceProvi der endPoi nt="http://| ocal host: 8080/ axws-s5/ si npl e" >
<tc: CertAlias>bob</tc: CertAlias>
<t c: TokenType>
http://docs. oasi s-open. or g/ wss/ oasi s-wss-sanl -t oken-profile-1.1
#SAMLV1. 1
</tc: TokenType>
</tc: ServiceProvider>
<l-- nore service providers -->
</tc: ServiceProviders>
</tc: STSConfi gurati on>

At the minimum, you need to specify the endpoint as well as the cert alias for each service provider. At
run time, the actual service isidentified for each request RST from aclient to the STS. The RST contains
an AppliesTo element pointing to the endpoint of the targeted service. On the STS side, the certificate of
the service is used to encrypt the issued tokens and proof keys for the service.

With Netbeans, one can add Service Providersto an STS through the configuration panel for STS:

152

Using WSIT Security

1. Click Configure button besides Act as Secure Token Service (STS).
2. Inthe STS Configuration panel, click Add

3. Inthe Select Service Provider panel, add information of the service provider. Note that you must
import the certificate of the service provider to the TrustStore of the STS.

We provide a default Service Provider with endpoint="default". This default setting, working with any
service providers, is for testing purpose only. In a product, you must remove it and add all the service
providers to be secured by the STS. Y ou may also implement STSConfigurationProvider with your own
STSConfiguration and TrustSPMetada to configure STS and register service providersto adeployed STS
at runtime.

To Specify an STSon the Service Side

This section discusses how to specify a Security Token Service that can be referenced by the service. On
the service side, you select a security mechanism that includes STSin itstitle.

The STSitsalf is secured using a separate (non-STS) security mechanism. The security configuration of
the client-side of this application is dependent upon the security mechanism selected for the STS, and not
on the security mechanism selected for the application.

To specify an STS for the web service, follow these steps.
1. Right-click the node for the web service you want to secure.
2. Select Edit Web Service Attributes.

3. Select the" Version Compatibility” to" .NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

4. Select Secure Service.

5. Select a Security Mechanism that specifies STS from the list.
6. Click Configureto specify the STSinformation.

7. Typethelssuer Addressand/or Issuer Metadata Address.

When the Issuer Address and the Metadata values are the same, you only need to type the
Issuer Address. For the example application, the Issuer Address would be http://1 ocal -
host : 8080/ MySTSPr oj ect/ MySTSSer vi ce .

8. Set the Algorithm Suite value so that the algorithm suite value of the service matchesthe algo-
rithm suitevalueof the STS. Select 128if you havenot installed Unlimited Strength Encryption.

9. Click OK to closethedialog.
10. Click OK.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefile wsit - package-name . service-nanme .xm andsgect
the Source page.

11. Right-click the project node and select Run to compilethe application and deploy it onto Glass-
Fish. A browser will open and display the WSDL filefor the application.

153

Using WSIT Security

To Specify an STSon the Client Side

Once you've determined whether it is required to configure an STS on the client side (see Summary of
Client-Side Configuration Requirements), configure the client Secure Token Service options. To configure
the client-side with STS, you need to configure the clients for the service and STS follow these steps.

1. IntheProjectswindow, expand the node for the web servicesclient.
2. Expand the Web Service References node.

3. Right-click the node for the web service reference for which you want to configure security
options.

4. Select Edit Web Service Attributes.
5. WhentheWeb Service References Attributes Editor isopened, select the Quality of Servicetab.

6. Providetheservice'scertificate by pointingto an aliasin theclient truststore. For development
purposes, click the Truststorebutton,, click the L oad Aliasesbutton for thetruststoreand select
XWs-security-server fromtheAliaslist.

. In some instances, NetBeans will not detect that this client is a JSR-196 client, and thus
will requirethat thetruststore entries be manually configured. To dothis, follow the steps
in this section.

e Expand theclient project node, then expand Sour ce PackagessM ETA-INF.

e Double-click <service-project>..xml toopenit in the Sour cewindow. Click the Sourcetab to
view the code. Find thesc: Tr ust St or e elements. If these elements contain parameters
for | ocati on and st or epass , then just continue to the next section. If not, add these
attributes to this file. The following code shows an example of how these elements could
be specified.

Example 12.6.

<sc: Trust Store
wspp: visibility="private"
| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ domai n1\ confi g\ cacerts.jks"
st orepass="changeit" peeralias="xws-security-server"/>

7. Expand the Security Token Service node to provide details for the STS to be used. When the
Endpoint and the M etadata values ar ethe same, you only need to enter the Endpoint value. For
the example application you would enter the following value in the Endpoint field: htt p: //
| ocal host: 8080/ MySTSPr oj ect/ MySTSSer vi ce . For WS Trust Version field, select
1.3if STSendpoint uses” .NET 3.5/ Metro 1.3" version compatibility. Otherwise usethe default
WS Trust Version.

The Endpoint field is a mandatory field. Depending on how you plan to configure the STS, you can
provide either Metadata information or information regarding the WSDL Location, Service Name,
Port Name and Namespace. The examples following this section describe a few potential STS con-
figurations.

8. Click OK to closethisdialog.

9. Theservicerequires atoken to beissued from the STS, which, for the example, ishttp://
| ocal host: 8080/ MySTSPr oj ect/ MySTSSer vi ce , with WSDL filehttp://1 ocal -
host : 8080/ MySTSPr oj ect/ MySTSSer vi ce?wsdl . Todo this, follow these steps:

154

Using WSIT Security

10.

11.

12.

13.

14.

Right-click the web service client project node and select New | Web Service Client.
The New Web Service Client window appears.
Select the WSDL URL option.

Cut and paste the URL of the web service that you want the client to consume into the
WSDL URL field. For thetutorial example, the URL for the My STS web servicenis:

http://1 ocal host: 8080/ MySTSPr oj ect/ MySTSSer vi ce?wsdl

Type the package name, for example, or g. me. cal cul ator. client. sts , into the
Packagefield, then click Finish.

The Projects window displays the new web service client.

Drill down from the web service client project node to the Web Service Refer ences node.

Right-click the node for the STS service, and select Edit Web Service Attributes.

Select the Quality of Servicetab.

If required, provide the client's private key by pointing to an aliasin the keystore. For devel-
opment purposes, click the Keystore button, click the Load Aliases button, and select xws-
security-client fromtheAliaslist.

Verify the STS's certificate by pointing to an alias in the client truststore. For development
purposes, click the Truststore button,, click the Load Aliases button and select wssi p from
the Aliaslist.

In some instances, NetBeans will not detect that this client is a JSR-196 client, and thus
will require that the keystore and truststore entries be manually configured. To do this,
follow the stepsin this section.

Expand the web services client project node, then Sour ce Packages | META-INF.

Double-click <sts-service> .xml to open it in the Source window. Click the Source tab to
view the code. Find the sc: KeySt or e and/or sc: Tr ust St or e elements. If these ele-
mentscontain parametersfor | ocat i on and st or epass , then just continueto the next
section. If not, add these attributes to this file. The following code shows an example of
how these elements could be specified.

Example 12.7.

<sc: Trust Store
wspp: visibility="private"
| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ dormai n1\ confi g\ cacerts.jks"
st orepass="changeit" peeralias="wssip"/>
<sc: KeyStore
wspp: visibility="private"
| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ dormai n1\ confi g\truststore.jks"
st orepass="changeit" alias="xws-security-client"/>

15. If required, enter the default user name and password.

If you followed the steps in Adding Users to GlassFish , this will be User Name wsi t User and
Password changei t .

155

Using WSIT Security

16. Click OK toclosethisdialog.

17. Compileand run thisapplication by right-clicking the web servicesclient project and selecting
Run.

12.9. Example Applications

Thefollowing example applications demonstrate configuring web services and web service clientsfor dif-
ferent security mechanisms. If you are going to work through the examples sequentially, you must manu-
ally undo the changes to the service and then refresh the client in order for the client to receive the most
recent version of the service's WSDL file, which contains the latest security configuration information.

» Example: Username Authentication with Symmetric Key (UA)

» Example: Username with Digest Passwords

» Example: Mutual Certificates Security (MCS)

» Example: Transport Security (SSL)

» Example: SAML Authorization over SSL (SA)

» Example: SAML Sender Vouches with Certificates (SV)

e Example: STSIssued Token (STS)

» Example: Broker Trust STS (BT)

» Example: STS Issued Token With SecureConversation (STS+SC)

» Example: Kerberos Token (Kerb)

12.9.1. Example: Username Authentication with Symmet-
ric Key (UA)

The section describes the following tasks:

» To Secure the Example Service Application (UA)

» To Secure the Example Web Service Client Application (UA)

To Securethe Example Service Application (UA)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

For this example, the security mechanism of Username Authentication with Symmetric Key is used to
secure the application. To add security to the service part of the example, follow these steps.

1. Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans .

a. CreatingaWeb Service

b. Skip the section on adding Reliable M essaging.

156

Using WSIT Security

c. Deploying and Testing a Web Service (first two steps only, do not run the project yet)

Expand Calculator Application | Web Services, then right-click the node for the web service
(CalculatorWS) and select Edit Web Service Attributes.

Deselect Reliable Messaging if it is selected.
In the Calculator WSPortBinding section, select Secure Service.

From the drop-down list for Security Mechanism, select Username Authentication with Sym-
metric Key.

Select Use Development Defaultsto set up the keystore and truststorefiles, and to create a user
for thisapplication, if needed.

Click OK toclosethe Cal cul at or WsSer vi ce dialog.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. ne. cal cul at or. Cal cul at or W5. xri . Thisfile
contains the security elementswithinwsp: Pol i cy tags.

An example of thisfile can be viewed in the tutoria by clicking this link: Service-Side WSIT Con-
figuration Files.

Right-click the Calculator Application node and select Run. A browser will open and display
the WSDL filefor the application.

Follow the steps to secure the client application as described in To Secure the Example Web
Service Client Application (UA) .

To Securethe Example Web Service Client Application (UA)

This section demonstrates adding security to the web service client that references the web service created
in the previous section. Thisweb service is secured using the security mechanism described in Username
Authentication with Symmetric Key . When this security mechanism is used with aweb service, the web
service client must provide a username and password in addition to specifying the certificate of the server.

To add security to the client that references this web service, compl ete the following steps.

1.

Createthe client application by following the steps described in Creating a Client to Consume
aWSIT-Enabled Web Service.

Note

Whenever you make changes on the service, refresh the client so that the client will pick up
the change. To refresh the client, right-click the node for the Web Service Reference for the
client, and select Refresh Client.

Expand the node for the web service client application, Calculator W SSer vletClient.
Expand the Web Service References node.
Right-click on Calculator W SService, select Edit Web Service Attributes.

In the Security section of the Quality of Service tab, select Use Development Defaults. Click
OK to close.

157

Using WSIT Security

Note

By default, the user name of wsitUser and the password of changeit will be entered in this
section. If the example doesn't run, make sure that you have a user with this name and pass-
word set up in the file realm of the Application Server or GlassFish, as described in Adding
Usersto GlassFish .

6. Ifyou'dliketo, inthetree, drill down from the project to Sour ce Packages | META-INF. Dou-
ble-click on Cal cul at or WsSer vi ce. xm , and verify that linessimilar to thefollowing are
present:

Example 12.8.

<wsp: Al l >
<sc: TrustStore
wspp: visibility="private"
| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ donai n1\ confi g\ cacerts.jks"
st orepass="changeit" peeralias="xws-security-server"/>
<sc: Cal | backHandl er Confi gurati on wspp:visibility="private">
<sc: Cal | backHandl er defaul t="wsitUser" nane="usernaneHandl er"/>
<sc: Cal | backHandl er defaul t="changeit" nane="passwordHandl er"/>
</ sc: Cal | backHandl er Confi gur ati on>
</wsp: Al| >

By selecting Use Development Defaults when securing the service, these values are automatically
generated for you.

An example of thisfile can be viewed in the tutorial by clicking thislink: Client-Side WSIT Config-
uration Files .

7. Right-click theCalculator WSServletClient nodeand select Run. Theresult of theadd operation
will display in a browser window.

12.9.2. Example: Username with Digest Passwords

This example is similar to Example: Username Authentication with Symmetric Key (UA) except that
digest passwords (along with Created and Nonce) are used in UsernameToken, and UsernameToken is not
encrypted in the message.

To Securethe Service Application, all the steps remain same, except for step 6. For step 6, do thefollowing:
1. Click on Configure, select Support Hash Passwords. Click OK.

2. Unsdlect Use Development Defaults, if alr eady selected. Specify theK eyStore. Click on Validators,
and specify the username validator.

The Username Validator created should extend
PasswordValidationCallback.WsitDigestPasswordValidator. Here is a sample UsernameValidator for
Digest passwords.

Example 12.9.
i mport com sun. xm .wss.inpl.callback. PasswordVal i dati onCal | back;

public class Sanpl eWit D gest Passwor dVal i dat or ext ends
Passwor dVal i dati onCal | back. Wi t Di gest Passwor dVal i dat or {

158

Using WSIT Security

public void setPassword(PasswordVal i dati onCal | back. Request request){
/1 Get this password from sonmewhere - for exanple a JDBC Real m
String passwd = "abcd! 1234";
Passwor dVal i dati onCal | back. Di gest Passwor dRequest req =
(Passwor dVval i dati onCal | back. Di gest Passwor dRequest) r equest ;
req. set Passwor d(passwd) ;

Note

Use of Digest Passwords can be supported for any realm which store plain passwords (not
hashed ones). Currently thisis supported for JIDBC realm in GlassFish. Or optionally, a user
can write his own custom realm.

The steps for securing the client remain same as in Example: Username Authentication with Symmetric
Key (UA).

12.9.3. Example: Mutual Certificates Security (MCS)

The section describes the following tasks:

» To Secure the Example Service Application (MCYS)

» To Secure the Example Web Service Client Application (MCS)

To Securethe Example Service Application (MCS)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

For this example, the security mechanism of Mutual Certificates Security is used to secure the application.
To add security to the service part of the example, follow these steps.

1

N o ok~ w

Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans .

a. CreatingaWeb Service
b. Skip the section on adding Reliable M essaging.
c. Deploying and Testing a Web Service (first two steps only, do not run the project yet)

Expand Calculator Application | Web Services, then right-click the node for the web service,
CalculatorWS, and select Edit Web Service Attributes.

Deselect Reliable Messaging if it is selected.

Select Secure Service.

From the drop-down list for Security Mechanism, select Mutual Certificates Security.
Select Use Development Defaults.

Click OK to closethe dialog.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. ne. cal cul at or. Cal cul at or W5. xrl . Thisfile
contains the security elementswithinwsp: Pol i cy tags.

159

Using WSIT Security

8. Right-click the Calculator Application node and select Run.
A browser will open and display the WSDL file for the application.
9. Veify that the WSDL file containsthe Asymmet ri cBi ndi ng element.

10. Follow the steps to secure the client application as described in To Secure the Example Web
Service Client Application (MCS) .

To Securethe Example Web Service Client Application (MCS)

This section demonstrates adding security to the web service client that references the web service created
in the previous section. This web service is secured using the security mechanism described in Mutual
Certificates Security .

To add security to the client that references this web service, compl ete the following steps.

1. Createtheclient application following the steps described in Creating a Client to Consume a
WSIT-Enabled Web Service.

Note

Whenever you make changes on the service, refresh the client so that the client will pick up
the change. To refresh the client, right-click the node for the Web Service Reference for the
client, and select Refresh Client.

2. If you'd like, in the tree, drill down from the project to Source Packages | META-INF. Dou-
ble-click on Cal cul at or WsSer vi ce. xm , click the Source tab, and look at the section in
the section <wsp: Al | >to seethe WSIT codethat has been added to this configuration file.

3. Compile and run this application by right-clicking the Calculator W SServletClient node and
selecting Run. Theresult of the add operation will display in a browser window.

12.9.4. Example: Transport Security (SSL)

This section describes the following tasks:
» To Secure the Example Service Application (SSL)
* To Secure the Example Web Service Client Application (SSL)

To Securethe Example Service Application (SSL)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding transport security to both the web service and to the web service client.

For this example, the security mechanism of Transport Security (SSL) is used to secure the application.
To add security to the service part of the example, follow these steps.

1. Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans :

a. CreatingaWeb Service
b. Skip the section on adding Reliable M essaging.

c. Deploying and Testing a Web Service (first two steps only, do not run the project yet)

160

Using WSIT Security

N o 0o~ w

10.

Expand Calculator Application | Web Services, then right-click the node for the web service,
CalculatorWS, and select Edit Web Service Attributes.

Deselect Reliable Messaging if it is selected.

Select Secure Service.

From thedrop-down list for Security Mechanism, select Transport Security (SSL).
Select Use Development Defaults.

Click OK to closethe dialog.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. ne. cal cul at or. Cal cul at or W5. xrml . Thisfile
contains the security elementswithinwsp: Pol i cy tags.

TorequiretheservicetousetheHTTPSprotocol, security requirementsmust bespecified inthe
service'sapplication deployment descriptor, which isweb. xm for a web serviceimplemented
asa servlet. Selecting Use Development Defaults takes car e of thistask for you.

To view or change the security information, follow these steps:

a. From your web service application, expand Web Pages | WEB-INF.
b. Double-click web. xm toopen it in the editor.

c. Select the Security tab.

d. Expand the Security Constraint named SSL transport for Cal cul at or WsSer -
vi ce

e. A Web Resource Collection named Secur e Ar ea containsthe URL Pattern to be pro-
tected, / Cal cul at or WsSer vi ce/ / * and the HTTP Methodsto be protected, , POST.

f. Unselect Enable Authentication Constraint if it is selected.

g. TheEnable User Data Constraint box is checked and CONFIDENTIAL is chosen asthe
Transport Guaranteeto specify that the application uses SSL.

h. Click the XML tab to view theresulting deployment descriptor additions.

Right-click the Calculator Application node and select Run. I f the server presentsitscertificate,
slas, accept thiscertificate. A browser will open and display the WSDL filefor the application.

Follow the steps to secure the client application as described in To Secure the Example Web
Service Client Application (SSL) .

To Securethe Example Web Service Client Application (SSL)

This section demonstrates adding security to the web service client that references the web service created
in the previous section. This web service is secured using the security mechanism described in Transport
Security (SSL) .

To add security to the client that references this web service, complete the following steps.

1

Createthe client application by following the steps described in Creating a Client to Consume
aWSIT-Enabled Web Service, with the exception that you need to specify the secure WSDL
when creating the Web Service Client.

161

Using WSIT Security

To do this, create the client application up to the step where you create the Servlet (step 5 as of this
writing) by following the steps described in Creating a Client to Consume a WSIT-Enabled Web
Service, with the following exception.

In the step where you are directed to cut and paste the URL of the web service that you want the
client to consume into the WSDL URL field, type https: / / fully-qualified-hostname: 8181 / Cal -
cul at or Appl i cati on/ Cal cul at or WsSer vi ce?wsd| (changesindicated in bold) to indi-
cate that this client should reference the web service using the secure port. The first time you access
this service, accept the certificate (slas) when you are prompted. Thisisthe server certificate popping
up to confirm its identity to the client.

In some cases, you might get an error dialog telling you that the URL https:// ful-
ly-qualified-hostname : 8181/ Cal cul at or Appl i cati on/ Cal cul at or WsSer vi ce?ws-
dl couldn't be downloaded. However, thisthe correct URL, and it doesload when you runthe service.
So, when thiserror occurs, repeat the stepsthat create the Web Service Client using the secure WSDL.
The second time, the web service reference is created and you can continue creating the client.

Note

If you prefer to use localhost in place of the fully-qualified hosthame (FQHN) in this exam-
ple, you must follow the stepsin Transport Security (SSL) Workaround .

2. Continuecreating the client following theremainder of theinstructionsin Creating a Client to
Consume a WSIT-Enabled Web Service.

Note

Some users are working through this document and just making the recommended changes
and refreshing the client. For this example, you must create a new client so that you can
specify the secure WSDL to create the correct setup for the client.

Whenever you make changes on the service, refresh the client so that the client will pick up
the change. To refresh the client, right-click the node for the Web Service Reference for the
client, and select Refresh Client.

3. Compileand run thisapplication by right-clicking on the Calculator W SSer vletClient node and
selecting Run. Theresult of the add operation will display in a browser window.

12.9.5. Example: SAML Authorization over SSL (SA)

This section describes the following tasks:
» To Secure the Example Service Application (SA)
» To Secure the Example Web Service Client Application (SA)

To Securethe Example Service Application (SA)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

For this example, the security mechanism of SAML Authorization over SSL is used to secure the appli-
cation. The steps are similar to the ones described in Example: Username Authentication with Symmetric
Key (UA) , with the addition of the writing of aclient-side SAML callback handler to populate the client's
request with a SAML assertion.

162

Using WSIT Security

To add security to the service part of the example, follow these steps.

1

o o &~ W

10.

Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans :

a. CreatingaWeb Service
b. Skip the section on adding Reliable M essaging.
c. Deploying and Testing a Web Service (first two stepsonly, do not run the project yet)

Expand Calculator Application | Web Services, right-click the node for the web service, Calcu-
latorWS, and select Edit Web Service Attributes.

Deselect the Reliable M essaging option if it is selected.
Select Secure Service.
From the drop-down list for Security Mechanism, select SAML Authorization over SSL.

Select Use Development Defaults to have theweb. xm file modified to include a security con-
straint that forcesthe use of SSL.

Click OK to exit the editor.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. ne. cal cul at or. Cal cul at or W5. xrml . Thisfile
contains the security elementswithinwsp: Pol i cy tags.

TorequiretheservicetousetheHTTPSprotocol, security requirementsmust bespecified inthe
service's application deployment descriptor, which isweb. xm for a web serviceimplemented
asa servlet. Selecting Use Development Defaults takes car e of thistask for you.

To view or change the security information in the deployment descriptor, follow these steps:
a From your web service application, expand Web Pages | WEB-INF.

b. Double-click web. xm toopen it in the editor.

c. Select the Security tab.

d. Expand the Security Constraint named SSL transport for Cal cul at or WsSer -
vi ce

e. A Web Resource Collection named Secur e Ar ea containsthe URL Pattern to be pro-
tected, / Cal cul at or WsSer vi ce/ / * and the HTTP Methodsto be protected, , POST.

f. Unselect Enable Authentication Constraint if it is selected.

g. TheEnable User Data Constraint box is checked and CONFIDENTIAL is chosen asthe
Transport Guaranteeto specify that the application uses SSL.

h. Click the XML tab to view theresulting deployment descriptor additions.

Right-click the Calculator Application node and select Run. Accept theslas certificate if you
are prompted to. A browser will open and display the WSDL filefor the application.

Follow the steps to secure the client application as described in To Secure the Example Web
Service Client Application (SA) .

163

Using WSIT Security

To Securethe Example Web Service Client Application (SA)

This section demonstrates adding security to the web service client that references the web service created
in the previous section. This web service is secured using the security mechanism described in SAML
Authorization over SSL .

To add security to the client that references this web service, complete the following steps.

1

This example uses a non-JSR-109-compliant client for variety. To do this, createtheclient ap-
plication up to the step where you create the Servlet (step 5 as of this writing) by following
the steps described in Creating a Client to Consume a WSIT-Enabled Web Service, with the
following exceptions:

a. Inthestep whereyou are directed to cut and paste the URL of the web service that you
want theclient to consumeintothe WSDL URL field, typeht t ps: // fully-qualified-host-
name : 8181/ Cal cul at or Appl i cati on/ Cal cul at or WsSer vi ce?wsdl , to indi-
catethat thisclient should reference the web service using the secure port.

The first time you access this service, accept the certificate (slas) when you are prompted.
Thisisthe server certificate popping up to confirm its identity to the client.

In some cases, you might get an error dialog telling you that the URL ht t ps: // fully-qual-
ified-hostname : 8181/ Cal cul at or Appl i cati on/ Cal cul at or WESer vi ce?wsdl
couldn't be downloaded. However, this the correct URL, and it does load when you run the
service. So, when this error occurs, repeat the steps that create the Web Service Client using
the secure WSDL. The second time, the web service reference is created and you can continue
creating the client.

Note

If you prefer to use| ocal host in place of the fully-qualified hostname (FQHN) in
this example, follow the stepsin Transport Security (SSL) Workaround .

b. Nametheapplication Calculator Client (sinceit'snot a serviet.).

Instead of creating a client servlet asis described in Creating a Client to Consume a WSIT-
Enabled Web Service, just add the web service operation to the generated i ndex. j sp fileto
create a non-JSR-109 client. To do this, perform these steps:

a. Ifthei ndex. j sp fileisnot open in theright pane, expand Web Pages, then double-click
i ndex. j sp toopen it.

b. Drill down through the Web Service References node until you get to the add operation.

c. Dragtheadd operation to the lineimmediately following the following line:

Example 12.10.
<body>
d. Editthevaluesfori andj if you'dlike.

Write a SAM_Cal | back handler for the client side to populate a SAML assertion into the
client'srequest to the service.

To create the SAMLCal | backHandl er , follow these steps:

164

Using WSIT Security

10.

Right-click the Calculator Client node.

Select New | Java Package.

For Package Name, typexwss. sam and click Finish.

Drill down from Calculator Client | Sour ce Packages | xwss.saml.

Right-click xwss.saml and select New | Other.

From the Categorieslist, select Java.

From the File Typeslist, select Empty Java File and click Next.

For ClassName, type Sam Cal | backHandl er and click Finish.

The empty file appearsin the IDE.

Download the examplefile Sam Cal | backHandl er . j ava from thefollowing URL:

http://xwss.java.net/serviets/
ProjectDocumentL ist?fol derl D=6645& expandFol der=6645& fol derl D=6645

Open thefilein atext editor.

M odify the hone variableto provide the hard-coded path to your GlassFish installation.
For example, modify the line:

Example 12.11.

String home = System get Property("Wsl T_HOVE");

to

Example 12.12.
String home = "/hone/ gl assfish";

Copy the contents of this file into the Sam Cal | backHandl er . j ava window that is
displayingin the IDE.

Drill down from Calculator Client | Web Service Refer ences.

Right-click Calculator WSService and select Edit Web Service Attributes.
Select the Quality of Servicetab of the Calculator W SSer vice dialog.
Unselect Use Development Defaults.

Enter the name of the SAML Callback Handler written earlier in this section,
xwss. sam . Sanl Cal | backHandl er , intothe SAML Callback Handler field.

Click OK to closethisdialog.

To view the WSIT Configuration options, in the tree, drill down from the project to Source
Packages | META-INF. Double-click Cal cul at or WsSer vi ce. xm , click the Source tab,

165

http://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
http://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645

Using WSIT Security

and look for thelineswherexwss. sanl . Sanl Cal | backHandl er isspecified asthe SAML
Callback Handler classfor the client.

11. Compileand runthisapplication by right-clickingthe Calculator Client nodeand selecting Run.
Theresult of theadd operation will display in a browser window.

12.9.6. Example: SAML Sender Vouches with Certificates

(SV)

This section describes the following tasks:
» To Secure the Example Service Application (SV)

» To Secure the Example Web Service Client Application (SV)

To Securethe Example Service Application (SV)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

For this example, the security mechanism of SAML Sender Vouches with Certificates is used to secure
the application. The steps are similar to the ones described in Example: Username Authentication with
Symmetric Key (UA) , with the addition of the writing of aclient-side SAML callback handler to populate
the client's request with a SAML assertion.

To add security to the service part of the example, follow these steps.

1. Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans:

a. CreatingaWeb Service
b. Skip the section on adding Reliable M essaging.
c. Deploying and Testing a Web Service (first two steps only, do not run the project yet)

2. Expand Calculator Application | Web Services, then right-click the node for the web service,
CalculatorWS, and select Edit Web Service Attributes.

3. Deselect the Reliable M essaging option if it is selected.
4. Select Secure Service.

5. From thedrop-down list for Security Mechanism, select SAML Sender Vouches with Certifi-
cates.

6. Select Use Development Defaults. This step properly configures the keystore, truststore, and
default user for this security mechanism.

7. Click OK.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. ne. cal cul at or. Cal cul at or W5. xril . Thisfile
contains the security elementswithinwsp: Pol i cy tags.

8. Right-click the Calculator Application node and select Run. Accept the slas certificate if you
are prompted to.

166

Using WSIT Security

A browser will open and display the WSDL file for the application.

9. Follow the steps to secure the client application as described in To Secure the Example Web
Service Client Application (SV) .

To Securethe Example Web Service Client Application (SV)

This section demonstrates adding security to the web service client that references the web service created

in the previous section. This web service is secured using the security mechanism described in SAML

Sender Vouches with Certificates .

To add security to the client that references this web service, compl ete the following steps.

1. Thisexampleusesanon-JSR-109-compliant client. Todothis, createtheclient application up to
the step whereyou createthe Servlet (step 5 as of thiswriting) by following the steps described
in Creating a Client to Consume a WSI T-Enabled Web Service, with one exception: namethe
application Calculator Client (sinceit'snot a servlet.).

2. Instead of creating a client servlet asis described in Creating a Client to Consume a WSIT-
Enabled Web Service, just add the web service operation to the generated i ndex. j sp fileto
create a non-JSR-109 client. To do this, follow these steps:

a. Ifthei ndex. j sp fileisnot open in theright pane, double-click it to open it.

b. Drill down through the Web Service References node until you get to the add operation.

c. Dragtheadd operation tothelineimmediately following the following line:

Example 12.13.
<body>
d. Editthevaluesfori andj if you'dlike.

3. Writea SAM.Cal | back handler for the client side to populate a SAML assertion into the
client'srequest to the service.

To create the SAMLCal | backHandl er , follow these steps:

a. Right-click the Calculator Client node.

b. Select New | Java Package.

c. For Package Name, typexwss. sanml and click Finish.

d. Drill down from Calculator Client | Sour ce Packages | xwss.saml.
e. Right-click xwss.saml and select New | Other.

f. From the Categorieslist, select Java.

g. FromtheFile Typeslist, select Empty Java Fileand click Next.

h. For ClassName, type Sani Cal | backHandl er and click Finish.

The empty file appearsin the IDE.

167

Using WSIT Security

10.

i. Download the examplefile Sam Cal | backHandl er. j ava from the following URL :

http://xwss.java.net/serviets
ProjectDocumentList?fol derl D=6645& expandFol der=6645& fol derl D=6645

j. Openthefilein atext editor.

k. Modify the hone variableto provide the hard-coded path to your GlassFish installation.

For example, modify the line:

Example 12.14.
String home = System get Property("Wsl T_HOVE");

to

Example 12.15.
String home = "/honme/ gl assfish";

I. Copy the contents of this file into the Sam Cal | backHandl er. j ava window that is
displayingin the IDE.

Drill down from Calculator Client | Web Service References.
Right-click on Calculator W SService and select Edit Web Service Attributes.
Select the Quality of Servicetab of the Calculator W SSer vice dial og.

In the SAML Callback Handler field, type the name of the class written in step 3 above,
xwss. sanl . Sanml Cal | backHandl er .

Configurethekeys: Click on thekeystorebutton, select thealias" xws-security-client” , enter the
password " changeit", in the password field. Submit thisdialog; Click on thetruststorebutton,
select the alias " xws-security-server™ . Submit the dialog.

Click OK to close thisdialog.

In the tree, drill down from the project to Source Packages | META-INF. Dou-
ble-click CalculatorWSServicexml, click the Source tab, and look for that lines where
xwss. sanml . Sanml Cal | backHandl er is specified asthe SAML Callback Handler class for
the client. In some instances, NetBeans will not correctly specify the keystore and truststore
information for non-JSR-196 clients, and thuswill requirethat the keystore and truststore en-
tries be manually configured. To do this, follow the examplein this section.

« Find the sc: KeySt or e and sc: Tr ust St or e elements. If these elements contain pa-
rametersfor | ocati onandst or epass in Calculator WSServicexml, then just continue
to the next step. If not, replace the existing keystore and truststore attributes to include
these parameters. The following code shows an example of how these elements should be
specified.

Example 12.16.

<sc: Trust Store
wspp: visibility="private"

168

http://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645
http://xwss.java.net/servlets/ProjectDocumentList?folderID=6645&expandFolder=6645&folderID=6645

Using WSIT Security

| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ donmai n1\ confi g\ cacerts.jks"
st orepass="changeit" peeralias="xws-security-server"/>

<sc: KeyStore
wspp: visibility="private"
| ocati on="<G-_HOVE>\ gl assfi sh\ donai ns\ domai n1\ confi g\ keystore.jks"
storepass="changeit" alias="xws-security-client"/>

11. Compileand runthisapplication by right-clicking the Calculator Client nodeand selecting Run.

Theresult of the add operation will display in a browser window.

12.9.7. Example: STS Issued Token (STS)

This section describes the following tasks:

* To Create and Secure the STS (STS)

» To Secure the Example Service Application (STS)

» To Secure the Example Web Service Client Application (STS)

Another STS example application can be found at the following URL: https://github.com/javaee/metro-
wsit/tree/master/wsit/samples/ws-trust .

To Createand Securethe STS(STS)

To create and secure a Security Token Service for this example, follow these steps.

© N o o ~c w b

10.

Note

For development with NetBeans 6.8, there are some temporary setup changes that will need
to be done--see here [http://old.nabble.com/Create-ST S-with-Netbeans-6.8-and-Glassfish-V 3-
td27597150r0.html] for more details.

Createanew project for the STS by selecting File | New Project.

Select Java Web, then Web Application, then Next.

Type MySTSPr oj ect for the Project Name, then Next, then the desired Server. Click Finish.
Right-click the My STSPr oj ect node, select New, then select Other.

Select Web Servicesfrom the Categorieslist.

Select Secure Token Service (STS) from the File Type(s) list, then click Next.

Type the name My STS for the Web Service Class Name.

Enter or select or g. ne. ny. st s in the Packagefield, then click Finish. If prompted to reload
thecat al og. xm file, click No.

The IDE takes awhile to create the STS. When created, it appears under the project's Web Services
node as My STSSer vi ce .

The STS wizard creates an implementation of the provider class. To view it, expand Source
Packages, then org.me.my.sts. Double-click MySTS. j ava to open it in theright pane.

In the Projects window, expand the MyST SProject node, then expand the Web Services node.
Right-click the MyST SService[| MyST SService Port] node and select Edit Web Service At-
tributesto configurethe STS.

169

https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust
https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust
http://old.nabble.com/Create-STS-with-Netbeans-6.8-and-Glassfish-V3-td27597150r0.html
http://old.nabble.com/Create-STS-with-Netbeans-6.8-and-Glassfish-V3-td27597150r0.html
http://old.nabble.com/Create-STS-with-Netbeans-6.8-and-Glassfish-V3-td27597150r0.html

Using WSIT Security

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

Select the" Version Compatibility” to".NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

Select Secure Serviceif it'snot already selected.

Verify that the Security M echanism of Username Authentication with Symmetric Key is select-
ed.

Select the Configure button. For Algorithm Suite, verify that Basic128 bit is selected (so that it
matchesthe value selected for the service.) Select OK to close the configuration dialog.

If not already selected, select Act as Secure Token Service (STS).

Note

If you'd like to use an STS other than the default, click the STS Configure button, and click
the Add button to add a different service provider. Click OK to close the STS Configuration
dialog.

Click Configure. In the lssuer field, enter MySTS. Click OK to close.

Click theKeystorebutton to provideyour keystorewith the aliasidentifying the service cer tifi-
cate and private key. To do this, click the Load Aliases button, select wssi p , then click OK
to close the dialog.

Click OK.

A new file is added to the project. To view the WSIT configuration file, expand Configuration Files
| xml-resources | web-services | MySTS | wsdl, then double-click the file My STSSer vi ce. wsdl .
Thisfile containsthet c: STSConf i gur ati on element withinthewsp: Pol i cy elements..

Right-click the MyST SProject tab, select Properties. Select the Run category, and typethefol-
lowing in the Relative URL field: / MySTSSer vi ce?wsdl .

Run the Project (right-click the project and select Run).

The STSWSDL appearsin the browser.

Check Building custom STS to build a custom STS to control the user attributes to be included in the
SAML assertion.

To Securethe Example Service Application (STS)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

For this example, the security mechanism of STSIssued Token is used to secure the application. The steps
are similar to the ones described in Example: Username Authentication with Symmetric Key (UA) , with
the addition of creating and securing an STS.

To add security to the service part of the example, follow these steps.

1

Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans.

a. CreatingaWeb Service

170

Using WSIT Security

10.

11.

b. Skip the section on adding Reliable M essaging.
c. Deploying and Testing a Web Service (first two steps only, do not run the project yet).

Expand Calculator Application | Web Services, then right-click the node for the web service,
CalculatorWS, and select Edit Web Service Attributes.

Select the" Version Compatibility” to".NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

Deselect the Reliable M essaging option if it is selected.
Select Secure Service.
From the drop-down list for Security Mechanism, select STS Issued Token.

Click Configure. For Issuer Address and Issuer Metadata Address, enter http: / /1 ocal -
host : 8080/ MySTSPr oj ect / MySTSSer vi ce . For Issuer Metadata, enter http://1 o-
cal host : 8080/ MySTSPr oj ect / MySTSSer vi ce/ mex

For Algorithm Suite, select Basic 128 bit. For Key Size, select 128 (the algorithm suite value
of the service must match the algorithm suite value of the STS). Select OK to close the config-
uration dialog.

Note

If you have configured Unlimited Strength Encryption as described in To Create a Third-
Party STS, you can leave the key size at 256. Otherwise, you must set it to 128.

Select Use Development Defaults.
Click OK.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. me. cal cul at or. Cal cul at or W5. xm and select
the Source page. Thisfile contains the security elementswithinwsp: Pol i cy tags.

Right-click the Calculator Application node and select Run. This step compiles the application
and deploysit onto GlassFish. A browser will open and display the WSDL file for the applica-
tion.

To Securethe Example Web Service Client Application (STS)

This section demonstrates adding security to the CalculatorApplication's web service client. The service
was secured using the security mechanism described in STS Issued Token .

To add security to the web service client, compl ete the following steps.

1

Createthe client application by following the steps described in Creating a Client to Consume
aWSIT-Enabled Web Service.

Note

Whenever you make changes on the service, refresh the client so that the client will pick up
the change. To refresh the client, right-click the node for the Web Service Reference for the
client, and select Refresh Client.

171

Using WSIT Security

Drill down from CalculatorWSServletClient | Web Service References.

Right-click Calculator W SService and select Edit Web Service Attributes, then select the Qual-
ity of Servicetab.

Provide the client's private key by pointing to an alias in the keystore. To do this, click the
Keystore button, click the Load Aliases button, and select xws- securi ty-cl i ent fromthe
Aliaslist.

Providethe service's certificate by pointing to an aliasin the client truststore. To do this, click
the Truststore button,, click the Load Aliases button for the truststore and select xws- secu-
rity-server fromtheAliaslist.

e In someinstances, NetBeans will not detect that this client is a JSR-196 client, and thus
will require that the keystore and truststore entries be manually configured. To do this,
follow the stepsin this section.

e Expand CalculatorWSServletClient | Sour ce Packages | META-INF.

* Double-click Calculator WSService.xml to open it in the Sour ce window. Click the Sour ce
tab to view the code. Find the sc: KeySt or e and sc: Trust St or e elements. If these
elements contain parametersfor | ocati on and st or epass , then just continue to the
next section. If not, add these attributesto this file. The following code shows an example
of how these elements should be specified.

Example 12.17.

<sc: Trust Store
wspp: visibility="private"
| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ domai n1\ confi g\ cacerts.jks"
storepass="changei t" peeralias="xws-security-server"/>

<sc: KeyStore
wspp: visibility="private"
| ocati on="<G-_HOVE>\ gl assfi sh\ donai ns\ domai n1\ confi g\ keyst ore.jks"
storepass="changeit" alias="xws-security-client"/>

Expand the Security Token Service node to provide details for the STS to be used. When the
Endpoint and the M etadata values ar ethe same, you only need to enter the Endpoint value. For
the Endpoint field, enter the following value: http://localhost:8080/MyST SPr oj ect/MyST SSer -
vice. For WS Trust Version field, select 1.3if STSendpoint uses" .NET 3.5/ Metro 1.3" version
compatibility. Otherwise use the default WS Trust Version.

Click OK to close thisdialog.

Theservicerequiresatokentobeissued fromtheSTSathtt p: // 1 ocal host : 8080/ MyST-
SPr oj ect/ MySTSSer vi ce , with WSDL file http://1 ocal host : 8080/ MySTSPr o-
j ect/ MySTSSer vi ce?wsdl . Todo this, follow these steps:

a Right-click the Calculator WSServietClient node and select New | Web Service Client.
The New Web Service Client window appears.
b. Select the WSDL URL option.

c. Cut and paste the URL of the web service that you want the client to consume into the
WSDL URL fidld. For thisexample, hereisthe URL for the My STS web service:

http://1 ocal host: 8080/ MySTSPr oj ect/ MySTSSer vi ce?wsdl

172

Using WSIT Security

10.
11.

12.

13.

14.

15.

16.

d. Typeorg. ne.cal cul ator.client. sts inthePackagefield, then click Finish.
The Projects window displays the new web service client.

Drill down from Calculator WSServletClient | Web Service References.

Right-click MyST SService and select Edit Web Service Attributes.

Select the Quality of Servicetab of the MyST SService dialog.

Provide the client's private key by pointing to an alias in the keystore. To do this, click the
Keystore button, click the Load Aliases button, and select xws- securi ty-cli ent fromthe
Alias list. If the Keystore button is not selectable, follow the instructions in the next step for
adding the keystore entry manually.

Verify the STS's certificate by pointing to an aliasin the client truststore. To do this, click the
Truststore button,, click the Load Aliases button and select wssi p from the Aliaslist.

* In some instances, NetBeans will not detect that this client is a JSR-196 client, and thus
will require that the keystore and truststore entries be manually configured. To do this,
follow the stepsin this section.

» Expand CalculatorWSServletClient | Sour ce Packages | META-INF.

» Double-click MyST SService.xml to open it in the Sour ce window. Click the Source tab to
view the code. Find thesc: KeySt or e and sc: Tr ust St or e elements. If these elements
contain parametersfor | ocat i onandst or epass , thenjust continuetothenext section.
If not, add these attributesto thisfile. The following code shows an example of how these
elements should be specified.

Example 12.18.

<sc: Trust Store
wspp: visibility="private"
| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ domai n1\ confi g\ cacerts.jks"
st orepass="changeit" peeralias="wssip"/>

<sc: KeyStore
wspp: visibility="private"
| ocati on="<G-_HOVE>\ gl assfi sh\ donai ns\ domai n1\ confi g\ keystore.jks"
storepass="changeit" alias="xws-security-client"/>

Enter the default user name and passwor d.

If you followed the steps in Adding Users to GlassFish , this will be User Name wsi t User and
Password changei t .

Click OK to close thisdialog.

Compile and run thisapplication by right-clicking the Calculator W SSer vletClient project and
selecting Run. Theresult of the add operation will display in a browser window.

12.9.8. Example: Broker Trust STS (BT)

Broker Trust STS exampleillustratestheinteraction between client and server of different domainsthrough
STS's of corresponding domains. In this kind of scenarios, STS of different domains must have a trust
relationship between them. Letstakeclient/STS2 areindomain A, and server/STS1 arein domain B. Here,

173

Using WSIT Security

STS1istheremote STS on the server domain(B) and STS2 isthelocal STS on the client domain(B). There
isatrust relationship between STS1 and STS2. Here are steps which client has to follow to comminicate
with server.

» Client wantsto communicate with Server.

» Server asksClient to get atoken from ST S1 to comminicate with it.

* Now Client would like to communicate with remote STS (i.e. STS1).

» STS1 asksClient to get atoken from Client'slocal STS (i.e. STS2) to comminicate with it.

* Now Client sendsarequest tolocal STS (i.e. STS2) asking for atoken to communicatewith ST S1.
» STS2issuesatoken to Client, which Client usesto comminicate with STS1.

» STSlissuesatoken to Client, which Client usesto comminicate with Server.

» Now Client comminicateswith server using atoken issued by ST S1, which Server under stands.
This section describes the following tasks:

* To Create and Secure the First STS (BT)

e To Create and Secure the Second STS (BT)

* To Secure the Example Service Application (BT)

» To Secure the Example Web Service Client Application (BT)

To Createand SecuretheFirst STS(BT)

To create and secure a Security Token Service(i.e. Remote STS) for this example, follow these steps.
1. Createanew project for the STS by selecting File | New Project.

2. Select Web, then Web Application, then Next.

3. Type M/STS1Proj ect for the Project Name, then click Finish.

4. Right-click the MySTS1Pr oj ect node, select New, then select Other.

5. Select Web Servicesfrom the Categorieslist.

6. Select Secure Token Service (STS) from the File Type(s) list, then click Next.

7. Typethename MySTSL1 for the Web Service Class Name.

8. Enter or select or g. me. my. st s1inthePackagefield, then click Finish. If prompted toreload
thecat al og. xm file, click No.

The IDE takes a while to create the first STS. When created, it appears under the project's Web
Servicesnode as MySTS1Ser vi ce .

9. The STSwizard creates an implementation of the provider class. To view it, expand Source
Packages, then org.me.my.stsl. Double-click MySTS1. j ava to open it in theright pane.

10. IntheProjectswindow, expand the MyST S1Service node, then expand the Web Services node.
Right-click the MyST S1Service[| MyST S1Service Port] node and select Edit Web Service At-
tributesto configurethe STS.

174

Using WSIT Security

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

Select the" Version Compatibility” to".NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

Select Secure Serviceif it'snot already selected.
Verify that the Security Mechanism of " STS I ssued Token" is selected.

Select the Configure button. For Algorithm Suite, verify that Basic128 bit is selected (so that it
matchesthe value selected for the service.) Select OK to close the configuration dialog.

If not already selected, select Act as Secure Token Service (STS).

Note

If you'd like to use an STS other than the default, click the STS Configure button, and click
the Add button to add a different service provider. Click OK to close the STS Configuration
dialog.

Click Configure. In the Issuer field, enter MyST S1. Click OK to close.

Click theKeystorebutton to provideyour keystorewith thealiasidentifying the service cer tifi-
cate and private key. To do this, click the Load Aliases button, select wssi p , then click OK
to close the dialog.

Click OK.

A new fileisadded to the project. To view the WSIT configuration file, expand Configuration Files |
xml-resources | web-services | MySTS1 | wsdl, then double-click the file MySTS1Ser vi ce. wsdl
. Thisfile containsthet c: STSConf i gur at i on element withinthewsp: Pol i cy elements..

Right-click the MyST S1Project tab, select Properties. Select the Run category, and type the
following in the Relative URL field: / MySTS1Ser vi ce?wsdl .

Run the Project (right-click the project and select Run).

The STSWSDL appearsin the browser.

To Createand Securethe Second STS (BT)

To create and secure a Security Token Service(i.e. local STS) for this example, follow these steps.

1

2.

Createanew project for the2nd STS by selecting File | New Project.

Select Web, then Web Application, then Next.

Type M/STS2Pr oj ect for the Project Name, then click Finish.
Right-click the MySTS2Pr oj ect node, select New, then select Other.
Select Web Servicesfrom the Categorieslist.

Select Secure Token Service (STS) from the File Type(s) list, then click Next.
Typethe name My STS2 for the Web Service Class Name.

Enter or select or g. me. ny. st s2 inthePackagefield, then click Finish. If prompted toreload
thecat al og. xm file, click No.

175

Using WSIT Security

10.

11

12.
13.

14.

15.

16.
17.

18.

19.

20.

The IDE takes a while to create the first STS. When created, it appears under the project's Web
Services node as My STS2Ser vi ce .

The STS wizard creates an implementation of the provider class. To view it, expand Source
Packages, then org.me.my.sts2. Double-click MySTS2. j ava to open it in theright pane.

In the Projectswindow, expand the MyST S2Ser vice node, then expand the Web Services node.
Right-click the MyST S2Service[| MyST S2Service Port] node and select Edit Web Service At-
tributesto configurethe STS.

Select the" Version Compatibility” to".NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

Select Secure Serviceif it'snot already selected.

Verify that the Security M echanism of Username Authentication with Symmetric Key is select-
ed.

Select the Configure button. For Algorithm Suite, verify that Basic128 bit is selected (so that it
matchesthe value selected for the service.) Select OK to close the configuration dialog.

If not already selected, select Act as Secure Token Service (STS).

Note

If you'd like to use an STS other than the default, click the STS Configure button, and click
the Add button to add a different service provider. Click OK to close the STS Configuration
dialog.

Click Configure. In the Issuer field, enter MySTS2. Click OK to close.

Click theKeystorebutton to provideyour keystorewith thealiasidentifying the service cer tifi-
cate and private key. To do this, click the Load Aliases button, select wssi p , then click OK
to close the dialog.

Click OK.

A new fileisadded to the project. To view the WSIT configuration file, expand Configuration Files |
xml-resources | web-services | MySTS2 | wsdl, then double-click the file My STS2Ser vi ce. wsdl
. Thisfile containsthet ¢c: STSConf i gur at i on element withinthewsp: Pol i cy elements..

Right-click the MyST S2Project tab, select Properties. Select the Run category, and type the
following in the Relative URL field: / MySTS2Ser vi ce?wsdl .

Run the Project (right-click the project and select Run).
The STSWSDL appearsin the browser.

To Securethe Example Service Application (BT)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

For this example, the security mechanism of STS Issued Token is used to secure the application. The steps
are similar to the ones described in Example: Username Authentication with Symmetric Key (UA), with
the addition of creating and securing an STS.

To add security to the service part of the example, follow these steps.

176

Using WSIT Security

N o o A&

10.

11

12.

Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans.

a. CreatingaWeb Service
b. Skip the section on adding Reliable M essaging.
c. Deploying and Testing a Web Service (first two steps only, do not run the project yet).

Expand Calculator Application | Web Services, then right-click the node for the web service,
CalculatorWS, and select Edit Web Service Attributes.

Select the" Version Compatibility” to".NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

Deselect the Reliable M essaging option if it is selected.
Select Secure Service.
From the drop-down list for Security Mechanism, select STS I ssued Token.

Click Configure. For Issuer Address and Issuer Metadata Address, enter http://1 ocal -
host : 8080/ MySTS1Pr oj ect/ MySTS1Ser vi ce . For Issuer Metadata, enter http://
| ocal host: 8080/ MySTS1Pr oj ect/ MySTS1Ser vi ce/ mex

For Algorithm Suite, select Basic 128 bit. For Key Size, select 128 (the algorithm suite value
of the service must match the algorithm suite value of the STS). Select OK to close the config-
uration dialog.

Note

If you have configured Unlimited Strength Encryption as described in To Create a Third-
Party STS, you can leave the key size at 256. Otherwise, you must set it to 128.

Select Use Development Defaults.
Click OK.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. ne. cal cul at or. Cal cul at or W5. xm and select
the Source page. Thisfile contains the security elementswithinwsp: Pol i cy tags.

Right-click the Calculator Application node and select Properties. Select the Run category, and
typethefollowing in the Relative URL field: / Cal cul at or WESer vi ce?wsdl .

Right-click the Calculator Application node and select Run. This step compiles the application
and deploysit onto GlassFish. A browser will open and display the WSDL file for the applica-
tion.

To Securethe Example Web Service Client Application (BT)

This section demonstrates adding security to the CalculatorApplication's web service client. The service
was secured using the security mechanism described in STS Issued Token .

To add security to the web service client, complete the following steps.

1.

Createthe client application by following the steps described in Creating a Client to Consume
aWSIT-Enabled Web Service.

177

Using WSIT Security

Note

Whenever you make changes on the service, refresh the client so that the client will pick up
the change. To refresh the client, right-click the node for the Web Service Reference for the
client, and select Refresh Client.

Drill down from Calculator WSServletClient | Web Service References.

Right-click Calculator W SService and select Edit Web Service Attributes, then select the Qual-
ity of Servicetab.

Provide the client's private key by pointing to an alias in the keystore. To do this, click the
Keystore button, click the Load Aliases button, and select xws- securi ty-cli ent fromthe
Aliaslist.

Providethe service's certificate by pointing to an aliasin the client truststore. To do this, click
the Truststore button,, click the Load Aliases button for the truststore and select xws- secu-
rity-server fromtheAliaslist.

¢ In someinstances, NetBeans will not detect that this client is a JSR-196 client, and thus
will require that the keystore and truststore entries be manually configured. To do this,
follow the stepsin this section.

« Expand CalculatorWSServletClient | Source Packages | META-INF.

e Double-click Calculator WSService.xml to open it in the Sour ce window. Click the Source
tab to view the code. Find the sc: KeySt or e and sc: Trust St or e elements. If these
elements contain parametersfor | ocati on and st or epass , then just continue to the
next section. If not, add these attributesto thisfile. The following code shows an example
of how these elements should be specified.

Example 12.19.

<sc: Trust Store
wspp:visibility="private"
| ocati on="<G-_HOVE>\ gl assfi sh\ domai ns\ domai n1\ confi g\ cacerts. j ks"
st orepass="changei t" peeralias="xws-security-server"/>

<sc: KeyStore
wspp:visibility="private"
| ocati on="<G-_HOVE>\ gl assfi sh\ donmai ns\ domai n1\ confi g\ keyst ore.j ks"
st orepass="changeit" alias="xws-security-client"/>

Click OK to closethisdialog.

Theservicerequiresatoken to beissued from thefirst STS(i.e RemoteSTS)at http: / /| o-
cal host : 8080/ MySTS1Pr oj ect / MySTS1Ser vi ce , with WSDL filehttp://1 ocal -
host : 8080/ MySTS1Pr oj ect/ MySTS1Ser vi ce?wsdl . Todo this, follow these steps:

a Right-click the Calculator WSServietClient node and select New | Web Service Client.
The New Web Service Client window appears.
b. Select theWSDL URL option.

c. Cut and paste the URL of the web service that you want the client to consume into the
WSDL URL field. For this example, hereisthe URL for the MySTS1 web service:

178

Using WSIT Security

10.

11

12.

13.

14.

15.

http://1 ocal host: 8080/ M/STS1Pr oj ect/ MySTS1Ser vi ce?wsdl

d. Typeorg. ne.cal cul ator.client. stslinthePackagefield, then click Finish.
The Projects window displays the new web service client.

Drill down from Calculator WSServletClient | Web Service References.

Right-click MyST S1Service and select Edit Web Service Attributes.

Select the Quality of Servicetab of the MyST S1Service dialog.

Provide the client's private key by pointing to an alias in the keystore. To do this, click the
Keystore button, click the Load Aliases button, and select xws- securi ty-cli ent fromthe
Alias list. If the Keystore button is not selectable, follow the instructionsin the next step for
adding the keystore entry manually.

Verify the STS's certificate by pointing to an aliasin the client truststore. To do this, click the
Truststore button,, click the Load Aliases button and select wssi p from the Aliaslist.

e In someinstances, NetBeans will not detect that this client is a JSR-196 client, and thus
will require that the keystore and truststore entries be manually configured. To do this,
follow the stepsin this section.

« Expand CalculatorWSServletClient | Source Packages | META-INF.

» Double-click MyST SService.xml to open it in the Sour ce window. Click the Source tab to
view the code. Find thesc: KeySt or e and sc: Tr ust St or e elements. If these elements
contain parametersfor | ocat i onandst or epass ,thenjust continuetothenext section.
If not, add these attributesto thisfile. The following code shows an example of how these
elements should be specified.

Example 12.20.

<sc: Trust Store
wspp: visibility="private"
| ocati on="<GF_HOVE>\ gl assfi sh\ domai ns\ donmai n1\ confi g\ cacerts.jks"
st orepass="changeit" peeralias="wssip"/>

<sc: KeyStore
wspp: visibility="private"
| ocati on="<G-_HOVE>\ gl assfi sh\ donai ns\ domai n1\ confi g\ keystore.jks"
storepass="changei t" alias="xws-security-client"/>

Expand the Security Token Service node to provide details for the second ST S(i.e. local
STS) to be used. When the Endpoint and the M etadata values are the same, you only need
to enter the Endpoint value. For the Endpoint field, enter the following value: http://local-
host:8080/M yST S2Pr oj ect/MyST S2Service. For WS Trust Version field, select 1.3 if STS end-
point uses" .NET 3.5/ Metro 1.3" version compatibility. Otherwise use the default WS Trust
Version.

Click OK to close thisdialog.

The First STS(i.e. Remote STS) requires a token to be issued from the second STS(i.e. local
STS)athttp:/ /1 ocal host: 8080/ MySTS2Pr oj ect/ MySTS2Ser vi ce , with WSDL file
http://1 ocal host: 8080/ MySTS2Pr oj ect / MySTS2Ser vi ce?wsdl . To do this, fol-
low these steps:

179

Using WSIT Security

16.
17.
18.
19.

20.

21.

22.

a. Right-click the Calculator WSServletClient node and select New | Web Service Client.
The New Web Service Client window appears.
b. Select the WSDL URL option.

c. Cut and paste the URL of the web service that you want the client to consume into the
WSDL URL field. For thisexample, hereisthe URL for the MySTS2 web service:

http://1 ocal host: 8080/ MySTS2Pr oj ect/ MySTS2Ser vi ce?wsdl

d. Typeorg. ne.cal cul ator.client.sts2inthePackagefield, then click Finish.
The Projects window displays the new web service client.

Drill down from Calculator WSServletClient | Web Service References.

Right-click MyST S2Service and select Edit Web Service Attributes.

Select the Quality of Servicetab of the MyST S2Service dialog.

Provide the client's private key by pointing to an alias in the keystore. To do this, click the
Keystore button, click the Load Aliases button, and select xws- securi ty-cli ent fromthe
Alias list. If the Keystore button is not selectable, follow the instructionsin the next step for
adding the keystore entry manually.

Verify the STS' s certificate by pointing to an aliasin the client truststore. To do this, click the
Truststore button,, click the Load Aliases button and select wssi p from the Aliaslist.

e In someinstances, NetBeans will not detect that this client is a JSR-196 client, and thus
will require that the keystore and truststore entries be manually configured. To do this,
follow the stepsin this section.

* Expand CalculatorWSServletClient | Sour ce Packages | META-INF.

e Double-click MyST S2Service.xml to open it in the Sour ce window. Click the Sourcetab to
view the code. Find thesc: KeySt or e and sc: Tr ust St or e elements. If these elements
contain parametersfor | ocat i onandst or epass , then just continuetothenext section.
If not, add these attributes to thisfile. The following code shows an example of how these
elements should be specified.

Example 12.21.

<sc: Trust Store
wspp:visibility="private"
| ocati on="<G~_HOVE>\ gl assfi sh\ donai ns\ domai n1\ confi g\ cacerts. j ks"
st orepass="changeit" peeralias="wssip"/>

<sc: KeyStore
wspp:visibility="private"
| ocati on="<G-_HOVE>\ gl assfi sh\ donai ns\ domai n1\ confi g\ keystore.jks"
storepass="changeit" alias="xws-security-client"/>

Enter the default user name and password.

If you followed the steps in Adding Users to GlassFish , this will be User Name wsi t User and
Password changei t .

Click OK to close thisdialog.

180

Using WSIT Security

23. Compileand run thisapplication by right-clicking the Calculator WSSer vletClient project and
selecting Run. Theresult of the add operation will display in a browser window.

12.9.9. Example: STS Issued Token With SecureConver-
sation (STS+SC)

Thisexampleillustrates, how SecureConversation Token isused to interact with STS. To haveabasicidea
of SecureConversation, find thisarticle: Secure Conversationsfor Web Services With Metro [http://
blogs.sun.com/enter prisetechtips/entry/secure_conversations for_web_services|

This section describes the following tasks:

» To Create and Secure the STS with SecureConversationToken (STS+SC)

» To Securethe Example Service Application (STS+SC)

» To Secure the Example Web Service Client Application (STS+SC)

To Create and Securethe STSwith SecureConver sationT oken (ST S+SC).

Same as provided in To Create and Secure the STS (STS)

To Securethe Example Service Application (STS+SC)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

For this example, the security mechanism of STSIssued Token isused to secure the application. The steps
are similar to the ones described in Example: Username Authentication with Symmetric Key (UA) , with
the addition of creating and securing an STS.

To add security to the service part of the example, follow these steps.

1. Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans .

a. CreatingaWeb Service
b. Skip the section on adding Reliable M essaging.
c. Deploying and Testing a Web Service (first two steps only, do not run the project yet).

2. Expand Calculator Application | Web Services, then right-click the node for the web service,
CalculatorWS, and select Edit Web Service Attributes.

3. Sdect the" Version Compatibility” to".NET 3.5/ Metro 1.3" (e.g. see Web Service Attributes
Editor Page) . It will use WS-SX version of all WS-* specifications.

4. Desdlect the Reliable M essaging option if it is selected.
5. Select Secure Service.
6. From thedrop-down list for Security Mechanism, select STS Issued Token.

7. Click Configure. For Issuer Address and Issuer Metadata Address, enter http:// | ocal -
host : 8080/ MySTSPr oj ect/ MySTSSer vi ce . For Issuer Metadata, enter http://1 o-
cal host : 8080/ MySTSPr oj ect / MySTSSer vi ce/ nex

181

http://blogs.sun.com/enterprisetechtips/entry/secure_conversations_for_web_services
http://blogs.sun.com/enterprisetechtips/entry/secure_conversations_for_web_services
http://blogs.sun.com/enterprisetechtips/entry/secure_conversations_for_web_services

Using WSIT Security

8. Select the Configure button and do the following :

For Algorithm Suite, verify that Basic128 hit is selected (so that it matches the value selected
for the service))

Check the Establish Secure Session (Secure Conver sation) check box to enable the secure con-
versaion feature

Note

If you have configured Unlimited Strength Encryption as described in To Create a Third-
Party STS, you can leave the key size at 256. Otherwise, you must set it to 128.

Select OK to closethe configuration dialog.
9. Select Use Development Defaults.
10. Click OK.

A new file is added to the project. To view the WSIT configuration file, expand Web Pages | WEB-
INF, then double-click thefilewsi t - or g. me. cal cul at or. Cal cul at or W5. xm and select
the Source page. Thisfile contains the security elementswithinwsp: Pol i cy tags.

11. Right-click the Calculator Application node and select Run. This step compilesthe application
and deploysit onto GlassFish. A browser will open and display the WSDL file for the applica-
tion.

To Securethe Example Web Service Client Application (ST S+SC).
Same as provided in To Secure the Example Web Service Client Application (STS)

12.9.10. Example: Kerberos Token (Kerb)

Thissection containsthe stepsfor running aK erberos Token Profile-based WS Security scenario. Kerberos
support was added to Metro in 1.1 release. The Netbeans support for configuring a Kerberos Token based
secure web service is available from Metro 1.3 and Netbeans 6.5.

For an article discussing using Kerberos with WSIT, go to Building Kerberos-Based Secure Services Us-
ing Metro [http://blogs.sun.com/enterprisetechtips/entry/building_kerberos based secure services]. This
article has a sample application, but does not use Netbeans IDE.

The section describes the following tasks:

» To Set Up Your System for Kerberos Profile

» To Secure the Example Service Application (Kerb)

» To Secure the Example Web Service Client Application (Kerb)
To Set Up Your System for Kerberos Profile.

If your system is not already set up to use Kerberos, refer to the steps mentioned in Configuring Kerberos
for GlassFish and Tomcat.

To Securethe Example Service Application (Kerb)

The following example application starts with the example provided in Developing with NetBeans and
demonstrates adding security to both the web service and to the web service client.

182

http://blogs.sun.com/enterprisetechtips/entry/building_kerberos_based_secure_services
http://blogs.sun.com/enterprisetechtips/entry/building_kerberos_based_secure_services
http://blogs.sun.com/enterprisetechtips/entry/building_kerberos_based_secure_services

Using WSIT Security

For this example, a Kerberos token is used to secure the application. To add security to the service part
of the example, follow these steps.

1

Create the Calculator Application example by following the steps described in the following
sections of Developing with NetBeans.

a. CreatingaWeb Service
b. Skip the section on adding Reliable M essaging.
c. Deploying and Testing a Web Service (first two steps only, do not run the project yet)

Expand Calculator Application | Web Services, then right-click the node for the web service
(CalculatorWS) and select Edit Web Service Attributes.

Deselect Reliable Messaging if it is selected.
In the Calculator WSPortBinding section, select Secure Service.

From the drop-down list for Security Mechanism, select Symmetric Binding with Kerberos
Tokens.

Select Kerberosbutton, and specify the Login Moduleto be used for the service. For detailson
Login Moduleto specify refer Configuring Kerberosfor GlassFish and Tomcat.

Figure 12.8. Kerberos Configuration Attributes - Service

c:] Kerberos Configuration &3
Login Module: KerberosServer -
QK | | Cancel

Click OK to closethe Cal cul at or W5Ser vi ce dialog.

Expand Web Pages | WEB-INF, then doubleclick the file wsit-
org. ne. cal cul at or. Cal cul at or W5. xm to open it in the edit window.The Binding level
policy looks like: (This section of code has been formatted to fit the page)

Example 12.22.

<wsp: Policy wsu:|d="1Financial Service_policy">
<wsp: Exact | yOne>
<wsp: Al | >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="htt p://wwmv. w3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<sp: Symmet ri cBi ndi ng>
<wsp: Pol i cy>
<sp: Prot ecti onToken>
<wsp: Pol i cy>

183

Using WSIT Security

<sp: Ker ber osToken
sp: | ncl udeToken="http://docs. oasi s-open. or g/
ws- sx/ ws-securitypolicy/ 200702/ 1 ncl udeToken/ Once" >
<wsp: Pol i cy>
<sp: WsGssKer ber osV5ApReqTokenll/ >
</wsp: Pol i cy>
</ sp: Ker ber osToken>
</wsp: Pol i cy>
</ sp: Prot ecti onToken>
<sp: Layout >
<wsp: Pol i cy>
<sp: Strict/>
</wsp: Pol i cy>
</ sp: Layout >
<sp: | ncl udeTi nest anp/ >
<sp: Onl ySi gnEnt i r eHeader sAndBody/ >
<sp: Al gori thnBui t e>
<wsp: Pol i cy>
<sp: Basi c128/ >
</wsp: Pol i cy>
</ sp: Al gori t hnBui t e>
</wsp: Pol i cy>
</ sp: Synmet ri cBi ndi ng>
<sp: Ws11>
<wsp: Pol i cy>
<sp: Must Support Ref Keyl denti fier/>
<sp: Must Support Ref | ssuer Seri al / >
<sp: Must Support Ref Thunbprint/>
<sp: Must Suppor t Ref Encr ypt edKey/ >
</wsp: Pol i cy>
</ sp: Wsl1ll>
<sc: Ker berosConfi g xnl ns:
sc="http://schemas. sun. conf 2006/ 03/ wss/ server"
| ogi nModul e="Ker ber osServer"/ >
</wsp: Al >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

8. Right-click the Calculator Application node and select Run. A browser will open and display
the WSDL filefor the application.

If the application doesn't build, expand CalculatorApplication | Web Pages | WEB-INF, and dou-
ble-click web. xm to open it in the right pane. Select the Security tab, and remove any existing
security constraints. Then run the project again.

9. Follow the steps to secure the client application as described in To Secure the Example Web
Service Client Application (Kerb).

To Securethe Example Web Service Client Application (Kerb)

This section demonstrates adding security to the web service client that references the web service created
in the previous section. . This section aso assumes that Kerberos environment has aready been setup on
the system. Refer to Configuring Kerberos for GlassFish and Tomcat for more details.

To add security to the client that references this web service, compl ete the following steps.

1. Createtheclient application by following the steps described in Creating a Client to Consume
aWSIT-Enabled Web Service.

184

Using WSIT Security

©o u ~ w DN

Note

Whenever you make changes on the service, refresh the client so that the client will pick up
the change. To refresh the client, right-click the node for the Web Service Reference for the
client, and select Refresh Client.

Expand the node for the web service client application, Calculator W SServletClient.
Expand the Web Service References node.

Right-click on Calculator W SService, select Edit Web Service Attributes.

Expand the Web Service References node.

In the Security section of the Quality of Service tab, select Kerberos. Specify Login Module,
Service Principal and check the box if credentials should be delegated.

Specify the Login Module to the one you created in login.conf file for the client in the section Con-
figuring Kerberos for GlassFish and Tomcat, and the service principal for which the ticket needs to
be obtained.

Kerberos support in Metro security supports credential delegation from client to service, such that
the server can initiate other security contexts on behalf of the client. Thisfeatureis useful for single
sign-on in amulti-tier environment. Select the checkbox for credential delegation.

Note

At the service, we can obtain the delegated credentials from the Subject [https./
docs.oracle.com/javase/8/docs/api/javax/security/auth/Subject.html] of the authenticated
user. The PrivateCredential set of the will have the delegated client credentials (as GSSCre-
dential [https.//docs.oracle.com/javase/8/docs/api/org/ietf/jgssyGSSCredential .html]). We
can passthis GSSCredential to GSSManager [https://docs.oracle.com/javase/8/docs/api/org/
ietf/jgssyGSSManager.html].createContext() pretending to be the client.

Also, the PublicCredential set of the authenticated Subject will aways
have KerberosPrincipal [https://docs.oracle.com/javase/8/docs/api/javax/security/auth/ker-
beros/K erberosPrincipal .html] corresponding to the client.

Figure 12.9. Kerberos Configuration Attributes - Client

G Kerberos Configuration =3

Login Maodule: KerberosClient -

Service Principal: | websve/service@INDIA.SUN.LOCE

| Credential Delegation

| QK | | Cancel

185

https://docs.oracle.com/javase/8/docs/api/javax/security/auth/Subject.html
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/Subject.html
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/Subject.html
https://docs.oracle.com/javase/8/docs/api/org/ietf/jgss/GSSCredential.html
https://docs.oracle.com/javase/8/docs/api/org/ietf/jgss/GSSCredential.html
https://docs.oracle.com/javase/8/docs/api/org/ietf/jgss/GSSCredential.html
https://docs.oracle.com/javase/8/docs/api/org/ietf/jgss/GSSManager.html
https://docs.oracle.com/javase/8/docs/api/org/ietf/jgss/GSSManager.html
https://docs.oracle.com/javase/8/docs/api/org/ietf/jgss/GSSManager.html
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/kerberos/KerberosPrincipal.html
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/kerberos/KerberosPrincipal.html
https://docs.oracle.com/javase/8/docs/api/javax/security/auth/kerberos/KerberosPrincipal.html

Using WSIT Security

7. Right-click theCalculator WSServletClient nodeand select Run. Theresult of theadd operation
will display in a browser window.

Note

If your client is a Java SE client, you need to set the following system properties while
running your client code:

Example 12.23.

-Dj ava. security. policy=%${gl assfi sh. hone}/ donai ns/ domai n1/ confi g/
server.policy

-Dj ava. security. aut h. 1 ogi n. confi g=${gl assfi sh. hone}/ donmi ns/
domai n1/ confi g/ | ogi n. conf

If itis WebApp deployed on glassfish, nothing el se needs to be done.

186

Chapter 13. WSIT Security Features:
Advanced: Topics

Table of Contents

13.1. Using Security MEChANISIMISc.uuiiiiiii ettt 187
13.2. Understanding WSIT Configuration FilESooiiiiiiiiiiiiiieei e 188
13.2.1. Service-Side WSIT Configuration FIleSccouvuiiiiiiiiiiiee e 188
13.2.2. Client-Side WSIT Configuration FileScoviiiiiiiiiiiiiii e 191
13.3. Security Mechanism Configuration OPLIONScoeeuiieiiiiiiieeeiii e 193
13.4. BUIlING CUSLOM ST'S ...ttt ittt ettt ettt e et e e e e et e e e eate e eeeees 197
13.4.1. Handling Claims With Metro STScoouuiiiiiiii e 198
13.5. Handling Token and Key Requirements at RUN TiMeuoviiiiiiiiiiiiiicci e, 199
13.6. Advanced Usages Of STS N SECUMLYceevvuiiiiiiiiiie et 202
13.6.1. Token Caching and ShariNGcceeuuuiiiiiie e 202
13.6.2. ActAs and Identity DeElegationcouuuieiiiiiiiiiiii e 203

13.1. Using Security Mechanisms

The security mechanism that you need to select reflects the commonly available infrastructure between
your organization and another organization with which you will be communicating. The following list
provides some common communication issues that need to be addressed using security mechanisms:

» Asymmetric binding is used for message protection. This binding has two binding specific token prop-
erties: the initiator token and the recipient token. If the message pattern requires multiple messages, this
binding defines that the initiator token is used for the message signature from initiator to the recipient,
and for encryption from recipient to initiator. The recipient token is used for encryption from initiator
to recipient, and for the message signature from recipient to initiator.

» Some organizations have a K erberos infrastructure, while other organizations have a PK| infrastructure
(asymmetric binding). WS-Trust allowstwo communicating parties having different security infrastruc-
ture to communicate securely with one another. In this scenario, the client authenticates with a third
party (STS) using its infrastructure. The STS returns a (digitally-signed) SAML token containing au-
thorization and authentication information regarding the client, along with akey. The client then simply
relays the token to the server and uses the STS-supplied key to ensure integrity and confidentiality of
the messages sent to the server.

Note

Kerberos is supported in Metro since 1.1 release. Netbeans support is available for Kerberos
from Metro 1.3 and Netbeans 6.5 release. Kerberosis NOT supported on AlX systems.

» Symmetric binding is used for message protection. This binding has two binding specific token proper-
ties: encryption token and signature token. If the message pattern requires multiple messages, this bind-
ing defines that the encryption token used from initiator to recipient is also used from recipient to initia-
tor. Similarly, the signature token used from initiator to recipient is also used from recipient to initiator.

In some cases, the client does not haveits own certificates. In this case, the client can choose a security
mechanism that makes use of symmetric binding and could use a Username token as a signed support-

187

WSIT Security Fea
tures: Advanced: Topics

13.2

ing token for authentication with the server. The symmetric binding in this case serves the purpose of
integrity and confidentiality protection.

In the absence of anotion of secure session, the client would have to reauthenticate with the server upon
every request. In this situation, if the client is sending a Username token, the client will be asked for
its username and password on each request, or, if the client is sending a certificate, the validity of the
certificate has to be established with every request. Thisis expensivel Enable Secure Conversation to
remove the requirement for re-authentication.

The use of the same session key (Secure Conversation) for repeated message exchanges is sometimes
considered arisk. To reduce that risk, enable Require Derived Keys.

RSA Signatures (signatureswith public-private keys) ismore expensivethan Symmetric Key signatures.
Use the Secure Conversation option to enable Symmetric Key signatures.

Enabling WSS 1.1 enables an encrypted key generated by the client to be reused by the server in the
response to the client. This savesthe time otherwise required to create a Symmetric Key, encrypt it with
the client public key (which isalso an expensive RSA operation), and transmit the encrypted key in the
message (it occupies markup and requires Base64 operations).

Understanding WSIT Configuration Files

When a web service or a web service client are configured for WSIT features, this information is saved
in WSIT Configuration files. The following sections discuss the WSIT configuration files for the service
and for the client:

13.2.1.

Service-Side WSIT Configuration Files
Client-Side WSIT Configuration Files

Service-Side WSIT Configuration Files

WSIT features are configured on aweb service in the following way:

1
2.
3.

4.
5.

Right-click the web service in NetBeans IDE.
Select Edit Web Service Attributes.

Select and/or configure the appropriate WSIT features on the Quality Of Service Configuration tab for
the web service. Many of the WSIT features are discussed in Using WS T Security.

Select OK to close the dialog.

Run the web application by right-clicking the project node and selecting Run Project.

The service-side WSIT Configuration file that is used when the web service is deployed can be viewed by
expanding the Web Pages | WEB-INF elements of the application in the tree, and then double-clicking the
wsi t - package. servi ce. xnl fileto openitin the editor.

For the example application Example: Username Authentication with Symmetric Key (UA), the WSIT
configuration filefor theserviceisnamedwsi t - or g. ne. cal cul at or. Cal cul at or W5. xmi , and
looks like this:

Example 13.1.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions

xm ns="http://schenmas. xm soap. org/ wsdl /"

188

WSIT Security Fea
tures: Advanced: Topics

xm ns: wsdl ="http://schemas. xnl soap. org/ wsdl /"
xm ns: xsd="ht t p: // ww. w3. or g/ 2001/ XM_Schema"
xm ns: soap="http://schemas. xnl soap. or g/ wsdl / soap/"
nanme="Cal cul at or WsSer vi ce"
t ar get Nanmespace="http://cal cul ator.me.org/"
xm ns:tns="http://cal cul ator. nme.org/"
xm ns: wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/
oasi s-200401- wss-wssecurity-utility-1.0.xsd"
xm ns: wsaws="ht t p: / / www. wW3. or g/ 2005/ 08/ addr essi ng"
xm ns: sp="http://schemas. xm soap. or g/ ws/ 2005/ 07/ securi typolicy"
xm ns:sc="http://schenas. sun. conf 2006/ 03/ wss/ server"
xm ns: wspp="http://java.sun.conl xm /ns/wsit/policy">
<message name="add"/>
<nmessage nane="addResponse"/>
<port Type nane="Cal cul at or W&" >
<oper ati on name="add">
<i nput message="tns:add"/>
<out put nmessage="t ns: addResponse"/ >
</ oper at i on>
</ port Type>
<bi ndi ng name="Cal cul at or WsPor t Bi ndi ng" type="tns: Cal cul at or W&" >
<wsp: Pol i cyRef erence URI ="#Cal cul at or WsPor t Bi ndi ngPol i cy"/ >
<operation name="add">
<i nput >
<wsp: Pol i cyRef erence
URI =" #Cal cul at or WsPor t Bi ndi ng_add_I nput _Pol i cy"/ >
</i nput >
<out put >
<wsp: Pol i cyRef erence
URI =" #Cal cul at or WsPor t Bi ndi ng_add_Qut put _Pol i cy"/ >
</ out put >
</ oper ati on>
</ bi ndi ng>
<servi ce name="Cal cul at or WsSer vi ce" >
<port nane="Cal cul at or WsPort" bi ndi ng="t ns: Cal cul at or WsPor t Bi ndi ng"/ >
</ service>
<wsp: Pol i cy wsu:|d="Cal cul at or WsPor t Bi ndi ngPol i cy" >
<wsp: Exact | yOne>
<wsp: Al'l >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="ht t p: / / www. w3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<sp: Symmet ri cBi ndi ng>
<wsp: Pol i cy>
<sp: Prot ecti onToken>
<wsp: Pol i cy>
<sp: X509Token sp: | ncl udeToken=
"http://schemas. xm soap. or g/ ws/ 2005/ 07/
securitypolicy/IncludeToken/ Never">
<wsp: Pol i cy>
<sp: WsX509V3Tokenl10/ >
</wsp: Pol i cy>
</ sp: X509Token>
</wsp: Pol i cy>
</ sp: Protecti onToken>
<sp: Layout >
<wsp: Pol i cy>
<sp:Strict/>
</ wsp: Policy>
</ sp: Layout >
<sp: | ncl udeTi mest anp/ >
<sp: Onl ySi gnEnt i r eHeader sAndBody/ >
<sp: Al gori t hnBui t e>

189

WSIT Security Fea
tures: Advanced: Topics

<wsp: Pol i cy>
<sp: Basi c128/ >
</ wsp: Policy>
</ sp: Al gorithnBuite>
</wsp: Policy>
</ sp: Symmet ri c¢Bi ndi ng>
<sp: Ws11>
<wsp: Pol i cy>
<sp: Must Support Ref Keyl dentifier/>
<sp: Must Support Ref | ssuer Seri al / >
<sp: Must Support Ref Thunbprint/>
<sp: Must Suppor t Ref Encr ypt edKey/ >
</ wsp: Policy>
</ sp: Ws11>
<sp: Si gnedSupporti ngTokens>
<wsp: Pol i cy>
<sp: User naneToken
sp: I ncl udeToken="http://schemas. xm soap. or g/
ws/ 2005/ 07/ securi typolicy/
I ncl udeToken/ Al waysToReci pi ent ">
<wsp: Pol i cy>
<sp: WsUser naneToken10/ >
</ wsp: Policy>
</ sp: User nameToken>
</wsp: Policy>
</ sp: Si gnedSupporti ngTokens>
<sc: KeyStore wspp:visibility="private"
al i as="xws-security-server"/>
</wsp: Al 'l >
</wsp: Exact| yOne>
</wsp: Policy>
<wsp: Pol i cy wsu:|d="Cal cul at or WsPor t Bi ndi ng_add_| nput _Pol i cy">
<wsp: Exact | yOne>
<wsp: Al'l >
<sp: Encrypt edPar t s>
<sp: Body/ >
</ sp: Encrypt edPart s>
<sp: Si gnedPart s>
<sp: Body/ >
<sp: Header Nane="To"
Narmespace="htt p: // ww. w3. or g/ 2005/ 08/ addr essi ng"/ >
<sp: Header Name="Fron{
Narmespace="htt p: // wwv. w3. or g/ 2005/ 08/ addr essi ng"/ >
<sp: Header Nanme="Faul t To"
Narmespace="htt p: // ww. w3. or g/ 2005/ 08/ addr essi ng"/ >
<sp: Header Nane="Repl yTo"
Narmespace="htt p: // ww. w3. or g/ 2005/ 08/ addr essi ng"/ >
<sp: Header
Nanme="Messagel D' Nanespace=
"http://ww. w3. or g/ 2005/ 08/ addr essi ng"/ >
<sp: Header
Narme="Rel at esTo" Nanmespace=
"http://ww. w3. org/ 2005/ 08/ addr essi ng"/ >
<sp: Header Name="Action"
Namespace="htt p: //ww. w3. or g/ 2005/ 08/ addr essi ng"/ >
<sp: Header Name="AckRequest ed"
Narmespace="htt p://schemas. xnm soap. or g/ ws/ 2005/ 02/ r '/ >
<sp: Header Name="SequenceAcknow edgenent"
Narmespace="htt p://schemas. xm soap. or g/ ws/ 2005/ 02/ r '/ >
<sp: Header Name="Sequence"
Narmespace="htt p://schenmas. xnm soap. or g/ ws/ 2005/ 02/ r '/ >
</ sp: Si gnedPart s>
</wsp: Al 'l >

190

WSIT Security Fea
tures: Advanced: Topics

</ wsp: Exact | yOne>

</wsp: Pol i cy>

<wsp: Pol i cy wsu: | d="Cal cul at or WsPor t Bi ndi ng_add_Qut put _Pol i cy" >
<wsp: Exact | yOne>

<wsp: Al | >

<sp: Encrypt edPart s>

<sp:

Body/ >

</ sp: Encrypt edPart s>
<sp: Si gnedPart s>

<sp:
<sp:

<sp:

<sp:

<sp:

<sp:

<sp:

<sp:

<sp:

<sp:

<sp:

Body/ >
Header

Header
Header
Header
Header
Header
Header
Header
Header

Header

Nanme="To"

Nanmespace="http://wwmv. W3. or g/ 2005/ 08/ addr essi ng"/ >
Name=" Fr onf'

Nanmespace="http://wwmv. W3. or g/ 2005/ 08/ addr essi ng"/ >
Name="Faul t To"

Nanespace="http://wwmv. W3. or g/ 2005/ 08/ addr essi ng"/ >
Nare=" Repl yTo"

Nanespace="http://wwmv. W3. or g/ 2005/ 08/ addr essi ng"/ >
Nane="Messagel D"

Nanespace="http://wwmv. W3. or g/ 2005/ 08/ addr essi ng"/ >
Nanme="Rel at esTo"

Nanespace="http://wwmv. W3. or g/ 2005/ 08/ addr essi ng"/ >
Nanme="Acti on"

Nanespace="http://wwmv. W3. or g/ 2005/ 08/ addr essi ng"/ >
Narme="AckRequest ed"

Nanespace="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r i / >
Narme=" SequenceAcknow edgenent "
Nanespace="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r i / >
Nanme=" Sequence"

Nanespace="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r i / >

</ sp: Si gnedPart s>

</wsp: Al'l >

</ wsp: Exact | yOne>

</ wsp: Pol i cy>
</definitions>

13.2.2. Client-Side WSIT Configuration Files

WSIT features are configured on the client in the following way:

1. Expand the Web Service Reference node for the web service client in NetBeans IDE.

2. Select Edit Web Service Attributes.

3. Select and/or configurethe appropriate WSI T features on the Quality Of Servicetab for the web service

client. Many of the WSIT features are discussed in Using WS T Security.

4. Select OK to close the dialog.

5. Run the web service client by right-clicking the project node and selecting Run Project.

The WSIT Configuration information can be viewed by expanding Source Packages | META-INF in Net-

Beans | DE for the client project. Thisdirectory containstwo files: ser vi ceSer vi ce. xm andwsi t -

client.xnl.

The serviceService.xm file is an XML file that must conform to the WSDL specifica
tion. The WSIT configuration is written to this file. For the example application Example: User-
name Authentication with Symmetric Key (UA), the WSIT configuration file for the client is named

Cal cul at or WsSer vi ce. xm , and looks like this:

191

WSIT Security Fea
tures: Advanced: Topics

Example 13.2.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- Published by JAX-Ws5 Rl at http://jax-ws.java.net. RI's version

is JAX-WS Rl 2.1.2_01-hudson-189-. --><!-- Generated by JAX-W5
Rl at http://jax-ws.java.net. RI's version is JAX-Ws Rl
2.1.2_01- hudson-189-. -->

<definitions

xm ns: wsu=
"http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-
utility-1.0.xsd"

xm ns: wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "

xmns:tns="http://cal culator.ne.org/"

m ns: xsd="htt p: // www. W3. or g/ 2001/ XM_Schema"

xm ns="http://schemas. xm soap. org/ wsdl /"

tar get Nanespace="http://cal cul ator. me.org/"

name="Cal cul at or WsSer vi ce"

xm ns: sc="http://schenas. sun. conf 2006/ 03/ wss/ client"

xm ns: wspp="http://java. sun. conl xm / ns/wsit/policy"

xm ns:tc="http://schenas. sun. conf ws/ 2006/ 05/ trust/client">

<wsp: Usi ngPol i cy></wsp: Usi ngPol i cy>
<types>
<xsd: schema>
<xsd:inport nanmespace="http://calculator.nme.org/"
schemalLocation="http:/ /| ocal host: 8080/ Cal cul at or Appl i cati on/
Cal cul at or WsSer vi ce?xsd=1">
</ xsd: i mport >
</ xsd: schema>
</types>
<nessage nane="add">
<part name="paraneters" el ement="tns:add"></part>
</ nessage>
<message name="addResponse">
<part name="paraneters" el ement="tns: addResponse"></part>
</ message>
<port Type name="Cal cul at or W&" >
<oper ati on name="add">
<i nput nessage="tns: add"></i nput >
<out put message="tns: addResponse" ></ out put >
</ oper ati on>
</ port Type>
<bi ndi ng nane="Cal cul at or WsPor t Bi ndi ng" type="tns: Cal cul at or W5" >
<wsp: Pol i cyRef erence URI ="#Cal cul at or WsPor t Bi ndi ngPol i cy"/ >
<soap: bi ndi ng transport="http://schenmas. xm soap. or g/
soap/ http" styl e="docunent"></soap: bi ndi ng>
<oper ati on name="add">
<soap: operation soapActi on=""></soap: operation>
<i nput >
<soap: body use="literal "></soap: body>
</i nput >
<out put >
<soap: body use="literal"></soap: body>
</ out put >
</ oper ati on>
</ bi ndi ng>
<servi ce name="Cal cul at or WsSer vi ce" >
<port nane="Cal cul at or WsPort" bi ndi ng="t ns: Cal cul at or WsPor t Bi ndi ng" >
<soap: address | ocation="http://Iocal host: 8080/
Cal cul at or Appl i cati on/ Cal cul at or WsSer vi ce" >
</ soap: addr ess>
</ port >

192

WSIT Security Fea
tures: Advanced: Topics

13.3.
tions

</ service>
<wsp: Policy wsu:|d="Cal cul at or WsPor t Bi ndi ngPol i cy" >
<wsp: Exact | yOne>
<wsp: Al'l >
<sc: KeyStore
wspp: vi si bility="private"
| ocati on="c:\ Sun\gl assfi sh\ donmai ns\ domai n1\ confi g\ keystore.jks"
st orepass="changei t" alias="xws-security-client"/>
<sc: Trust Store
wspp: visibility="private"
I ocation="c:\ Sun\ gl assfi sh\ donmai ns\ donai n1\ confi g\ cacerts.j ks"
st orepass="changei t"
peeral i as="xws-security-server"/>
<tc: PreconfiguredSTS wspp:visibility="private"/>
<sc: Cal | backHandl er Confi gurati on wspp:visibility="private">
<sc: Cal | backHandl er defaul t="wsitUser"
name="user naneHandl er "/ >
<sc: Cal | backHandl er defaul t="changeit"
name="passwor dHandl er"/ >
</ sc: Cal | backHandl er Confi gurati on>
</wsp: Al 'l >
</ wsp: Exact| yOne>
</wsp: Policy>
</ definitions>

Thewsit-client.xm fileimportstheser vi ceSer vi ce. xm file. For the example shown about,
thewsit-client.xn filelookslikethis:

Example 13.3.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions
xm ns="http://schemas. xm soap. or g/ wsdl /"
xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: soap="http://schemas. xnml soap. or g/ wsdl / soap/"
nane="mai ncl i ent confi g">
<i nport | ocation="Cal cul at or WsSer vi ce. xm "
nanespace="http://cal culator.me.org/"/>
</ definitions>

When running the client, these two files will need to be in the classpath, either at the classpath root (i.e.,
build/classes) or in aMETA-INF directory under the classpath root.

Security Mechanism Configuration Op-

Thefollowing fields shown in Security Mechanism Configuration Options are used to configure different
security policies. Not every option is available for every mechanism, but many of the policies include
the same configuration options, so they are grouped here for the purposes of defining them in one central
location.

Table 13.1. Security M echanism Configuration Options

Option Description

Algorithm Suite This attribute specifies the algorithm suite required for performing
cryptographi c operationswith symmetric or asymmetric key-based se-
curity tokens. An algorithm suite specifies actual algorithms and al-

193

WSIT Security Fea
tures: Advanced: Topics

Option

Description

lowed key lengths. A mechanism alternative will define what algo-
rithms are used and how they are used. The value of this attribute is
typically referenced by a security binding and is used to specify the
algorithms used for al cryptographic operations performed under the
security binding. The default value is Basic 128 hit.

Some of the algorithm suite settings require that Unlimited Strength-
Encryption be configured in the Java Runtime Environment (JRE),
particularly the algorithm suites that use 256 bit encryption. Instruc-
tions for downloading and configuring unlimited strength encryption
can be found at the following URLS:

http://www.oracle.com/technetwork/javaljavase/tech/
index-jsp-136007.html

http://java.sun.com/javase/downl oads/index_jdk5.jsp#docs

Read the OASIS specification WS-Security Policy section on Se-
curity Binding Properties for more description of the components
for each of these algorithm suites. A link to this document can
be found at https://eclipse-eedj.github.io/metro-wsit [https://eclipse-
eedj.github.io/metro-wsit/].

Encrypt Before Signing

If selected, specifiesthat the order of message protection isto encrypt
the SOAP content, then sign the entire SOAP body. Encryption key
and signing key must be derived from the same source key.

If not selected, the default behavior is Sign Before Encrypt.

Encrypt Signature

Specifies whether the signature must be encrypted. If selected, the pri-
mary signature must be encrypted and any signature confirmation el-
ements must also be encrypted. If not selected (the default), the pri-
mary sighature must not be encrypted and any signature confirmation
elements must not be encrypted.

Enable EPR Identity

This feature enables the service to produce its public key in the
wsdl.Clients who wants to consume the service can use this pub-
lic key to encrypt messages and hence they do not need to speci-
fy the peerAlias in their configuration, but still TrustStore config-
uration is needed to validate the certificate. Current Netbeans ver-
sions do not support the Ul to configure this.So for a detailed de-
scription about this feature and to know how to configure this ,
please visit the blog: http://blogs.sun.com/SureshM andal apu/en-
try/support_of endpoint_references with [http://blogs.sun.com/
SureshMandal apu/entry/support_of _endpoint_references with]

Securing only some of the WS op-
erations

With latest metro we can secure only required operationsin a service
unlike in the older version where we have to secure either al or no
operations. This means the security isat binding level , but not at oper-
ation level.But with latest metro, the security policies can be specified
for individual operations,thus we can secure only required operations
inaservice

For a detailed description and how to configure this , please
go through the blog: http://blogs.sun.com/SureshMandal apu/en-

194

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://java.sun.com/javase/downloads/index_jdk5.jsp#docs
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/
http://blogs.sun.com/SureshMandalapu/entry/support_of_endpoint_references_with
http://blogs.sun.com/SureshMandalapu/entry/support_of_endpoint_references_with
http://blogs.sun.com/SureshMandalapu/entry/support_of_endpoint_references_with
http://blogs.sun.com/SureshMandalapu/entry/support_of_endpoint_references_with
http://blogs.sun.com/SureshMandalapu/entry/support_of_binding_assertions_at

WSIT Security Fea

tures: Advanced: Topics

Option

Description

try/support_of binding_assertions at [http://blogs.sun.com/Suresh-
Mandal apu/entry/support_of _binding_assertions_at]

Establish Secure Session (Secure
Conversation)

Secure Conversation enables a consumer and provider to establish a
shared security context when a multiple-message-exchange sequence
isfirst initiated. Subsequent messages use (possibly derived) session
keysthat increase the overall security while reducing the security pro-
cessing overhead for each message.

In the absence of a notion of secure session, the client would have to
reauthenticate with the server upon every request. In this situation, if
the client is sending a Username token, it hasto authenticate on every
request, or, if the client is sending a certificate, the validity of the cer-
tificate has to be established on every regquest. Thisis expensive. En-
able Secure Conversation to get over this requirement for re-authen-
tication.

When this option and Require Derived Keys are both enabled, a de-
rived key will be used. If not, the original session key will be used.

Note on Secure Conversation with Reliable Message Delivery: Re-
liable Messaging can be used independently of the security mecha-
nisms; however, when Reliable Messaging (RM) is used with a secu-
rity mechanism, it requiresthe use of Secure Conversation, which will
be automatically configured for a security mechanism when Reliable
Messaging is selected before the security mechanism is selected. If
Secure Conversation is selected for a security mechanism and the Re-
liable Messaging option was not selected before the security mecha-
nism was specified, Reliable Messaging will need to be manually se-
lected in order for Secure Conversation to work. Reliable messaging,
aswell asthe Advanced configuration options and Deliver Messages
in Exact Order feature, is discussed in Using Reliable Messaging.

Issuer Address

This optional element specifies the address of the issuer (STS) that
will accept the security token that is presented in the message. This
element's type is an endpoint reference. An STS contains a set of in-
terfaces to be used for the issuance, exchange, and validation of secu-
rity tokens. An example that creates and uses an STS can be found at
Example: STS Issued Token (STS).

For example, aMetro STS Issuer Address might be:
http://1ocal host: 8080/j axws-sts/sts

An examle WCF STS Issuer Address might be:
http://131.107.72.15/ \
Security_Federation_SecurityTokenService_Indigo/ \

Symmetric.sve/ \
Scenario_5_| ssuedTokenForCertificate_Mitual Certifica

Issuer Metadata Address

Specifies the address (URLS) from which to retrieve the issuer meta-
data. For example, aMetro STS Issuer Metadata Address might be:

http://1ocal host: 8080/ axws-sts/sts

195

tell

http://blogs.sun.com/SureshMandalapu/entry/support_of_binding_assertions_at
http://blogs.sun.com/SureshMandalapu/entry/support_of_binding_assertions_at
http://blogs.sun.com/SureshMandalapu/entry/support_of_binding_assertions_at

WSIT Security Fea
tures: Advanced: Topics

Option Description
For aWCF STS the Issuer Metadata Address might be:
http://131.107.72.15/ \
Security_Federation_SecurityTokenService_Indigo/ \
Symmetric. svc
For more information, read Configuring A Secure Token Service
(ST9).

Key Type Applicable for Issued Token mechanisms only. The type of key the
service provider desires. The choicesare public key or symmetric key.
Symmetric key cryptography relies on a shared secret and is usually
faster than public key cryptography. Public key cryptography relieson
a key that is made public to all and is primarily used for encryption
but can be used for verifying signatures.

Key Size Applicable for Issued Token mechanisms only. The size of the sym-

metric key requested, specified in number of bits. This is a request,
and, as such, the reguested security token is not obligated to use the
requested key size, nor isthe STS obligated to issue a token with the
samekey size. That said, therecipient should try to useakey at least as
strong as the specified value if possible. The information is provided
as an indication of the desired strength of the security. Valid choices
include 128, 192, and 256.

Require Client Certificate

Select this option to require that a client certificate be provided to the
server for verification.

If you are using a security mechanism with SSL, a client certificate
will be required by the server both during its initial handshake and
again during verification.

Require Derived Keys
Reguire Derived Keysfor:

Issued Token, Secure Session,
X509 Token

A derived key isacryptographic key created from apassword or other
user data. Derived keys alow applications to create session keys as
needed, eliminating the need to store a particular key. The use of the
same session key (for example, when using Secure Conversation) for
repeated message exchangesis sometimesconsidered arisk. Toreduce
that risk, enable Require Derived Keys.

Reguire Signature Confirmation

When the WSS Version is 1.1, select this option to reduce
the risk of attacks because signature confirmation indicates that
the responder has processed the signature in the request. For
more information, read section 8.5, Sighature Confirmation, of the
Web Services Security: SOAP Message Security 1.1 specification
at http://www.oasi s-open.org/committees/downl oad.php/16790/wss-
v1.1-spec-0s-SOA PM essageSecurity . pdf.

SAML Version

Specifies which version of the SAML token should be used. The
SAML Versionissomething the Cal | backHandl er hasto verify,
not the security runtime. SAML tokens are defined in WSS: SAML
Token Profile documents, available from http://www.oasi s-open.org/
specs/index.php.

For an example that uses SAML Callbacks, refer to Example: SAML
Authorization over SSL (SA).

196

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/specs/index.php
http://www.oasis-open.org/specs/index.php

WSIT Security Fea
tures: Advanced: Topics

Option Description

Security Header Layout Specifieswhich layout rulesto apply when adding itemsto the security
header. The options are:

e Srict: Items are added to the security header following the general
principle of "declare before using”.

e Lax: Items are added to the security header in any order that con-
forms to WSS: SOAP Message Security. However, WSIT follows
Strict even when Lax is selected.

» Lax (Timestamp First or Last): The same as for Lax, except
that the first or last item in the security header must be a
wsse: Ti mest anp.

Examples of the layout rules are described in the OASIS WS-Securi-
tyPolicy specification, alink to which can be found at https.//eclipse-
eedj.github.io/metro-wsit [https://eclipse-eedj.github.io/metro-wsit/].

Supporting Token Specifies the type of supporting token to be used. Supporting Tokens
are included in the security header and may sign and/or encrypt ad-
ditional message parts. Valid options for supporting tokens include
X.509 tokens, Username tokens, SAML tokens, or an Issued Token
froman STS.

For more information on these options, read Supporting Token Op-
tions.

Token Type The type of SAML token the service provider requires, for exam-
ple, urn:oasis:nanmes:tc: SAML1. 0: asserti on.Choices
arel10, 1.1, 0r20.

WSS Version Specifies which version of the Web Services Security specification
should be followed, 1.0 or 1.1. These specifications can be viewed
from http://www.0asi s-open.org/specs/index.php.

Enabling WSS 1.1 enables an encrypted key generated by the client
to be reused by the Server in the response to the client. This savesthe
time otherwise required to create a Symmetric Key during the course
of response, encrypt it with the client public key (which isalso an ex-
pensive RSA operation), and transmit the encrypted key in the mes-
sage (it occupies markup and requires Base64 operations). Enabling
WSS 1.1 also enables encrypted headers.

13.4. Building custom STS

It is described in section 11.8 (To Create a Third-Party STS) how to build a WS-Trust Security Token
Service (STS). Thus created STS can be configured to authenticate the client with username/passwords,
X.5009 certificates, etc. and to issue either SAML 1.0 or SAML 2.0 assertions. By default theissued SAML
tokens will contain an SAML AttributeStatement with the user authenticated identity to the STS and a
dummy attribute.

In practice, users may have different identities when using different web services. For authorization or
privacy purposes, different user identity and/or user attributes (e.g. role or authorization code) are required
to beincluded in the issued SAML assertion for a service.

197

https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/
https://eclipse-ee4j.github.io/metro-wsit/
http://www.oasis-open.org/specs/index.php

WSIT Security Fea
tures: Advanced: Topics

WSIT provides an interface com.sun.xml.ws.api.security.trust. ST SAttributeProvider for use in plugging
user identity/attribute mappings into an STS. The implementation class of the STSAttributeProvider
is exposed to the system with the standard ServiceFinder mechanism, i.e. using a file META-INF/
services/com.sun.xml.ws.api.security.trust. STSAttributeProvider in the classpath. The file contains the
names of STSAttributeProvider implementation classes, one per line. The mapped user identity/attributes
will be picked up when creating SAML assertions.

Here are the steps for creating a custom ST SAttributeProvider and plugging it into an STS created from
NetBeans:

1. Use NetBeansto To Create a Third-Party STS.

2. Create an MyST SAttributeProvider implementation class in the same package as the STS implemen-
tation class which extends the BaseSTSImpl.

3. Create adirectory META-INF/servicesin the src/java directory.

4. Create afile with name com.sun.xml.ws.api.security.trust. ST SAttributeProvider with content the path
to the class MySTSAttributeProvider (e.g. org.me.sts.MyST SAttributeProvider). Then place this file
in the src/javalMETA-INF/services directory.

5. Run the NetBeans STS project. Your STS will now use your custom attribute provider in creating the
SAML assertions.

As a reference, here [https://github.com/eclipse-eedj/metro-wsit/blob/master/wsit/samples/ws-trust/ba-
sic/src/common/MyST SAttributeProvider.java] is a sample STSAttributeProvider.

13.4.1. Handling Claims with Metro STS

In WS-SecurityPolicy, an IssuedToken policy assertion may carry an optional wst:Claims element, to
specify the actual claims required to access the service. Here is an example of 1ssuedToken policy asser-
tionswith Claims:

Example 13.4.
<sp: | ssuedToken sp: I ncl udeToken="...">
<l ssuer xmns="...">
<Address xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng">. . . </ Addr ess>
</ | ssuer>

<sp: Request SecurityTokenTenpl ate
xm ns:t="http://schemas. xm soap. or g/ ws/ 2005/ 02/ t rust " >
<t: TokenType>urn: oasi s: names: tc: SAM.: 2. 0: assertion</t: TokenType>
<t: KeyType>http://schemas. xm soap. or g/ ws/ 2005/ 02/ t r ust / Synmet r i cKey
</t:KeyType>
<t: KeySi ze>256</t: KeySi ze>
<t:Clains Dialect="http://schemas. xnm soap. or g/ ws/ 2005/ 05/ i denti ty"
xm ns:ic="http://schemas. xm soap. or g/ ws/ 2005/ 05/ i dentity">
<i c: d ai nilype
Ui="http://.../ws/2005/05/identity/clains/givennane"/>
<ic:COainlfype Ui="http://.../ws/2005/05/identity/clains/surnane"
Optional ="true"/>
</wst: d ai ms>
</ sp: Request Securi t yTokenTenpl at e>
</ sp: | ssuedToken>

With Oasis standard versions of WS-SecurityPolicy 1.2 and WS-Trust 1.3, syntax is different for Claims,
where it isdefined as atop level sub-element of IssuedToken, in stead of a sub-element of RequestSecu-
rityTokenTemplate:

198

https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/samples/ws-trust/basic/src/common/MySTSAttributeProvider.java
https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/samples/ws-trust/basic/src/common/MySTSAttributeProvider.java
https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/samples/ws-trust/basic/src/common/MySTSAttributeProvider.java

WSIT Security Fea
tures: Advanced: Topics

Example 13.5.
<sp: | ssuedToken sp: | ncl udeToken="...">
<l ssuer xm ns="...">
<Address xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng">. . . </ Addr ess>
</ | ssuer>

<t:Clainms Dialect="http://schemas. xm soap. or g/ ws/ 2005/ 05/ i dentity"

xm ns:ic="http://schemas. xm soap. or g/ ws/ 2005/ 05/ i denti ty">
<ic:Cainmlype Ui="http://.../ws/2005/05/identity/clains/gi venname"/>
<ic:Cainmlype Ui="http://.../ws/2005/05/identity/clains/surnane”

Optional ="true"/>
</wst: Cl ai ns>
<sp: Request SecurityTokenTenpl at e
xm ns:t="http://schemas. xm soap. or g/ ws/ 2005/ 02/ t rust " >

<t: TokenType>urn: oasi S: names: tc: SAM.: 2. 0: asserti on</t: TokenType>
<t: KeyType>http://schemas. xn soap. or g/ ws/ 2005/ 02/ t rust / Symmet ri cKey
</t:KeyType>
<t: KeySi ze>256</t: KeySi ze>

</ sp: Request Securi t yTokenTenpl at e>

</ sp: | ssuedToken>

On the client side, the Claims, together with al the elements in the RequestSecurity TokenTemplate, is
copied into the request message RST to the STS.

With Metro based STS, the Claims will then be available in the STSAttributeProvider, for useto build the
user attributesto be included in the issued SAML assertion.

In your implementation of the method, getClaimedAttributes(Subject subject, String appliesTo, String
tokenType, Claims claims), one may parse the Claimsto obtain the ClaimTypes with the following codes:

Example 13.6.

String dialect = clains.getDialect();
Li st <hj ect> cl ai nTypes = cl ai ms. get Any();
for (Qoject clainlype : clainsTypes){
El enent ctEl ement = (El enent) clai nType;
/1 parsing ctEl ement according to the dialect to get claimtypes

}

Once you parse the Claims, you may create the attributes accordingly. The attributes returned from the
ST SAttributeProvider is available in the STSTokenProvider through:

Example 13.7.

(Map<QNane, List<String>>)
ctx. get Ot her Properties(). get (I ssuedTokenCont ext . CLAl MED_ATTRUBUTES) ;

for you to build into your issued SAML assertions.

See also Handling Token and Key Requirements at Run Time for how to inject Claims on the client side
at runtime.

13.5. Handling Token and Key Requirements at
Run Time

In the general model for using STS issued tokens to securing Web services, a service side IssuedToken
policy assertion is used to specify the STS information (STS endpoint, STS MEX endpoint, etc) and the

199

WSIT Security Fea
tures: Advanced: Topics

token requirements (token type, key type, claims, etc). Alternatively, a client side PreConfiguredSTS as-
sertion can be used to specify the local STS. Only one STS can be specified in PreconfiguredSTS. In this
way, the process to go to STS to obtain the issued toke and subsequently use it with the messages to the
service was handled by Metro transparently to the users.

Now with Metro 2.0, one may also inject STS information and issued token requirements programmati-
cally at run time on the client side. This This gives the users more control of the its identity and security
information to be used to access a service, hence open up for building more interesting and important
applications with Metro.

General steps for managing run time configuration:

1. Useexisting ST SIssuedTokenConfiguration for run-time configuration, e.g.

Example 13.8.

Def aul t STSI ssuedTokenConfi guration config = new
Def aul t STSI ssuedTokenConfi guration();

Clains clains = ...

config.setd ai ns(cl ai ns);

2. Use Web Service Feature to inject STSIssuedTokenConfiguration into the system:

Example 13.9.
STSI ssuedTokenFeat ure feature = new STSI ssuedTokenFeat ure(config);

3. STSIssuedTokenFeature is used when creating port from the Service:

Example 13.10.

Cal cul at orWs port = service. get Cal cul at or WsPort (new WebSer vi ceFeat ur e[]
{feature});

4. Theentriesin IssuedToken policy assertion in services WSDL is available through

Example 13.11.
configure. get & herOptions().get(STSIssuedTokenConfi guration.| SSUED TOKEN) ;
This allows the usersto select STS at run time according to the service requirements.

Whileit ismore or less straight forward with TokenType, KeyType, etc., it requires extra effort for man-
aging Claims requirement at run time:

1. Claims are defined as an extensible element in the WS-SecurityPolicy spec:

Example 13.12.

<wst: Cl ains Dialect="http://schemas. xm soap. org/ ws/ 2005/ 05/ i dentity"
xm ns:wst="http://docs. oasi s- open. or g/ ws- sx/ ws-trust/200512" >
</wst:d ai ms>

2. It is up to the applications and profiles of WS-Trust to define the content of the Claims. So you
need to implement com.sun.xml.ws.api.security.trust.Claims to manage claims in your environment.
Here is a sample [https://github.com/eclipse-eedj/metro-wsit/blob/master/wsit/samples/ws-trust/run-
time/src/common/MyClaims.java] for managing claim types of the following form:

200

https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/samples/ws-trust/runtime/src/common/MyClaims.java
https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/samples/ws-trust/runtime/src/common/MyClaims.java
https://github.com/eclipse-ee4j/metro-wsit/blob/master/wsit/samples/ws-trust/runtime/src/common/MyClaims.java

WSIT Security Fea
tures: Advanced: Topics

Example 13.13.

<wst: Cl ains Dialect="http://schemas. xnl soap. or g/ ws/ 2005/ 05/ i denti ty"
xm ns:wst="http://docs. oasi s- open. or g/ ws- sx/ ws-trust/200512"
xm ns:ic="http://schemas. xm soap. or g/ ws/ 2005/ 05/i dentity">
<i c: d ai nType
Uri="http://schemas. xm soap. or g/ ws/ 2005/ 05/ i dentity/clains/locality"/

<i c: d ai nType
Uri="http://schemas. xm soap. or g/ ws/ 2005/ 05/i dentity/clains/role"/>
</wst:d ai ms>

. Make run time requirement for claim types on the client side:

Example 13.14.

Def aul t STSI ssuedTokenConfi gurati on config = new

Def aul t STSI ssuedTokenConfi guration();
STSI ssuedTokenFeat ure feature = new STSI ssuedTokenFeat ure(config);
org.ne.calculator.client.Cal cul atorWs port = service

. get Cal cul at or WsPort (new WebServi ceFeature[]{feature});

int i
int j

I nt eger. parsel nt (request. get Paraneter ("val uel"));
I nt eger. parsel nt (request. get Paraneter ("val ue2"));

config. set TokenType("urn: oasi s: nanes:tc: SAM.: 1. 0: assertion");
M C ains clainms = new Myd ai ns();

cl ai ns. addd ai nifype(Myd ai nms. ROLE) ;

config.setd ai ns(cl ai ns);

int result = port.add(i, j)

In general, you may need to supply your own ST SIssuedTokenConfiguration in following cases:

1.

2.

The client hasto go through multiple STSin atrust chain across security domainsto access the service.

The client needs to select the STS and/or to provide token and key parameters to the STS at run time,
according to which serviceit tries to access and the requirement from the service.

To create a custom configuration class which extends ST Sl ssuedTokenConfiguration:

1.

Y ou may get the targeted service endpoint at run time through

Example 13.15.

get O her Opti ons() . get (STSI ssuedTokenCOnfi gurati on. APPLI ES_TO);

. Similarly, you may get an instance of STSIssuedTokenConfiguration, which captures entries from the

IssuedToken policy assertion for the targeted service, through

Example 13.16.

get O her Opti ons() . get (STSI ssuedTokenCOnfi gurati on. | SSUED_TOKEN) ;

. The entries in the IssuedToken policy and in the client side PreConfiguredSTS take high priorities

which cannot be override at run time.

. Different run time entries should be supplied for different services.

201

WSIT Security Fea
tures: Advanced: Topics

13.6. Advanced Usages of STS in Security

The following sections discuss some features for advanced usages of STS in securing Web services with:
» Token Caching and Sharing

» ActAsand Identity Delegation

13.6.1. Token Caching and Sharing

Hereis adescription of how thisis supported in Metro:

1. The servicesto be accessed with the same token must share the same certificate.

2. Only issued tokens from the same STS are shared.

3. Caching and sharing issued tokens can be enabled for each service instance by configuration

To enable this for a service proxy, you need to add attribute shareToken="true" in the wsit-client.xml or
the file referenced by it for the proxy:

Example 13.17.

<t: PreConfi gur edSTS
xm ns:t="http://schemas. sun. coni ws/ 2006/ 05/trust/client"
shar eToken="true">

</t:PreConfiguredSTS>

Toillustrate the usage, you may find astand alone sampl e here [https.//github.com/javaee/metro-wsit/tree/
master/wsit/samples/ws-trust/share]. This sample contains 4 parts for client, STS, Service, and Servicel.
Each serviceis configured to use the STSissued token to access. On the client side, the client instances for
Service and Servicel are configured to be in the circle to share the issued tokens from the STS. The client
calls Service first, then Servicel. You will see that the client goes to the STS to get the token to access
Service, and then to call Servicel without going to the STS but use the token obtained in calling Service.

Here is a description on how to managing the lifetime and renewing of the issued tokens:

1. The client can request for the life time of an issued token through configuration with a subelement
LifeTime of PreConfiguredSTS:

Example 13.18.

<t : PreConfi gur edSTS
xm ns:t="http://schemas. sun. conl ws/ 2006/ 05/trust/client"
shar eToken="true">

<t:LifeTi me>3600</Li feTi me>
</t:PreConfiguredSTS>

or programmatically with ST SlssuedTokenConfiguration:

Example 13.19.

config.get O herOptions(). put (STSI ssuedTokenConfi guration. LI FE_TI MVE,
I nt eger. val ue (3600));

202

https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust/share
https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust/share
https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust/share

WSIT Security Fea
tures: Advanced: Topics

The value is used to construct the Lifetime element in the RST to the STS:

Example 13.20.
<trust:Lifetine>
<wsu: Created xm ns:wsu="...">2007-10-31T18: 39: 23. 548Z</ wsu: Cr eat ed>
<wsu: Expires xm ns:wsu="...">2007-11-01T02: 39: 23. 548Z</ wsu: Expi res>
</trust:Lifetinme>

2. By default, an exception is thrown if the token cached to be used on the client side is expired.

3. One can enable to automatically request for a new token for an expired token by configuration with
attribute renewExpiredToken in PreConfiguredSTS:

Example 13.21.
<t: PreConfi gur edSTS
xm ns:t="http://schemas. sun. coni ws/ 2006/ 05/ trust/client"

shar eToken="true"
renewkExpi r edToken="true" >

<t:LifeTi ne>3600</Li feTi me>
</t:PreConfiguredSTS>

or programmatically with ST SlssuedTokenConfiguration:

Example 13.22.

config.get & herOptions()
. put (STSI ssuedTokenConf i gur ati on. RENEW EXPI RED_TOKEN, "true");

13.6.2. ActAs and Identity Delegation

We provide support for ActAsintroduced in WS-Truts 1.4 in Metro 2.0

203

WSIT Security Fea
tures: Advanced: Topics

Figure 13.1. ActAsand I dentity Delegation

Lo
e
L

w BSlanllon al I'ﬁ_‘;

o o

—2 —4—-

£

WSC WsP2

Thisfeatureisbetter illustrated by the sample here [https://github.com/javaee/metro-wsit/tree/master/wsit/
samples/ws-trust/del egate]

1.

The Client send a request to the STS. The request message carries the username/password of the user
and is secured with the STS certificate.

. The STSissues an SAML assertion containing the username (e.g. Alice) as subject id and role attribute

(see src\common\SampleST SAttributeProvider). Then it send aresponse message with theissued token
to the Client.

. The client send a request to the Service. The message carries the SAML assertion from the previous

step for authentication and secured with the Service certificate.

. The Service send arequest to the STS. The message contains the username/password (bob/bab) of the

Service, the SAML assertion received from the user in the previous step in an ActAs element in the
body (RST), and is secure with the STS certificate (see src\fs\ smple\server\FSImpl.java. The ActAs
token isinjected into the request using the ST SIssuedTokenFeture). It meansto ask for an issued token
with it the Service can access the Service 1, acting as the user.

. The STS issues an (act as) SAML assertion which contains the Service id (bob) in the Subject, and

attribute ActAs with the user name (e.g. Alice), and role attribute for the user (see src\common\Sam-
pleST SAttributeProvider). It then send a response message with the issued token to the Service.

. The Service sand a request to the Service 1. The message carries the act as SAML from the previous

step and is secured with the Service 1 certificate. The Service 1 check the act as SAML assertion (see
sre\common\SampleSamlValidator.java) and understands it is the Service who made the request act
asthe user.

. The Service 1 send aresponse to the Service.

. The Service sends aresponse to the Client.

204

https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust/delegate
https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust/delegate
https://github.com/javaee/metro-wsit/tree/master/wsit/samples/ws-trust/delegate

WSIT Security Fea
tures: Advanced: Topics

Common issues and solutions:
1. When acustom SAML assertion validator is used, the SAML assertion is not available in the Subject.

In this case, you need to use the extended version com.sun.xml.wss.impl.callback.SamlValidator and
to add explicitly the DOM based saml assertion to the public credentials of the Subject in your imple-
mentation of the method

Example 13.23.

val i dat e(XMLSt r earReader assertion, Map runti meProps,
Subj ect cli ent Subj ect)
and
val i dat e(El ement assertion, Map runtimeProps, Subject clientSubject)

in the interface.
2. ActAsisnot called in your custom ST SAttributeProvider:

Y ou need to use the WSTrustContractimpl for your STS as specified in the STSConfiguration in the
stswsdl:

Example 13.24.

<t c: STSConfi guration
xm ns:tc="http://schemas. sun. com ws/ 2006/ 05/t rust/server"
sencrypt | ssuedKey="true" encryptlssuedToken="fal se">
<tc:LifeTi me>36000</tc:LifeTi me>
<tc: Contract>com sun. xm . ws. security.trust.inpl.WTrustContract! npl
</tc: Contract>

</tc: STSConfi gurati on>

If you use Nethenasto create STS, | ssueSAMLTokenContractl mpl isset by default. Y ou need to change
it to WSTrustContractimpl for "ActAs" support.

205

Chapter 14. WSIT Example Using a
Web Container Without NetBeans IDE

Table of

14.1.

14.2.
14.3.

14.4.

14.5.

14.6.
14.7.
14.8.

Contents

Environment Configuration SEINGSoveueiiiiiiiie e 206
14.1.1. Setting the Web Container Listener POrtcoouiviiiiiiiiiiiiiieeee e 206
14.1.2. Setting the Web Container HOme DireCtoryooveviiiiiiiiiiiiiiiieeeeeeeee e 207
WSIT Configuration and WS-Policy ASSEITIONScouuiiiiiiiieeiiieee e 207
Creating a Web Service without NetBEaNscouuviiiiiiiiii e 207
14.3.1. Creating a Webh Service FrOmM JAVAc.uiiuiiiiiiiie e ea e 208
14.3.2. Creating a Web Service FIom WSDLiiiuiiiiiiiii et 210
Building and Deploying the WED SErVICec..oiiuiiiiiiiiiii e 212
14.4.1. Building and Deploying a Web Service Created From Javacceuvvveviiinnecennnnns 212
14.4.2. Building and Deploying a Web Service Created From WSDLcccoviviiiiiiniiinnnees 213
14.4.3. Deploying the Web Service to a Web Containeroceeuvieiiiiiiieiiieeieeeeieeenn, 213
14.4.4. Vexrifying DeplOYMENLiiuiiiiiiiii et eaa s 214
Creating a Web Service ClHENt ..o e e 214
14.5.1. Creating @ Client from JAVAc.uu i 215
14.5.2. Creating @ Client from WSDLoiuiiiiiiiii e e 216
Building and Deploying @ CHENtcoouuiiiiiiee e e 217
RUNNINg @ WED SErviCe CHENLuiiiiiiiie e 217
UNdeploying @ WED SEIVICEooueiiieei e 218

14.1. Environment Configuration Settings

Before you can build and run the samplesin this tutorial, you need to compl ete the following tasks:

* Setting the Web Container Listener Port

* Setting the Web Container Home Directory

14.1.1. Setting the Web Container Listener Port

The Java code and configuration files for the examples used in this tutorial assume that the web container
islistening on I P port 8080. Port 8080 isthe default listener port for both GlassFish (domainl) and Tomcat.
If you have changed the port, you must update the port number in the following files before building and
running the examples:

 wsit-enabl ed-fronjaval/etc/wsit-fronjava.server. AddNunber sl npl . xm

* Wsi t-enabl ed-fronjaval/ etc/custom schema. xm

* wsit-enabl ed-fronjaval/etc/customclient.xm

* Wsit-enabl ed-fronjaval/etc/build. properties

* Wwsit-enabl ed-fromwsdl /etc/customclient. xni

* wsit-enabl ed-fromasdl /etc/build. properties

206

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

14.1.2. Setting the Web Container Home Directory

Before you build and deploy the web service and its client, set one of the following environment variables:

* If you are using GlassFish, set the AS_HOVE environment variable to the top-level directory of Glass-
Fish.

* If you are using Tomcat, set the CATALI NA HOVE environment variable to the top-level directory of
Tomcat.

14.2. WSIT Configuration and WS-Policy Asser-
tions

14.3.

WSIT features are enabled and configured using amechanism defined by the Web Services Policy Frame-
work (WS-Policy) specification. A web service expresses its requirements and capabilities through poli-
cies embedded in the service's WSDL description. A web service consumer, or client, verifiesthat it can
handl e the expressed requirements and, optionally, uses server capabilities advertised in policies.

Eachindividual WSIT technology, such as Reliable Messaging, Addressing, or Secure Conversation, pro-
vides a set of policy assertionsit can process. Those assertions provide the necessary configuration details
to the WSIT runtime to enable proper operation of the WSIT features used by a given web service. The
assertions may specify particular configuration settings or rely on default settings that are predetermined
by the specific technology. For instance, in the snippet shown below, thewsr m | nact i vi t yTi neout
setting is optional and could be omitted. The following snippet shows WS-Policy assertions for WS-Ad-
dressing and WS-Reliable Messaging:

Example 14.1. Sample W S-Policy expression

<wsp: Policy wsu: | d="AddNunbers_policy">
<wsp: Exact | yOne>
<wsp: Al l >
<wsaw. Usi ngAddr essi ng/ >
<wsr m RMAssertion>
<wsrm lnactivityTi mneout MIIiseconds="600000"/>
</wsrm RMAsserti on>
</wsp: Al >
</ wsp: Exact | yOne>
</ wsp: Pol i cy>

Thissnippetisvaidin either aWSIT configuration file (wsi t - package. servi ce. xm) orinaWeb
Services Description Language (WSDL) file. Java-first web services use the WSIT configuration file,
while WSDL -first web servicesrely exclusively on the policy elementsin the WSDL file. This particular
snippetisfromthe WSIT configuration filein theexample, wsi t - enabl ed-fronj ava/ etc/wsi t -
fronj ava. server. AddNunber sl mpl . xm .

Creating a Web Service without NetBeans

Y ou can create aweb service starting from Java code or starting from aWSDL file. Thefollowing sections
describe each approach:

* Creating a Web Service From Java

 Creating aWeb Service From WSDL

207

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

14.3.1. Creating a Web Service From Java

Oneway to create aweb service applicationisto start by coding the endpoint in Java. If you are devel oping
your Java web service from scratch or have an existing Java class you wish to expose as a web service,
thisisthe most direct approach.

The Jakarta XML Web Services Specification relies heavily on the use of annotations as specified in A
Metadata Facility for the Java Programming Language (JSR-175) and Jakarta Web Services Metadata, as
well as additional annotations defined by the Jakarta XML Web Services specification.

The web service is written as a normal Java class. Then the class and its exposed methods are annotated
with the web service annotations @\ébSer vi ce and @ébMet hod. The following code snippet shows
an example:

Example 14.2.

@\ebServi ce
public class AddNunber sl npl {
@\ebMet hod(acti on="addNunbers")
public int addNunbers(int nunberl, int nunber?2)
t hr ows AddNunber sException {
if (nunberl < O || number2 < 0) {
t hr ow new AddNunber sExcepti on(
"Negative nunmber can't be added!",
"Nurmbers: " + nunberl + ", " + nunber?2);

}

return nunberl1l + nunber2;

}

When developing aweb service from scratch or based on an existing Javaclass, WSI T features are enabled
using aconfiguration file. That file, wsi t - package. servi ce. xm , iswritten in WSDL format. An
example configuration file can be found in the accompanying samples:

Example 14.3.
wsi t -enabl ed-fronj ava/ etc/wsit-fronjava. server. AddNunber sl npl . xn

Thesettingsinthewsi t - package. servi ce. xm fileareincorporated dynamically by theWSIT run-
timeintotheWSDL it generatesfor theweb service. So when aclient requeststheweb service' sSWSDL, the
runtime embedsany publicly visible policy assertionscontainedinthewsi t - package. servi ce. xm
file into the WSDL. For the example wsi t - f r onj ava. server . AddNunber sl npl . xm in the
sample discussed in thistutorial, the Addressing and Reliable M essaging assertions are part of the WSDL
as seen by the client.

Note

The wsi t - package. servi ce. xm file must be in the VEB- | NF sub-directory of the
application’s WAR filewhen it is deployed to the web container. Otherwise, the WSIT run-time
environment will not find it.

To create aweb service from Java, create the following files:

» These files define the web service and the WSIT configuration for the service, which are discussed in
the sections below.

208

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

* Web Service Implementation Java File
» wsit-package.service.xml File

« AddNunber sException. j ava

e custom schena. xm

e sun-j axws. xn

* web. xm

e Thesefilesare standard files required for Jakarta XML Web Services. Examples of these files are pro-
vided inthewsi t - enabl ed- f r onj ava sample directory.

¢ AddNunber sExcepti on. j ava
e custom schena. xm

e sun-j axws. xm

e web. xm

» These files are standard in any Ant build environment. Examples of these files are provided in the
wsi t - enabl ed- f r onj ava sample directory.

e build. xm

e build. properties
14.3.1.1. Web Service Implementation Java File

The sample files define a web service that takes two integers, adds them, and returns the result. If one of
the integers is negative, an exception isthrown.

The starting point for developing aweb service that usesthe WSIT technologies is a Java class file anno-
tated with the j akart a. j ws. WebSer vi ce annotation. The @\bSer vi ce annotation defines the
class as aweb service endpoint.

The following file (wsi t - enabl ed-fronjaval/ src/fronja-
val server AddNunber sl npl . j ava) implements the web service interface. package
fronj ava. server;

Example 14.4.

import jakarta.jws.\WbService;
import jakarta.jws.WbMet hod;

@\ebServi ce
public class AddNumnberslmpl {
@\ebMet hod(acti on="addNunbers")
public int addNunbers(int nunberl, int nunber?2)
t hr ows AddNunber sException {
if (nunberl < O || number2 < 0) {
t hr ow new AddNunber sExcepti on(
"Negati ve number cannot be added!",
"Nurmbers: " + nunberl + ", " + nunber?2);

209

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

}
return nunberl1l + nunber?2;
}
}
Note

To ensure interoperability with Windows Communication Foundation (WCF) clients, you must
specify theact i on element of @\bMet hod in your endpoint implementation classes. WCF
clients will incorrectly generate an empty string for the Action header if you do not specify the
acti on element.

14.3.1.2. wsit-package.service.xml File

ThisfileistheWSIT configurationfile. It defineswhich WSIT technol ogies are enabled in theweb service.
The snippet shown below illustrates how to enable the WSIT reliable messaging technology inawsi t -
package. servi ce. xm file.

Example 14.5.

<wsp: Policy wsu: | d="AddNunbers_policy">
<wsp: Exact | yOne>
<wsp: Al | >
<wsaw. Usi ngAddr essi ng/ >
<wsr m RMAssertion>
<wsrm I nactivityTi meout MIIiseconds="600000"/>
<wsr m Acknowl edgenent I nterval M1 Iiseconds="200"/>
</ wsrm RMAssertion>
</wsp: Al'l >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

For a complete example of awsi t - package. servi ce. xm file seethewsi t - enabl ed-from
j ava example. You can use the wsi t - package. servi ce. xml file provided in the example as a
reference for creating your ownwsi t - package. servi ce. xm file.

14.3.2. Creating a Web Service From WSDL

Typically, you start from WSDL to build your web service if you want to implement a web service that
is already defined either by a standard or an existing instance of the service. In either case, the WSDL
already exists. Thewsi nmpor t tool processes the existing WSDL document, either from alocal copy on
disk or by retrieving it from a network address or URL. For an example of using aweb browser to access
aservice sWSDL, see Verifying Deployment.

When developing a web service starting from an existing WSDL, the process is actually simpler than
starting from Java. This is because the policy assertions needed to enable various WSIT technologies
are aready embedded in the WSDL file. An example WSDL fileisincluded in the f r omwsdl sample
provided with this tutoria at:

Example 14.6.
tut-install/wsit-enabl ed-fromsdl/etc/ AddNunbers. wsdl
To create aweb service from WSDL, create the following sourcefiles:

+ WSDL File

210

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

» Web Service Implementation File
» custom server.xmn

* web. xm

e sun-j axws. xm

 build. xm

e build. properties

Thefollowing files are standard files required for Jakarta XML Web Services. Examples of thesefilesare
provided inthef r omansdl sample directory.

e custom server. xn
* sun-jaxws. xm
 web. xni

Thebui | d. xm andbui | d. properti es filesare standard in any Ant build environment. Examples
of thesefiles are provided in the respective samples directories.

The sample files provided in this tutorial define a web service that takes two integers, adds them, and
returns the result. If one of the integersis negative, an exception is returned.

14.3.2.1. WSDL File

You can create aWSDL file by hand or retrieve it from an existing web service by ssimply pointing aweb
browser at the web service’'s URL. The snippet shown below illustrates how to enable the WSIT Reliable
M essaging technology in aWSDL file.

Example 14.7.

<wsp: Policy wsu: | d="AddNunbers_policy">
<wsp: Exact | yOne>
<wsp: Al | >
<wsr m RVAssertion>
<wsrm I nactivityTimeout MIIiseconds="600000"/>
<wsr m Acknowl edgenent I nterval M1 Iiseconds="200"/>
</wsrm RVAssertion>
</wsp: Al >
</ wsp: Exact | yOne>
</ wsp: Pol i cy>

For a complete example of aWSDL file, seethe AddNunber s. wsdl fileinthefromasdl example.
Another benefit of the AddNunber s. wsdl fileis that it shows how a WSIT-enabled WSDL is con-
structed. Therefore, you can useit as a reference when you create aWSDL file or modify an existing one.

14.3.2.2. Web Service Implementation File

The following file (AddNumberslnpl.java) shows how to implement a web service
i nterface. package fromasdl . server;

Example 14.8.

import jakarta.jws.WbService,;

211

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

import jakarta.jws.WbMet hod;

@\ébServi ce (endpointinterface=
"fromasdl . server. AddNurber sPor t Type")
public class AddNumber sl npl {
@\ebMet hod(acti on="addNunbers")
public int addNunbers (int nunberl, int nunber?2)
t hrows AddNunmber sFaul t _Exception {
if (nunberl < 0 || nunber2 < 0) {
String message = "Negative nunber cannot be added!";
String detail = "Nunbers: " + numberl + ", " + nunber?2;
AddNunber sFault fault = new AddNunbersFault ();
fault.set Message (nessage);
fault.setFaultinfo (detail);
t hr ow new AddNunber sFaul t _Excepti on(nessage, fault);

}
return nunberl + nunber?2;
}
public void oneWayl nt (i nt nunber) {
Systemout.println("Service received: " + nunber);
}

}

14.4. Building and Deploying the Web Service

Once configured, you can build and deploy a WSI T-enabled web service in the same manner asyou would
build and deploy a standard Jakarta XML Web Service.

The following topics describe how to perform this task:
 Building and Deploying a Web Service Created From Java
 Building and Deploying a Web Service Created From WSDL
» Deploying the Web Service to a Web Container

» Verifying Deployment

14.4.1. Building and Deploying a Web Service Created
From Java

To build and deploy the web service, open a terminal window, go to thet ut -i nstal | / wsi t - en-
abl ed-fronj ava/ directory and type the following:

This command callsthe ser ver target in bui | d. xm , which builds and packages the application in-
to aWAR file, wsi t - enabl ed-fronj ava. war, and placesit in thewsi t - enabl ed- fr onj a-
va/ bui | d/ war directory. Theant ser ver command also deploysthe WAR fileto theweb container.

The ant command calls multiple tools to build and deploy the web service. The wsgen tool processes
the annotated source code and invokes the compiler itself, resulting in the class files for each of the Java
source files. In the wsi t - enabl ed- f r onj ava example, the Ant target bui | d- server-javain
bui | d. xm handlesthisportion of the process. Next, theindividual classfilesare bundled together along
with the web service' s supporting configuration files into the application’s WAR file. It isthisfilethat is
deployed to the web container by the deploy target.

212

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

During execution of the ser ver target, you will see awarning message. The message refers to “ Anno-
tation types without processors’. The warning is expected and does not indicate an abnormal situation.
The text isincluded here for reference:

Example 14.9.

bui | d-server-java
[apt] warning: Annotation types w thout processors:
[j akarta.xm . bi nd. annot ati on. Xm Root El enment ,
j akarta.xm . bi nd. annot ati on. Xm Accessor Type,
j akarta.xm . bi nd. annot ati on. Xm Type,
jakarta.xm . bi nd. annot ati on. Xm El ement]
[apt] 1 warning

14.4.2. Building and Deploying a Web Service Created
From WSDL

To build and deploy the web service, open a terminal window, go to thet ut -i nstal | / wsi t - en-
abl ed- f romnsdl / directory, and type the following:

ant server

This command calls wsi npor t , which takes the WSDL description and generates a corresponding Ja-
va interface and other supporting classes. Then the Java compiler is called to compile both the user's
code and the generated code. Finally, the class files are bundled together into the WAR file. To see the
details of how this is done, see the bui | d- server-wsdl and creat e- war targetsinthewsi t -
enabl ed-fromasdl / bui | d. xm file.

14.4.3. Deploying the Web Service to a Web Container

As aconvenience, invoking theant ser ver command builds the web service's WAR file and imme-
diately deploys it to the web container. However, in some situations, such as after undeploying a web
service, it may be useful to deploy the web service without rebuilding it.

For both scenarios, wsi t - enabl ed- f ronj ava andf r omwsdl , the resulting application is deployed
in the same manner.

The following sections describe how to deploy on the different web containers:
» Deploying to GlassFish

» Deploying to Apache Tomcat
14.4.3.1. Deploying to GlassFish

For development purposes, the easiest way to deploy isto usethe aut odepl oy facility of the GlassFish
application server. To do so, you ssimply copy your application’s WAR file to the/ aut odepl oy direc-
tory for the domain to which you want to deploy. If you are using the default domain, donai n1, whichis
set up by the GlassFish installation process, the appropriate directory path would beas- i nstal | / do-
mai ns/ domai nl/ aut odepl oy.

Thebui | d. xrmd file which accompanies this example has a deploy target for GlassFish. To invoke that
target, run the following command in the top-level directory of the respective examples, either wsi t -
enabl ed-fromj ava orwsi t - enabl ed- f r omnsdl , asfollows.

ant depl oy

213

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

14.4.3.2. Deploying to Apache Tomcat

Apache Tomcat also has an aut oDepl oy feature that is enabled by Tomcat’s out-of-the-box configu-
ration settings. If you are not sure whether the autoDeploy is enabled, check t ontat - hone/ conf/
server . xm for the value of aut oDepl oy, where tomcat-home is the directory where Tomcat isin-
stalled. Assuming aut oDepl oy is enabled, you simply copy your application’'s WAR fileto thet om
cat - horre/ webapps directory.

The bui I d. xm file which accompanies this example has a deploy target for Tomcat. To invoke
that target, run the following command in the top-level directory of the respective examples, either
wsi t - enabl ed-fronj ava or wsi t - enabl ed-fromasdl , as follows. You need to use the -
Duse. t ontat =t r ue switch to make sure that the application is deployed to Tomcat, and not to the
default server, which is GlassFish.

ant -Duse.tontat=true depl oy

14.4.4. Verifying Deployment

14.5

A basic test to verify that the application has deployed properly is to use a web browser to retrieve the
application’sWSDL fromits hosting web container. The following URL sretrieve the WSDL from each of
the two example services. If you are running your web browser and web container on different machines,
you need to replace| ocal host with the name of the machine hosting your web service.

Note

Before testing, make sure your web container is running.
e http://1ocal host: 8080/ wsit-enabl ed-fromn ava/ addnunber s?wsdl
 http://1ocal host: 8080/ wsit-enabl ed-fromsdl / addnunber s?wsdl

If the browser displays a page of XML tags, the web service has been deployed and is working. If not,
check the web container log for any error messages related to the sample WAR you have just deployed.
For GlassFish, thelog canbefound at as- i nst al | / domai ns/ domai n1/ | ogs/ server . | og. For
Apache Tomcat, the appropriate log file can befound at t ontat - hone/ | ogs/ cat al i na. out .

Creating a Web Service Client

Unlike developing a web service provider, creating a web service client application always starts with
an existing WSDL file. This processis similar to the process you use to build a service from an existing
WSDL file. The WSDL file that the client consumes already contains the WS—* policy assertions (and, in
some cases, any value-added WSIT policy assertions that augment Sun’s implementation, but can safely
beignored by other implementations). Most of the policy assertions are defined in the WS-* specifications.
Sun’s implementation processes these standard policy assertions.

The policy assertions describe any requirements from the server aswell as any optional features the client
may use. The WSIT build tools and run-time environment detect the WSDL ' s policy assertions and con-
figure themselves appropriately, if possible. If an unsupported assertion is found, an error message de-
scribing the problem will be displayed.

Typically, you retrieve the WSDL directly from a web service provider using the wsi npor t tool. The
wsi nport tool then generates the corresponding Java source code for the interface described by the
WSDL. The Javacompiler, j avac, isthen called to compile the sourceinto classfiles. The programming
code uses the generated classes to access the web service.

214

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

The following sections describe how to create aweb service client:
 Creating a Client from Java

 Creating a Client from WSDL

14.5.1. Creating a Client from Java

To create a client from Java, you must create the following files:
 Client JavaFile (fromjava)

 Client Configuration File (fromjava)

e build. xm

* buil d. properties

Thebui | d. xm andbui | d. properti es filesare standard in any Ant build environment. Examples
of thesefilesare provided inthewsi t - enabl ed- f r onj ava sample directory.

14.5.1.1. Client Java File (fromjava)

The client Java file defines the functionality of the web service client. The following code shows the
AddNunber sC i ent . j ava filethat is provided in the sample.

Example 14.10.
package fronjava.client;

i mport com sun. xm . ws. Cl oseabl e;
i mport java.rm . Renpt eException;

public class AddNumbersCient {
public static void main (String[] args) {
AddNunmber sl npl port = null;
try {
port = new AddNunber sl npl Servi ce() . get AddNunber sl npl Port () ;
int nunberl = 10;
int nunber2 = 20;
Systemout.printf ("Invoking addNunbers(%l, %l)\n",
number 1, nunber2);
int result = port.addNunbers (nunberl, nunber2);
Systemout.printf (
"The result of adding % and % is %d.\n\n",
nunber 1, nunber2, result);

nunber1l = -10;
Systemout.printf ("Invoking addNunbers(%l, %l)\n",
nurmber 1, nunber2);
result = port.addNurmbers (nunberl, nunber?2);
Systemout.printf (
"The result of adding %d and % is %l.\n",
nunmber 1, nunber2, result);
} catch (AddNunmber sExcepti on_Exception ex) {
Systemout.printf (
"Caught AddNunber sExcepti on_Exception: %\n",

215

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

ex.getFaultinfo ().getDetail ());

} finally {
((Cd oseabl e)port).close();
}

}

This file specifies two positive integers that are to be added by the web service, passes the integers to the
web service and gets the results from the web service by using the port . addNunber s method, and
prints the results to the screen. It then specifies a negative number to be added, gets the results (which
should be an exception), and prints the results (the exception) to the screen.

14.5.1.2. Client Configuration File (fromjava)

Theclient configuration file definesthe URL of theweb service WSDL file. Itisused by the web container
wsi nport tool to access and consume the WSDL and to build the stubs that are used to communicate
with the web service.

Thecust om cl i ent. xm fileprovidedinthewsi t - enabl ed- f r onj ava sampleisshown below.
Thewsdl Locat i on and the package name xml tags are unique to each client and are highlighted in
bold text

Example 14.11.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<bi ndi ngs
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Locati on="http://| ocal host: 8080/ wsit-enabl ed-fronj ava/
addnunber s?wsdl "
xm ns="http://java. sun. com xm / ns/j axws" >
<bi ndi ngs node="wsdl| : definitions">
<package nanme="fronj ava.client"/>
</ bi ndi ngs>
</ bi ndi ngs>

14.5.2. Creating a Client from WSDL

To create aclient from WSDL, you must create the following files:
 Client Java File (fromwsdl)

 Client Configuration File (fromwsdl)

e build.xm

e build. properties

Thebui | d. xm andbui | d. properti es filesare standard in any Ant build environment. Examples
of thesefilesare provided inthe f r onwsdl sample directory.

14.5.2.1. Client Java File (fromwsdl)

The client Java file defines the functionality of the web service client. The same client Java file is used
with both samples, wsi t - enabl ed-fronj avaand wsi t - enabl ed-fromasdl . For moreinfor-
mation on thisfile, see Client Java File (fromjava).

216

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

14.5.2.2. Client Configuration File (fromwsdl)

This is a sample customclient.xm file The wsdl Locati on, package name, and
j axb: package name XML tags are unique to each client and are highlighted in bold text

Example 14.12.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<bi ndi ngs
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns:jaxb="http://java. sun. com xm / ns/j axb"
xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
wsdl Locati on="http://| ocal host: 8080/ wsit-enabl ed-fromasdl /
addnunber s?wsdl "
xm ns="http://java. sun. com xm / ns/j axws" >
<bi ndi ngs node="ns1: definitions"
xm ns: nsl="http://schemas. xm soap. or g/ wsdl /">
<package name="fromasdl.client"/>
</ bi ndi ngs>
<bi ndi ngs node="ns1:definitions/nsl:types/xsd: schema
[@arget Nanespace="http://duke.org]"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns:nsl="http://schemas. xm soap. or g/ wsdl /">
<j axb: schemaBi ndi ngs>
<j axb: package nane="fromasdl .client"/>
</ j axb: schemaBi ndi ngs>
</ bi ndi ngs>
</ bi ndi ngs>

Building and Deploying a Client

To build and deploy aclient for either of the examples provided in thistutorial, type one of the following
Ant commandsin thetop-level directory of therespectiveexample, (eitherwsi t - enabl ed-f ronj ava
orwsi t - enabl ed- f r omnsdl) depending on which web container you are using:

14.6

For GlassFish:

ant client

For Apache Tomcat:

ant -Duse.tontat=true client

This command runs wsi npor t , which retrieves the web service’s WSDL, and then it runsj avac to
compile the source.

14.7. Running a Web Service Client

Torunaclient for either of the examples provided in thistutorial, type one of thefollowing Ant commands
in the top-level directory of the respective example, (either wsi t - enabl ed-fronj ava or wsi t -
enabl ed- f r omnsdl) depending on which web container you are using:

For GlassFish:
ant run

For the Apache Tomcat:

217

WSIT Example Using aWeb Con-
tainer Without NetBeans IDE

14.8

ant -Duse.tontat=true run

This command executes the r un target, which simply runs Java with the name of the client’s class, for
example, f romnsdl . cl i ent. AddNunbersd i ent.

Undeploying a Web Service

During the development process, it is often useful to undeploy aweb service. Undeploying aweb service
means to disable and remove it from the web container. Once the web service is removed, clients are no
longer able to use the web service. Further, the web service will not restart without explicit redeployment
by the user.

To undeploy from GlassFish, type the following commands:

asadm n undepl oy --user admi n wsit-enabl ed-fronjava
asadm n undepl oy --user admi n wsit-enabl ed-fromsdl
To undeploy from Apache Tomcat, type the following commands:
rm $CATALI NA_HOVE/ webapps/ wsi t - enabl ed- fronj ava. war

rm $CATALI NA_HOVE/ webapps/ wsi t - enabl ed- f romnsdl . war

218

Chapter 15. Accessing Metro Services
Using WCEF Clients

Table of Contents

15.1. Creating @ WECE ClIENT ...ttt e e e e eenanns 219
15.1.1. Prerequisites to Creating the WCF Clientoooiiiiiiiiiiiiii e 219
15.1.2. Examining the ClIent Classoooiiuiiieiiiiece e 219
15.1.3. Building and RUNNiNg the CHENtcouuiiiiiiei e 220

15.1. Creating a WCF Client

The process of creating a WCF C# client to the addnunber s service is similar to that for a Java pro-
gramming language client. To create a WCEF client you will:

1. Usethesvcuti | . exe tool to generate the C# proxy classand contractsfor accessing the web service.
2. Create aclient program that uses the generated files to make calls to the addnunber s web service.
This section covers the following topics:

» Prerequisitesto Creating the WCF Client

» Examining the Client Class

 Building and Running the Client

15.1.1. Prerequisites to Creating the WCF Client

Y ou must have the following software installed to create the WCF client:
» Microsoft Windows Software Development Kit (SDK) for July Community Technology Preview
» Microsoft NET Framework 3.5 RTM

» The cscli ent - enabl ed-fronj ava. zi p example bundle, which is availalble for download
[https://javaee.github.io/metro/getting-started/downl oad/csclient.zip].

Y oumust also deploy theaddnunber s servicedescribed in WS T Example Using a Web Container With-
out NetBeans I DE. The serviceisalso availablefor download [https://javaee.github.io/metro/getting-start-
ed/downl oad/wsit-enabled-fromjava.zip] .

15.1.2. Examining the Client Class

The client class uses a generated proxy class, AddNunber sl npl , to access the web service. The por t
instance variable stores a reference to the proxy class.

Example 15.1.

port = new AddNunber sl npl O i ent (" AddNunber sl npl Port");

219

https://javaee.github.io/metro/getting-started/download/csclient.zip
https://javaee.github.io/metro/getting-started/download/csclient.zip
https://javaee.github.io/metro/getting-started/download/wsit-enabled-fromjava.zip
https://javaee.github.io/metro/getting-started/download/wsit-enabled-fromjava.zip
https://javaee.github.io/metro/getting-started/download/wsit-enabled-fromjava.zip

Accessing Metro Ser-
vices Using WCF Clients

Then the web service operation addNunber s iscalledonport :

Example 15.2.
|nt result = port.addNunbers (nunberl, nunber?2);

Thefull O i ent. cs classisasfollows:

Example 15.3.
usi ng System

class Cient {
static void Main(String[] args) {
AddNumber sl npl dient port = null;

try {
port = new AddNunber sl npl i ent (" AddNunber sl npl Port");

int nunberl = 10;
int nunber2 = 20;
Consol e. Wite("Adding {0} and {1}. ", nunberl1, nunber2);
int result = port.addNunbers (nunberl1, nunber2);
Consol e. WiteLine("Result is {0}.\n\n",result);
nunberl = -10;
Consol e. Wite("Adding {0} and {1}. ", nunberl, nunber2);
result = port.addNunmbers (nunberl, nunber?2);
Consol e. WiteLine("Result is {0}.\n\n",result);
port. Cl ose();
} catch (System Servi ceMbdel . Faul t Exception e) {

Consol e. Wi teLi ne("Exception: " + e.Message);
if (port !'= null) port.d ose();

}
15.1.3. Building and Running the Client

The example bundle contains al the files you need to build and run a WCF client that accesses a Metro
web service written in the Java programming language.

Thecscl i ent - enabl ed-fronj ava. zi p bundle contains the following files:
« Client.cs,theC#client class

¢ bui |l d. bat , the build batch file

This section covers the following topics:

» Generating the Proxy Class and Configuration File

» To Build the AddNumbers Client

* To Customize the build.bat File

220

Accessing Metro Ser-
vices Using WCF Clients

* To Run the AddNumbers Client

15.1.3.1. Generating the Proxy Class and Configuration File

When creating a Java programming language client, you use the wsi nport tool to generate the proxy
and helper classes used by the client class to access the web service. When creating a WCF client, the
svcuti | . exe tool provides the same functionality asthe wsi nport tool. svcuti | . exe generates
the C# proxy class and contracts for accessing the service from a C# client program.

The example bundle contains a batch file, bui | d. bat , that callssvcut i | . exe to generate the proxy
class. The command is:

svecutil /config:Client.exe.config http://Iocal host: 8080/ wsit-enabl ed-
fronj ava/ addnunber s?wsdl

15.1.3.1.1. To Build the AddNumbers Client

Theexamplebundle'sbui | d. bat filefirst generatesthe proxy classand configuration file for the client,
then compiles the proxy class, configuration file, and Cl i ent . cs client classinto the Cl i ent . exe
executablefile.

Torunbui | d. bat , do the following.
1. At acommand prompt, navigateto the location where you extracted the example bundle.
2. If necessary, customizethebui | d. bat fileasdescribed in To Customize the build.bat File.

3. Typethefollowing command:

bui | d. bat

15.1.3.1.2. To Customize the build.bat File

To customizethe bui | d. bat filefor your environment, do the following:
1. Open bui | d. bat in atext editor.

2. On thefirst line, type the full path to the svcuti | . exe tool. By default, it isinstalled at C:
\ Program Fi | es\ M crosoft SDKs\ W ndows\ v6. O\ Bi n.

3. Onthefirst ling, changethe WSDL location URL if you did not deploy theaddnumnber s service
to thelocal machine, or if the service was deployed to a different port than the default 8080 port
number.

For example, the following command (al on one line) sets the host name to
t est machi ne. exanpl e. comand the port number to 8081.:

svcutil /config:Cient.exe.config http://testmachi ne. exanpl e. com 8081/ wsit-
enabl ed- f ronj ava/ addnunber s?wsdl

4. On line 2, change the location of the csc. exe C# compiler and the Syst em Ser vi ceMbdel
and System Runti me. Seri al i zati on support DLLsif you installed the .NET 2.0 and 3.0
framewor ks to non-default locations.

15.1.3.1.3. To Run the AddNumbers Client

After the client has been built, run the client by following these steps.

221

Accessing Metro Ser-
vices Using WCF Clients

1. At acommand prompt, navigate to the location where you extracted the example bundle.
2. Typethefollowing command:

Client.exe

Y ou will seethe following output:

Addi ng 10 and 20. Result is 30.
Addi ng -10 and 20. Exception: Negative nunbers can't be added!

222

Chapter 16. Data Contracts

Table of

16.1.

16.2.
16.3.

16.4.
16.5.

Contents

WeDb Service - Start from JAVAuioiiiii e 223
N B DT =)Y =< S TP UPTPR 223
16.1.2. Fields and Propertiesuoeiieiieeieii ettt 235
16.1.3. JAVA ClBSSES ... ettt ettt ettt ettt et e e e aee 238
16.1.4. OPEN CONLENLeevueiiteeei ittt et e e e e e e e e e e e eee s 241
16.1.5. ENUM TP ..ottt ettt e e e e e e 242
16.1.6. Package-1evel ANNOLAIONSiiiiiiieeiii e 243
Web Service - Start from WSDLcoiiiiiieiiiii e 243
Customizations for WCF Service WSDLuuiiiiiiiieiii et 244
16.3.1. generateElementProperty AttribULecoovviiiiiii 244
Developing a Microsoft .NET CHENEviiiiiiiiiii e 247
BP 1.1 CONFOMMENCEceiiiiieeeeii ettt ettt e e e e e e e e s 248

16.1. Web Service - Start from Java

This section provides guidelines for designing an XML schema exported by a Java web service designed
starting from Java. Jakarta XML Binding provides a rich set of annotations and types for mapping Java
classes to different XML Schema constructs. The guidelines provide guidance on using Jakarta XML
Binding annotations and types so that developer friendly bindings may be generated by XML serialization
mechanisms (svcutil) on WCF client.

Not all Jakarta XML Binding annotations are included here; not all are relevant from an interoperability
standpoint. For example, the annotation @XM Accessor Type providescontrol over default serialization
of fields and propertiesin a Java class but otherwise has no effect on the on-the-wire XML representation
or the XML schema generated from a Java class. Select Jakarta XML Binding annotations are therefore
not included here in the guidance.

The guidance includes several examples, which use the following conventions:

e Theprefix xs: isused to represent XML Schema namespace.

» Jakarta XML Binding annotations are defined inj akar t a. xm . bi nd. annot at i on package but,
for brevity, the package name has been omitted.

16.1.1. Data Types

This section covers the following topics:

e Primitives and Wrappers

» BigDecimal Type

 javanet.URI Type

e Duration

» Binary Types

XMLGregorianCalendar Type

223

Data Contracts

UUID Type

Typed Variables
» Collections Types

* Array Types
16.1.1.1. Primitives and Wrappers

Guideline: Java primitive and wrapper classes map to dightly different XML schema representations.
Therefore, .NET bindings will vary accordingly.

Example 16.1. A Java primitive type and its corresponding wrapper class

/l-- Java code fragnent

public class Stocklten{
publ i ¢ Doubl e whol eSal ePri ce
public double retail Price

}

//--Schema fragnent
<xs: conpl exType nane="stocklteni >
<Xs: sequence>
<xs: el ement name="whol eSal ePrice" type="xs:double" m nCccurs="0"/>
<xs:el ement name="retail Price" type="xs:double"/>
</ xs: sequence>
</ xs: conpl exType>

/1-- .NET C# auto generated code from schema
public partial class stockltem
{

private doubl e whol eSal ePrice
private bool whol eSal ePri ceFi el dSpeci fi ed;
private double retail Price

publ i ¢ doubl e whol eSal ePri ce

{
get{ return this.wholeSal ePrice;}
set{t hi s. whol eSal ePri ce=val ue}
}
public bool whol eSal ePri ceSpecified
{
get{ return this.whol eSal ePri ceFi el dSpeci fied;}
set{t hi s. whol eSal ePri ceFi el dSpeci fi ed=val ue}
}
public double retail Price
{
get{ return this.retailPrice;}
set{this.retail Price=val ue}
}

}

/l-- C# code fragnent

stockltems = new stockltenm();

s. whol eSal ePri ce = Doubl e. parse("198.92");
s. whol eSal ePri ceSpeci fied = true;

224

Data Contracts

s.retail Price = Doubl e. parse("300. 25");

16.1.1.2. BigDecimal Type

Guideline: Limit decimal valuesto the range and precision of .NET's Syst em deci nal .

j ava. nat h. Bi gDeci mal maps to xs:decimal. .NET maps xs:decimal to
System decimal. These two data types support different range and precision.
j ava. nat h. Bi gDeci mal supports arbitrary precision. Syst em deci nal does not. For in-
teroperability use only values within the range and precision of System deci nmal. (See
Syst em deci mal . M nval ue and Syst em deci mal . Maxval ue.) Any vaues outside of this
range require a customized .NET client.

Example 16.2. Bi gDeci mal usage

/1--- Java code fragment
public class RetBi gDeci mal {
private Bi gDeci mal argO;

public BigDecimal getArg0() { return this.arg0; }
public void set Arg0(Bi gDecimal argO) { this.arg0 = argo0; }
}

/l--- Schema fragnent
<xs: conpl exType nane="r et Bi gDeci mal ">
<Xs: sequence>
<xs: el ement name="arg0" type="xs:decinmal" mnCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

/1--- .NET auto generated code from schena
public partial class retBigDecimal{
private deci mal argOFi el d;
private bool argOFi el dSpecifi ed;

public decinmal arg0 {
get { return this.argOField;}
set { this.argOField = val ue;}

}

public bool argOSpecified {
get { return this.argOFi el dSpecified;}
set { this.argOFiel dSpecified = val ue;}

}

/l--- C# code fragnent

System Cul turel nfo engCulture = new System Cul turel nfo("en-US");
ret Bi gDeci mal bd = new retBi gDeci mal ();

bd. arg0 = System deci mal . M nVal ue

ret Bi gDeci mal negBd = new retBi gDeci mal ();
negBd = System deci mal . Parse("-0.0", engCul ture);

16.1.1.3. java.net.URI Type

Guideline: Usethe @(m SchenaType annotation for astrongly typed bindingtoa.NET client generated
with the Dat aCont r act Seri al i zer.

225

Data Contracts

java. net. URl mapsto xs: string. .NET maps xs: string toSystem string. Annotation
@M SchemaType can be used to define a more strongly typed binding to a .NET client generated
withtheDat aContract Seri al i zer. @m SchemaType canbeusedtomapj ava. net . URI to
xs: anyURI . .NET'sDat aCont ract Seri al i zer andXm Seri al i zer bindxs: anyURI differ-
ently:

o DataContract Seriali zer bindsxs: anyURl to .NET typeSystem Uri .
« Xm Serializer bindsxs: anyURI to.NET type Syst em stri ng.

Thus, the above technique only works if the WSDL is processed using Dat aCont r act Seri al i zer.

Example 16.3. @Xm SchemaType and Dat aCont r act Seri al i zer

/1 Java code fragnent

public class PurchaseO der

{
@m SchemaType(name="anyURI ")
public java.net.URl wuri;

}

/1-- Schema fragment
<xs: conpl exType nane="purchaseCOr der">
<Xs:sequence>
<xs:el ement name="uri" type="xs:anyURI" m nQccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

/1--- .NET auto generated code from schenma
/1--- Using svcutil.exe /serializer:DataContractSerializer <wsdl file>
public partial class purchaseOrder : object,

System Runtinme. Seri al i zati on. | Ext ensi bl eDat aChj ect

{
private System Uri uriField;
I-- ... ot her generated code
public System Uri wuri
{
get { return this.uriField; }
set { this.uriField = value; }
}
}

/l--- C# code fragnent
purchaseOrder tnpU = new purchaseOrder()
tnmpU.uri = new System Uri ("../Hello", System UriKind. Rel ative);

Example 16.4. @Xm SchenmaType and Xm Seri al i zer

/1 Java code fragnent
public class PurchaseO der

{
@m SchemaType(name="anyURI ")
public java.net.URl wuri;
}
/1--- .NET auto generated code from schena

226

Data Contracts

/l--- Using svcutil.exe /serializer:Xm Serializer <wsdl file>
public partial class purchaseOr der
{

private string uriField,
public string uri

{
get { return this.uriField; }

set { this.uriField = value; }

}

/l--- C# code fragnent
purchaseOrder tnpU = new purchaseOrder()
tnpU.uri = "nailto: mailto: nduerst@fi.unizh.ch";

16.1.1.4. Duration

Guideline: Use .NET's System Xml . Xm Convert to generate a lexica representation of
Xs: dur at i on when thebinding isto atype of Syst em stri ng.

j avax. xm . dat at ype. Dur at i on mapsto xs: dur ati on. .NET maps xs: dur at i on to adif-
ferent datatype for Dat aCont r act Seri al i zer and X Seri al i zer.

o DataContract Seriali zer bindsxs: dur ati onto.NET Syst em Ti neSpan.
* Xm Serializer bindsxs: durati onto.NET System stri ng.

When xs: dur at i onisboundto .NET Syst em st ri ng, the string value must be alexical represen-
tation for xs: dur at i on. .NET provides utility Syst em Xm . Xml Convert for this purpose.

Example 16.5. Mapping xs: dur at i on using Dat aCont act Seri al i zer

/1-- Java code fragnent
public class PurchaseReport {
public javax.xnl .datatype.Duration period;

}

//-- Schema fragment
<xs: conpl exType nanme="purchaseReport">
<Xs: sequence>
<xs: el ement name="period" type="xs:duration" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

//-- .NET auto generated code from schenma
/1-- Using svcutil.exe /serializer:DataContractSerializer <wsdl file>
public partial class purchaseReport: object,

System Runti ne. Seri al i zati on. | Ext ensi bl eDat albj ect

{
private System Ti neSpan peri odFi el d;
I-- .. ot her generated code
public System Ti neSpan peri od
{
get { return this.periodField; }
set { this.periodField = value; }
}
}

227

Data Contracts

/l-- C# code fragnent
purchaseReport tnpR = new purchaseReport();
t npR. peri od = new System Ti mneSpan. MaxVal ue

Example 16.6. Mapping xs: dur ati on using Xm Seri al i zer

//-- .NET auto generated code from schena
/1-- Using svcutil.exe /serializer:Xm Serializer <wsdl file>
public partial class purchaseReport

{
private string periodField;
public string period
{
get { return this.periodField; }
set { this.periodField = value; }
}
}

/l-- C# code fragnent
purchaseReport tnpR = new purchaseReport();
t npR. period = System Xml . Xm Convert. ToStri ng(new System Ti neSpan(23, 0,0));

16.1.1.5. Binary Types

Guideline: j ava. awt . | mage, javax. xm . transf orm Source, and
j akarta. activation. Dat aHandl er map to xs:base64Binary. .NET maps
Xs: base64Bi nary tobyte[].

Jakarta XML Binding provides the annotation @Xm M nmeTy pe, which supports specifying the content
type, but .NET ignores this information.

Example 16.7. Mapping j ava. awt . | mage without @Xml M neType

/1-- Java code fragnent
public class Caim|{

public java.awt. | nage photo;
}

/l-- Schema fragment
<xs:conpl exType nane="cl ai n{' >
<Xs: sequence>
<xs: el ement name="phot 0" type="xs: base64Bi nary" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

/1-- .NET auto generated code from schenma
public partial class claim: object,
System Runtine. Seri al i zati on. | Ext ensi bl eDat aCbhj ect

{
private byte[] photoField;
I-- .. ot her generated code
public byte[] photo
{
get { return this.photoField; }
set { this.photoField = val ue; }
}
}

228

Data Contracts

/l-- C# code fragnent
try

{
claimtnmpC = new claim);

System | O FileStreamf = new System | O Fil eStrean(
"C:\\icons\\circlelcon.gif", System|O Fil eMdde. Open);

int cnt = (int)f.Length;

t npC. photo = new byte[cnt];

int rCnt = f.Read(tnmpC. photo, 0, cnt);

catch (Exception e)
{

}

Consol e. WiteLine(e.ToString());

Example 16.8. Mappingj ava. awt . | mage with @Xm M neType

/1-- Java code fragnent

public class O aim{
@m M neType("inmage/ gi f")
public java.awt. | nage photo;

}

/1-- Schema fragment
<xs:conpl exType nane="cl ai n{'>
<Xs: sequence>
<xs: el ement name="phot 0" nsl: expectedCont ent Types="i nage/gi f"
t ype="xs: base64Bi nary" m nCccurs="0"
xm ns: nsl1="http://ww. w3. or g/ 2005/ 05/ xm m me"/ >
</ xs: sequence>
</ xs: conpl exType>

/1-- Using the @m M neType annotation doesn't change . NET
/l--auto generated code
public partial class claim: object,

System Runtine. Seri al i zati on. | Ext ensi bl eDat aChj ect

{
private byte[] photoField;
I-- .. ot her generated code
public byte[] photo
{
get { return this.photoField; }
set { this.photoField = val ue; }
}
}

/1-- This code is unchanged by the different schema
/l-- C# code fragnent
try

{
claimtnmpC = new claim);

System | O FileStreamf = new System | O Fil eStrean(
"C:\\icons\\circlelcon.gif", System|O Fil eMde. Open);

int cnt = (int)f.Length;

t npC. photo = new byte[cnt];

int rCnt = f.Read(tnmpC. photo, 0, cnt);

229

Data Contracts

catch (Exception e)
{

}
16.1.1.6. XMLGregorianCalendar Type

Consol e. WiteLine(e.ToString());

Guideline: Usej ava. xmi . dat at ype. XM_Gr egor i anCal endar instead of j ava. uti | . Dat e
andj ava. util. Cal endar.

XMLG egor i anCal endar supportsthefollowing XML schemacalendar types: xs: dat e,xs: ti ne,
xs: dat eTi ne, xs: gYear Mont h, xs: ghMont hDay, xs: gYear, xs: gvont h,andxs: gDay. Itis
statically mapped to xs: any Si npl eType, the common schema type from which all the XML schema
calendar types are dervived. .NET mapsxs: anySi npl eType to Syst em stri ng.

java.util.Date andj ava. util. Cal endar maptoxs: dat eTi ne, but don't provide as com-
plete XML support as XM_Gr egor i anCal endar does.

Guideline: Use the annotation @Xml SchenaType for a strongly typed binding of XMLG egor i an-
Cal endar to one of the XML schema calendar types.

Example 16.9. Xm G egor i anCal endar without @Xml SchemaType

/l-- Java code fragnent
public class PurchaseO der {
public javax.xm . dat atype. XMLG egor i anCal endar or der Dat e;

}

/1-- Schema fragment
<xs:conpl exType name="purchaseO der">
<Xs:sequence>
<xs:el ement name="orderDate" type="xs:anySi npl eType" mi nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

/1-- .NET auto generated code from schenma
public partial class purchaseO der
{

private string orderDateField;

public string orderDate

{
get { return this.orderDateField; }
set { this.orderDateField = value; }

}

/l-- C# code fragnent
purchaseOrder tnpP = new purchaseOrder();
t npP. orderDate = System Xml . Xml Convert. ToStri ng(
Syst em Dat eTi ne. Now, System Xm . Xm Dat eTi neSeri al i zer Mode. Roundt ri pKi nd) ;

Example 16.10. XMLGr egor i anCal endar with @Xm SchemaType

/1-- Java code fragnent
public class PurchaseOrder {
@m SchemaType(nane="dat eTi ne")
public javax.xmn . dat atype. XM_Gr egori anCal endar order Dat €;

230

Data Contracts

}

/1-- Schema fragment
<xs: conpl exType nane="purchaseOr der" >
<Xs: sequence>
<xs: el ement name="orderDate" type="xs:dateTime" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

/1-- .NET auto generated code from schenma
public partial class purchaseOrder : object,

System Runtinme. Seri al i zati on. | Ext ensi bl eDat aCbhj ect
{

private System Runtine. Serial i zati on. Ext ensi onDat aCbj ect
ext ensi onDat aFi el d;
private System DateTi ne order Dat eFi el d;

public System Runtine. Serialization. Ext ensi onDat aCbj ect Extensi onDat a

{
get { return this.extensionDataField; }
set { this.extensionDataField = value; }
}
public System DateTi ne orderDate
{
get { return this.orderDateField; }
set { this.orderDateField = value; }
}

}

/l-- C# code fragnent
purchaseOrder tnpP = new purchaseOrder();
t npP. order Dat e = Syst em Dat eTi ne. Now,

16.1.1.7. UUID Type

Guideline: Use Leach-Salz variant of UUID at runtime.

java. util . UU Dmapstoschematypexs: st ri ng..NET mapsxs: stringtoSystem string.
The constructorsin j ava. uti | . UUl D alow any variant of UUID to be created. Its methods are for
manipulation of the Leach-Salz variant.

Example 16.11. Mapping UUI D

/l-- Java code fragnent
public class ReportUid {

public java.util.UU D uuid;
}

//-- Schema fragment
<xs: conpl exType nane="report U d">
<Xs: sequence>
<xs: el ement name="uui d" type="xs:string" mnCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

/1-- .NET auto generated code from schema
public partial class reportU d: object,
System Runtine. Seri al i zati on. | Ext ensi bl eDat aChj ect

231

Data Contracts

private System Runtine. Seri al i zati on. Ext ensi onDat aCbj ect
ext ensi onDat aFi el d;
private string uuidField;

public System Runtine. Serialization. Ext ensi onDat aCbj ect Extensi onDat a

{
get { return this.extensionDataField; }
set { this.extensionDataField = value; }
}
public string uuid
{
get { return this.uuidField; }
set { this.uuidField = val ue; }
}

}

/l-- C# code fragnent

reportUid tnmpU = new report U d();

System Guid guid = new System CQui d("06b7857a- 05d8- 4c14- b7f a- 822e2aa6053f") ;
tnpU.uuid = guid. ToString();

16.1.1.8. Typed Variables

Guideline: A typed variable mapsto xs: any Type. .NET mapsxs: anyType to Syst em bj ect.

Example 16.12. Using a typed variable

/1 Java cl ass
public class Shape <T>

{
private T xshape
public Shape() {};
public Shape(T f)
{

xshape = f;

}

}

/1-- Schema fragment
<xs: conpl exType nanme="shape">
<Xs: sequence>
<xs: el ement name="xshape" type="xs:anyType" m nQccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

/1 C# code generated by svcutil
public partial class shape

{
private object xshapeField;
publ i c object xshape
{
get { return this.xshapeField; }
set { this.xshapeField = value; }
}
}

232

Data Contracts

16.1.1.9. Collections Types

Javacollectionstypes(j ava. uti | . Col | ecti on anditssubtypes, array, List, and parameterized col-
lection types such as Li st <I nt eger >) can be mapped to XML schema in different ways and can be
seridized in different ways. The following examples show .NET bindings.

16.1.1.9.1. List of Nillable Elements

Guideline: By default, a collection type such as Li st <I nt eger > maps to an XML schema construct
that isarepeating unbounded occurrence of an optional and nillable element. .NET bindsthe XML schema
construct to Syst em Nul | abl e<i nt >[] . The element is optional and nillable. However, when mar-
shalling Jakarta XML Binding marshaller will always marshal anull valueusing xsi : ni | .

Example 16.13. Collection to alist of nillable elements

/l-- Java code fragnent
@Xm Root El enent (nane="po")
publ i c PurchaseCOrder ({
public List<lInteger> itens;

}

/l-- Schema fragment
<xs:el ement name="po" type="purchaseO der">
<xs: conpl exType name="purchaseCOr der" >

<Xs:sequence>

<xs:el ement name="itens" type="xs:int" nillable="true"
m nQccur s="0" nmaxCccur s="unbounded"/ >

</ xs: sequence>

</ xs: conpl exType>

/l--- Jakarta XM. Binding XM serialization
<po>

<items> 1 </itemnms>

<items> 2 </items>

<items> 3 </itemnms>
</ po>

<po>
<items> 1 </itens>
<items xsi:nil=true/>
<items> 3 </itens>

</ po>
/1-- .NET auto generated code from schena
partial class purchaseOrder {

private System Nul | abl e<int>[] itensField;

public System Nul | able<int>[] itens

{

get { return this.itensField; }
set { this.itensField = val ue; }

}
16.1.1.9.2. List of Optional Elements

Guideline: This is the same as above except that a collection type such as Li st <I nt eger > maps to
a repeating unbounded occurrence of an optional (m nOccur s="0") but not nillable element. Thisin

233

Data Contracts

turn binds to .NET typei nt [] . Thisis more developer friendly. However, when marshalling, Jakarta
XML Binding will marshal a null value within the Li st <I nt eger > as avalue that is absent from the
XML instance.

Example 16.14. Collection to a list of optional elements

/l-- Java code fragnent
@Xm Root El enent (nane="po")
public PurchaseOrder ({
@Xm El enent (ni | | abl e=f al se)
public List<lInteger> itens;

}

/l-- Schema fragment
<xs:el ement name="po" type="purchaseO der">
<xs:conpl exType name="purchaseO der">

<Xs:sequence>

<xs:el ement name="itemnms" type="xs:int"
m nQccur s="0" nmaxCOccur s="unbounded"/ >

</ xs: sequence>

</ xs: conpl exType>

/1 .NET auto generated code from schema
partial class purchaseOrder {
private int[] itensField;

public int[] itens

{
get { return this.itensField; }
set { this.itensField = val ue; }

}
16.1.1.9.3. List of Values

Guideline: A collection such as Li st <l nt eger > can be mapped to alist of XML values (that is, an
XML schema list simple type) using annotation @ Li st. .NET maps a list simple type to a .NET
System stri ng.

Example 16.15. Collection to a list of valuesusing @< Li st

/1-- Java code fragnent
@Xm Root El ement (nanme="po")
public PurchaseOrder {
@m Li st public List<lnteger> itens;
}

/1-- Schema fragment
<xs: el ement name="po" type="purchaseO der">
<xs:conpl exType name="purchaseO der">
<xs:el ement name="itens" m nCccurs="0">
<xs:sinpl eType>
<xs:list itenType="xs:int"/>
</ xs: si mpl eType>
</ xs: el ement >
</ xs: conpl exType>

234

Data Contracts

//-- XM serialization

<p0>
<items> 1 2 3 </itens>
</ po>
/1 .NET auto generated code from schema

partial class purchaseOrder {

}

private string itensField;

public string itens

{
get { return this.itensField; }
set { this.itensField = val ue; }

16.1.1.10. Array Types

Example 16.16. Single and multidimensional arrays

/1-- Java code fragnent
public class FamlyTree {

}
/1

public Person[] persons;
public Person[][] famly

.NET auto generated code from schema

public partial class famlyTree

{

}

private person[] persons
private person[][] famlies;

public person[] persons

{
get { return this.nmenbersField; }
set { this.nmenbersField = value; }
}
public person[][] fanmilies
{
get { return this.famliesField; }
set { this.famliesField = val ue; }
}

16.1.2. Fields and Properties

The following guidelines apply to mapping of JavaBeans properties and Java fields, but for brevity Java

fields are used.

16.1.2.1. @XmIElement Annotation

Guideline: The @Xml El enent annotation maps a property or field to an XML element. Thisis also the
default mapping in the absence of any other Jakarta XML Binding annotations. The annotation parameters
in @Xm El erent can be used to specify whether the element is optional or required, nillable or not. The
following examples illustrate the corresponding bindingsin the .NET client.

235

Data Contracts

Example 16.17. Map afield or property to a nillable element

/l-- Java code fragnent
public class PurchaseO der {

/1 Map a field to a nillable XM el enent
@ akarta. xnl . bi nd. annot ati on. Xm El enent (ni | | abl e=true)
public java. mat h. Bi gDeci mal price

}

/l-- Schema fragment
<xs:conpl exType name="purchaseO der">
<Xs:sequence>
<xs:el ement name="price" type="xs:decimal"
nillable="true" mnCccurs="0" />
</ xs: sequence>
</ xs: conpl exType>

/1 .NET auto generated code from schema

public partial class purchaseOrder {
private System Nul | abl e<deci mal > pri ceFi el d;
private bool priceFiel dSpecified;

public decimal price

{
get { return this.priceField; }
set { this.priceField = val ue; }
}
public bool priceSpecified {
{
get { return this.priceFieldSpecified; }
set { this.priceFieldSpecified = value;}
}

}
Example 16.18. Map a property or field to a nillable, required element

/1-- Java code fragnent
public class PurchaseOrder {

/1 Map a field to a nillable XM el enent
@m El enent (ni || abl e=true, required=true)
public java. math. Bi gDeci nal price

}

/1-- Schema fragment
<xs: conpl exType nane="purchaseOr der" >
<Xs: sequence>
<xs: el ement name="price" type="xs:decinal"
nillable="true" m nCQccurs="1" />
</ xs: sequence>
</ xs: conpl exType>

/1 .NET auto generated code from schema
public partial class purchaseOrder ({
private System Nul | abl e<deci mal > pri ceFi el d;

public decinmal price

{

236

Data Contracts

get { return this.priceField; }
set { this.priceField = val ue; }

}
16.1.2.2. @XmlAttribute Annotation

Guideline: A property or field can be mapped to an XML attribute using @Xm At tri but e annota-
tion. .NET binds an XML attribute to a property.

Example 16.19. Mapping afield or property toan XML attribute

/l-- Java code fragnent

public class UKAddress extends Address {
@ Attribute
public int export Code;

}

/l-- Schema fragment
<! XML Schena fragnment -->
<xs:conpl exType name="ukAddr ess" >
<xs: conpl exCont ent >
<xs:extensi on base="tns: address">
<Xs:sequence/ >
<xs:attribute nane="export Code" type="xs:int"/>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

/1 .NET auto generated code from schema
public partial class ukAddress : address

{
private int export CodeFi el d;
public int exportCode
{
get { return this.exportCodeField; }
set { this.exportCodeField = value; }
}
}

16.1.2.3. @XmlElementRefs Annotation

Guideline: @ El ement Ref s maps to a xs: choi ce. This binds to a property with name i t em
in the C# class. If there is another field/property named i t emin the Java class, there will be a name
clash that .NET will resolve by generating name. To avoid the name clash, either change the name or use
customization, for example @<m El enent (nanme="f o0o0").

Example 16.20. Mapping afield or property using @Xm El enent Ref s

/1-- Java code fragnent
public class PurchaseOrder {
@Xm El enent Ref s({
@Xm El enent Ref (nane="pl ane", type=Pl aneType. cl ass),
@Xm El enent Ref (nane="aut 0", type=AutoType. class)})
public Transport Type shi pBy;
}

@Xm Root El enent (nane="pl ane")
public class PlaneType extends TransportType {}

237

Data Contracts

@Xm Root El enent (name="aut 0")
public class AutoType extends Transport Type { }

@Xm Root El enent
public class TransportType { ... }

/1-- Schema fragment
<l-- XM. schenma generated by wsgen -->
<xs:conpl exType name="purchaseO der">
<xs: choi ce>
<xs:el ement ref="plane"/>
<xs:el ement ref="auto"/>
</ xs: choi ce>
</ xs: conpl exType>

<l-- XM gl obal elenents -->
<xs: el ement name="pl ane" type="autoType" />
<xs: el ement name="auto" type="pl aneType" />

<xs: conpl exType nanme="aut oType">
<l-- content onmtted - details not relevant to exanple -->
</ xs: conpl exType>

</ xs: conpl exType nanme="pl aneType" >
<l-- content onmtted - details not relevant to exanple -->
</ xs: conpl exType>

/1 .NET auto generated code from schema
public partial class purchaseO der {
private transportType itenfField;

[System Xm . Seri alization. Xm El enent Attri bute("auto", typeof(autoType),

Or der =4)]

[System Xnl . Serialization. Xnm El enent Attri bute("plane", typeof(planeType),
Or der =4)]

public transportType Item

{

get { return this.itenField; }
set { this.itenField = val ue; }

}

public partial class planeType { ... }
public partial class autoType { ... } ;

16.1.3. Java Classes

A Javaclass can be mapped to different XML schematype and/or an XML element. The following guide-
lines apply to the usage of annotations at the class level.

16.1.3.1. @XmIType Annotation - Anonymous Type

Guideline: Prefer mapping class to named XML schema type rather than an anonymous type for a bet-
ter .NET type binding.

The @Xn Type annotation is used to customize the mapping of a Java classto an anonymoustype. .NET
binds an anonymoustypeto a.NET class - one per reference to the anonymous type. Thus, each Javaclass
mapped to an anonymous type can generate multiple classes on the .NET client.

238

Data Contracts

Example 16.21. Mapping a Java classto an anonymoustype using @m Type

/1-- Java code fragnent
public class PurchaseOrder {
public java.util.List<ltenr item
}
@Xm Type(nanme="")
public class Item{
public String product Nane;

}

/1-- Schema fragment
<xs:conpl exType name="purchaseO der">
<Xs: sequence>
<xs: el ement nanme="iteni>
<xs:conpl exType>
<Xs: sequence>
<xs: el ement name="product Nane" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType
> </ xs: el ement >
</ xs: sequence>
</ xs: conpl exType>

/1 C# code generated by svcutil
public partial class purchaseO der

{
private purchaseOrderlten{] itenField;
System Xm . Seri alization. Xn El ement Attribute("itent,
For meSyst em Xml . Scherma. Xml SchenmaFor m Unqual i fi ed, 1sNull abl e=true,
O der =0)]
public purchaseOrderlten]] item
{
get {
return this.itenFi el d;
}
set {
this.itenField = val ue;
}
}
}

/1 .NET auto generated code from schema
public partial class purchaseOrderltem

{
private string product NaneFi el d;
public string product Nane {
get { return this.productNaneField; }
set { this.productNaneField = value; }
}
}

16.1.3.2. @XmIType Annotation - xs:all

Guideline: Avoid using Xml Type(propOrder=:{}).

239

Data Contracts

@M Type(propOrder={}) maps a Java class to an XML Schema complex type with
xs:al |l content model. Since XML Schema places severe restrictions on xs: al |, the use of
@M Type(propOder={}) is therefore not recommended. So, the following example shows the
mapping of aJavaclasstoxs: al | , but the corresponding .NET code generated by svcut i | isomitted.

Example 16.22. Mapping aclassto xs: al | using @<m Type

/l-- Java code fragnent

@ Type(propQOrder={})

public class USAddress {
public String nane
public String street;

}

/l-- Schema fragment
<xs:conpl exType nanme="USAddr ess" >
<xs:all>
<xs:el ement name="nane" type="xs:string"/>
<xs:el ement name="street" type="xs:string"/>

</xs:all>
</ xs: conpl exType>

16.1.3.3. @XmIType Annotation - Simple Content

Guideline: A class can be mapped to a conpl exType with asi npl eCont ent using @Xi Val ue
annotation. .NET bindsthe Java property annotated with @Xrl Val ue to aproperty withname" val ue" .

Example 16.23. Classto conpl exType with si npl eCont ent

/1-- Java code fragnent
public class International Price

{
@i Val ue
public java. math. Bi gDeci nal price
@m Attribute public String currency;
}

/1-- Schema fragment
<xs:conpl exType name="international Price">
<xs: si npl eCont ent >
<xs:extensi on base="xs: deci nal ">
xs:attribute name="currency" type="xs:string"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

/1 .NET auto generated code from schema
public partial class international Price
{
private string currencyField;
private deci nal val ueFi el d;
public string currency
{
get { return this.currencyField; }
set { this.currencyField = val ue;}

240

Data Contracts

public deci mal Val ue

{

get { return this.valueField; }
set { this.valueField = val ue;}

}

16.1.4. Open Content

Jakarta XML Binding supports the following annotations for defining open content. (Open content allows
content not statically defined in XML schemato occur in an XML instance):

e The @Xm AnyEl emrent annotation maps to xs:any, which binds to the .NET type

System Xm . Xml El enent [].

e The @ AnyAt tri but e annotation mapsto xs: anyAt t ri but e, which binds to the .NET type

System Xml . Xml Attribute[].

Example 16.24. Using @<m AnyEl enment for open content

/1-- Java code fragnent

@m Type(propOrder ={" nane",

public class OcPerson {
@Xm El enent (requi red=true)
public String nane;
public int age;

age", "oc"})

/1 Define open content
@Xm AnyEl enent
public List<Cbject> oc;

}

//-- Schema fragment
<xs: conpl exType nane="ocPerson">
<Xs: sequence>
<xs: el ement name="nane" type="xs:string"/>
<xs:el ement name="age" type="xs:int"/>
<xs:any m nCccurs="0" maxQccurs="unbounded" >
</ xs: sequence>
</ xs: conpl exType>

/1 .NET auto generated code from schema
public class ocPerson

{
private String nane;
private int age;
private System Xm . Xm El enent[] anyField;<
public String name { ... }
public int age { ... }
public System Xm . Xm El ement[] Any {
{
get { return this.anyField; }
set { this.anyField = value; }
}
}

241

Data Contracts

Example 16.25. Using @< AnyAt t ri but e for open content

/1-- Java code fragnent
@Xm Type(propOrder={"nanme", "age"}
public class OcPerson {

public String nane;

public int age;

/1 Define open content
@m AnyAttribute
public java.util.Mp oc;

}

/1-- Schema fragment
<xs: conpl exType nanme="ocPerson">
<Xs: sequence>
<xs: el ement name="nane" type="xs:string"/>
<xs:el ement name="age" type="xs:int"/>
</ xs: sequence>
<xs:anyAttribute/>
</ xs: conpl exType>

/1 .NET auto generated code from schema
public class ocPerson

{
private String name;
private doubl e age;
private System Xm . Xm Attribute[] anyAttrField;<
public String name { ... }
public double age { ... }
public System Xm . Xnl El enent[] anyAttr {
{
get { return this.anyAttrField; }
set { this.anyAttrField = value; }
}
}

16.1.5. Enum Type

Guideline: A Java enumtype mapsto an XML schema type constrained by enumeration facets. This, in
turn, bindsto the .NET type enumtype.

Example 16.26. Javaenum _ xs: si npl eType (with enumfacets) .NET enum

/1-- Java code fragnent
public enum USState {MA, NH}

//-- Schema fragment
<xs:sinpl eType name="usSt ate">
<xs:restriction base="xs:string">
<xs:enuneration value="NH" />
<XSs:enuneration val ue="M\" />
</xs:restriction>
</ xs: si mpl eType>

/1 .NET auto generated code from schema
public enumusState { NH, MA }

242

Data Contracts

16.1.6. Package-level Annotations

Thefollowing package-level Jakarta XML Binding annotations arerelevant from an interoperability stand-
point:

* @M Schena - customizes the mapping of package to XML namespace.

» @M SchemaType - customizesthe mapping of XML schemabuilt-intype. The @Xm SchemaType
annotation can also be used at the property/field level, as was seen in the example XML GregorianCal-
endar Type.

16.1.6.1. @XmISchema Annotation

A package is mapped to an XML namespace. The following attributes of the XML namespace can be
customized using the @Xm Schena annotation parameters:

» el enent For nDef aul t using @XM Schema. el errent For nDef aul t ()

o attributeFornDefaul t using @m Schena. att ri but eFor nDef aul t ()

» target Nanespace using @Xm Schemna. nanespace()

» Associate namespace prefixes with the XML namespaces using the @Xml Schema. ns() annotation

These XML namespace attributes are bound to .NET serialization attributes (for example, Xnml Seri al -
i zer attributes).

16.1.6.2. Not Recommended Annotations
Any Jakarta XML Binding annotation can be used, but the following are not recommended:

» Thej akarta. xm . bi nd. annot at i on. Xim El enent Decl annotation isused to provide com-
plete XML schema support.

» The @ | Dand @Xm | DREF annotations are used for XML object graph serialization, which is not
well supported.

16.2. Web Service - Start from WSDL

The following guidelines apply when designing a Java web service starting from aWSDL:

1. If the WSDL was generated by Dat aCont r act Seri al i zer, enable Jakarta XML Binding cus-
tomizations described in Customizations for WCF Service WSDL. The rationale for the Jakarta XML
Binding customizations is described in the same section.

2. If the WSDL isaresult of contract first approach, verify that the WSDL can be processed by either the
Dat aContract Seri al i zer or Xm Seri al i zer mechanisms.

The purpose of thisstep isto ensurethat the WSDL usesonly the set of XML schemafeatures supported
by Jakarta XML Binding or .NET serialization mechanisms. Jakarta XML Binding was designed to
support all the XML schema features. The WCF serialization mechanisms, Dat aCont r act Ser i -
al i zer and Xm Seri al i zer, provide different levels of support for XML schemafeatures. Thus,
the following step will ensure that the WSDL /schema file can be consumed by the WCF serialization
mechanisms.

243

Data Contracts

sveutil wsdl-file

Thesvcutil . exe tool, by default, usesDat aCont r act Seri al i zer but falls back to Xm Se-
rializer if it encounters an XML schema construct not supported by Xni For nat t er .

16.3. Customizations for WCF Service WSDL

When developing either a Java web service or a Java client from a WCF service WSDL generated using
Dat aContract Seri al i zer, thefollowing Jakarta XML Binding 2.0 customizations are useful and/
or required.

» gener at eEl ement Pr operty attribute
* mapSi npl eTypeDef attribute

The following sections explain the use and rational e of these customizations.

16.3.1. generateElementProperty Attribute

WCF service WSDL generated from a programming language such as C# using Dat aCont r act Se-

rializer may contain XML Schema constructs which result in JAXBEI emrent <T> in generated
code. A JAXBEI enent <T> type can also sometimes be generated when a WSDL contains advanced
XML schema features such as substitution groups or elements that are both optional and nillable. In all
such cases, JAXBEI enent <T> provides roundtripping support of valuesin XML instances. However,
JAXBEI enment <T> is not natura to a Java developer. So the gener at eEl enent Property cus
tomization can be used to generate an alternate devel oper friendly but lossy binding. The different bindings
along with the trade-offs are discussed below.

16.3.1.1. Default Binding

The following is the default binding of an optiona (m nCccurs="0") and
nillable(nillable="true") element:

Example 16.27.

<l-- XML schenma fragnent -->
<xs:el ement name="person" type="Person"/>
<xs:conpl exType nane="Person">
<Xs:sequence>
<xs:el ement name="nane" type="xs:string"
nillable="true" m nCccurs="0"/>
</ xs: sequence>
</ xs: conpl exType>

Example 16.28.

/1 Binding
public class Person {

JAXBEI ement <Stri ng> getNane() {...};

public void set Name(JAXBEl enent <String> value) {...}
}

Since the XML element nane is both optional and nillable, it can be represented in an XML instance in
one of following ways:

244

Data Contracts

Example 16.29.
<l -- Absence of elenent nane-->
<per son>
<-- elenent nane is absent -->
</ per son>
<l-- Presence of an elenent nane -->
<per son>
<nane xsi:nil="true"/>
</ per son>

The JAXBEI enent <St r i ng> type roundtrips the XML representation of name element across an un-
marshal/marshal operation.

16.3.1.2. Customized Binding

When gener at eEl enent Pr operty isfase, the binding is changed as follows:

Example 16.30.

/1 set Jakarta XM. Bi ndi ng custom zati on generat eEl enent Property="fal se"
public class Person {

String getName() {...}

public void setNane(String value) {...}
}

The above binding is more natural to Java developer than JAXBEI enent <St ri ng>. However, it does
not roundtrip the value of nane.

Jakarta XML Binding allows gener at eEl enment Pr operty to be set:
» Globally in<j axb: gl obal Bi ndi ngs>
* Locdlyin<j axb: property> customization

When processing a WCF service WSDL, it is recommended that the gener at eEl enent Property
customization be set in <j axb: gl obal Bi ndi ngs>:

Example 16.31.

<j axb: bi ndi ngs version="2.0"
xm ns:jxb="http://java. sun. com xm / ns/j axb"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema" >
<j axb: bi ndi ngs schemalLocati on="schena-i nport edby-wcf svcewsdl "
node="/xs: schema" >
<j axb: gl obal Bi ndi ngs gener at eEl enent Property="fal se"/>
</ j axb: bi ndi ngs>

Note

Thegener at eEl enent Pr oper t y attribute was introduced in Jakarta XML Binding 2.1.

16.3.1.3. mapSimpleTypeDef Attribute

XML Schema Part 2: Datatype defines facilities for defining datatypes for use in XML Schemas. .NET
platform introduced the CLR types for some of the XML schema datatypes as described in CLR to XML
Schema Type Mapping.

245

Data Contracts

Table 16.1. CLR to XML Schema Type Mapping

CLR Type XML Schema Type
byt e XS: unsi gnedByt e
ui nt Xs: unsi gnedl nt

ushort XS: unsi gnedShor
ul ong XSs: unsi gnedLong

However, there are no corresponding Javatypes that map to the XML Schematypeslistedin CLRto XML
Schema Type Mapping. Furthermore, Jakarta XML Binding maps these XML schematypes to Javatypes
that are natural to Java developer. However, thisresults in amapping that is not one-to-one. For example:

e Xs:int ->int
e XS:unsi gnedShort -> int

The lack of a one-to-one mapping means that when XML Schema types shown in CLR to XML Schema
TypeMappingareusedinanxsi : t ype construct, they won't be preserved by default acrossan unmarshal
followed by marshal operation. For example:

Example 16.32.

/1 C# web met hod

public Object retObject(Cbject objval ue);

/1 Java web met hod generated from WCF servi ce WSDL
public Object retObject(

hj ect obj val ue);
}

Thefollowing illustrateswhy xsi : t ype isnot preserved across an unmarshal/marshal operation.

e A vaueof typeui nt ismarshalled by WCF serialization mechanism as:

Example 16.33.

<obj val ue xsi:type="xs: unsi gnedShort"/>

» Jakarta XML Binding unmarshaller unmarshals the value as an instance of i nt and assignsit to pa-
rameter obj val ue.

* The obj val ue is marshaled back by Jakarta XML Binding marshaller with an xsi : t ype of
xs:int.
Example 16.34.
<obj val ue xsi:type="xs:int"/>

One way to preserve and roundtrip the xsi : t ype isto use the mapSi npl eTypeDef customization.
The customization makes the mapping of XML Schema Part 2 datatypes one--to-one by generating addi-
tional Javaclasses. Thus, xs: unsi gnedShor t will beboundtoitsown classrather thani nt , asshown:

Example 16.35.

/1 Java class to which xs:unsignedShort is bound
public class UnsignedShort { ... }

246

Data Contracts

The following illustrates how the xsi : t ype is preserved across an unmarshal/marshal operation:

* Avaueof typeui nt ismarshalled by WCF serialization mechanism as:

Example 16.36.
<obj val ue xsi:type="xs: unsi gnedShort"/>

» Jakarta XML Binding unmarshaller unmarshals the value as an instance of Unsi gnedShort and
assignsit to parameter obj val ue.

» The obj val ue is marshaled back by Jakarta XML Binding marshaller with an xsi : t ype of
Xs:int.

Example 16.37.

<obj val ue xsi :type="xs: unsi gnedShort"/>

Guideline: Usethe mapSi npl eTypedef customization where roundtripping of XML Schematypesin
CLR to XML Schema Type Mapping are used in Xsi : t ype. However, it is preferable to avoid the use
of CLR typeslisted in CLR to XML Schema Type Mapping since they are specific to .NET platform.

The syntax of the mapSi npl eTypeDef customization is shown below.

Example 16.38.
<j axb: bi ndi ngs versi on="2.0"
xm ns:jxb="http://java. sun. conl xnl / ns/j axb"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Scherma" >
<j axb: bi ndi ngs schemalLocati on="schena-i nport edby-wcf svewsdl ">
<j axb: gl obal Bi ndi ngs mapSi npl eTypeDef ="true"/>
</ j axb: bi ndi ngs>

16.4. Developing a Microsoft .NET Client

This section describes how to develop a.NET client that uses data binding.

To Develop a Microsoft .NET Client
Perform the following steps to generate a Microsoft .NET client from a Java web service WSDL file.

1. Generate WCF web serviceclient artifactsusingthesvcuti | . exe tool:

svcutil.exe java-web-service-wsdl

svcuti | . exe hasthefollowing options for selecting a serializer:

e svcutil.exe /serializer:auto (default)

e svcutil.exe /serializer:DataContractSerializer
e svcutil.exe /serializer:Xm Serializer

It is recommended that you use the default option, / seri al i zer : aut 0. This option ensures that
sveuti | . exe falsbacktoXm Seri al i zer if an XML schema construct is used that cannot be
processed by Dat aCont r act Seri al i zer.

247

Data Contracts

For example, in the following class the field pri ce is mapped to an XML attribute that cannot be
consumed by Dat aCont ract Seri al i zer.

Example 16.39.

public class POType {
@ akarta. xm . bi nd. annotation. Xm Attri bute
public java. math. Bi gDeci mal price;

}

<l-- XM. schema fragnent -->
<xs:conpl exType nane="poType">

<xs:sequence/ >

<xs:attribute nane="price" type="xs:deciml"/>
</ xs: conpl exType>

2. Develop the .NET client using the generated artifacts.

16.5. BP 1.1 Conformance

JakartaXML Web Services enforces strict Basic Profile 1.1 compliance. In one situation, the .NET frame-
work does not enforce strict BP 1.1 semantics, and their usage can lead to interoperability problems.

Inrpclit mode BP 1.1 [http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html], R2211 dis-
allowstheuseof xsi : ni | inpart accessors: An ENVELOPE described withanr pc-1i t er al binding
MUST NOT havethexsi : ni | attributewithavaueof " 1" or"true" on the part accessors.

From a developer perspective this means that in r pcl i t mode, Jakarta XML Web Services does not
allow anull to be passed in aweb service method parameter.

Example 16.40.

/1 Java Wb met hod
public byte[] retByteArray(byte[] inByteArray) {
return i nByteArray;

}
Example 16.41.

<l-- In rpclit node, the above Java web service nethod will throw an
exception
if the following XML instance with xsi:nil is passed by a .NET client.-->
<Ret Byt eArray xm ns="http://tenpuri.org/">
<inByteArray a:nil="true" xm ns=""

xm ns:a="http://ww.w3. org/ 2001/ XM_Schene- i nst ance"/ >
</ Ret Byt eArray>

248

http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html

Chapter 17. Using Atomic Transactions

Table of Contents

17.1. Using Web Services AtOMIC TranSaCioNSoevuueeiiieriiieiieeiiiieeaineeeineeei e eanneeaneens 249
17.1.1. Overview of Web Services AtomiC TranSaCtionsoveeveveieeiiiinneeiiiineeeeeiinen. 249
17.1.2. Enabling Web Services Atomic Transactions on Web Service Endpoint 251
17.1.3. Enabling Web Services Atomic Transactions on Web Service Clients 257
17.1.4. System Level Configurationcceuuieiiiiiiii i e e e e 262
17.1.5. ComPatibDiliTy ..v.eree e 262

17.2. About the basiCWSTX EXAMPIE .. ccenieiicee e e 263

17.3. Building, Deploying and Running the basicWSTX Examplecccovvviieviiniviiiciceeeee, 266

17.1. Using Web Services Atomic Transactions

This section describes how to use Web services atomic transactions to enable interoperability with other
external transaction processing systems.

* Overview of Web Services Atomic Transactions
» Enabling Web Services Atomic Transactions on Web Service Endpoint

» Enabling Web Services Atomic Transactions on Web Service Clients

17.1.1. Overview of Web Services Atomic Transactions

Web services enabl e interoperability with other external transaction processing systems, such as WeblL og-
ic, Websphere, JBoss, Microsoft .NET, and so on, through the support of the following specifications:

« Web Services Atomic Transaction (WS-AtomicTransaction) Versions 1.0, 11 and
12: http://docs. oasi s-open. or g/ ws-t x/ wst x-wsat - 1. 2- spec-cs- 01/ wst x-
wsat - 1. 2-spec-cs-01. ht i

 Web Services Coordination (WS-Coordination) Versions 1.0, 11 and
1.2: http://docs. oasi s-open. or g/ ws-t x/ wst Xx-wscoor - 1. 2-spec-cs- 01/ wst x-
wscoor-1. 2-spec-cs-01. htm

These specifications define an extensible framework for coordinating distributed activities among a set
of participants. The coordinator, shown in the following figure, is the central component, managing the
transactional state (coordination context) and enabling Web services and clientsto register as participants.

249

Using Atomic Transactions

Figure 17.1. Web Services Atomic Transactions Framewor k

Mpliﬂﬁﬂni—ﬂ Service X

Protocol X

Thefollowing table describes the components of Web services atomic transactions, shown in the previous

figure.

Coordinator

"Web Service 3
(Ereatei:nmu:linatian[nntext:ll
Heqgister
\ (Register)

v v
Activation Registration
Service Service
Protocol Protocol

ServiceY [

—Application
Protocol Y

Table 17.1. Components of Web Services Atomic Transactions

Component
Coordinator

Activation Service

Registration Service

Application Protocol X, Y

Description

Manages the transactional state (coordination context) and enables

Web services and clients to register as participants.

Enables the application to activate a transaction and create a coordi-
nation context for an activity. Once created, the coordination context

is passed with the transaction flow.
Enables an application to register as a participant.

Supported coordination protocols, such as WS-AtomicTransaction.

The following figure shows two server instances interacting within the context of a Web services atomic

transaction.

Figure 17.2. Atomic Transaction - Interaction between two Servers

Server A (WebLogic Server)

Application A

JTA Transaction
Manager

Handler

Server B (WebLogic Server)

"
S50AP
+

Context

PR

Handler

%

Coordinator

Application B

JTA Transaction
Manager

%

Participant

250

Using Atomic Transactions

Please note the following:

» Using the local Jakarta Transactions transaction manager, a transaction can be imported to or exported
from the local Jakarta Transactions environment as a subordinate transaction, all within the context of
aWeb service request.

* Creation and management of the coordination context is handled by thelocal Jakarta Transactionstrans-
action manager.

« All transaction integrity management and recovery processing is done by thelocal Jakarta Transactions
transaction manager.

The following describes a sample end-to-end Web services atomic transaction interaction:

1. Application A beginsatransaction on the current thread of control using the Jakarta Transactionstrans-
action manager on Server A.

2. Application A calls aWeb service method in Application B on Server B.

3. Server A updates its transaction information and creates a SOAP header that contains the coordination
context, and identifies the transaction and local coordinator.

4. Server B receives the request for Application B, detects that the header contains a transaction coordi-
nation context and determines whether it has already registered as a participant in this transaction. If it
has, that transaction is resumed and if not, a new transaction is started.

Application B executes within the context of the imported transaction. All transactional resourceswith
which the application interacts are enlisted with this imported transaction.

5. Server B enlistsitself as a participant in the WS-AtomicTransaction transaction by registering with the
registration service indicated in the transaction coordination context.

6. Server A resumes the transaction.

7. Application A resumes processing and commits the transaction.

17.1.2. Enabling Web Services Atomic Transactions on
Web Service Endpoint

To enable Web services atomic transactions on a Web service endpoint;

* When starting from Java (bottom-up), add the
@om sun. xm . ws. api . t x. at. Transact i onal annotation to the Web service endpoint im-
plementation class or method.

The following tables summarizes the configuration options that you can set when enabling Web services
atomic transactions:

Table 17.2. Web Services Atomic Transactions Configuration Options

Attribute Description

Ver si on Version of the Web services atomic transaction coordination context
that is used for Web services and clients. For clients, it specifies the
version used for outbound messages only. The value specified must
be consistent across the entire transaction.

251

Using Atomic Transactions

Attribute Description

Valid values include WSAT10, WSAT11, WEAT12, and DEFAULT.
The DEFAULT value for Web servicesis all three versions (driven by
the inbound request); the DEFAULT value for Web service clientsis
WBAT12.

Fl ow type Whether the Web services atomic transaction coordination context is
passed with the transaction flow. See table for valid values.

The following table summarizes the valid values for flow type and their meaning on the Web service and
client. The table also summarizes the valid value combinations when configuring web services atomic
transactions for an EJB-style web service that usesthe @r ansacti onAtt ri but e annotation.

Table 17.3. Flow Types Values

Value Web Service Client Web Service Valid EJB
@r ansac-
tionAt-
tribute Val-
ues

NEVER Jakarta Transactions transaction: Transaction flow existss Do NEVER,

Do not export transaction coordi- not import transaction coordi- NOT_SUPPORTED,
nation context. nation context. If the Coor- REQUI RED,

dinationContext header contains REQUI RES_NEW

No Jakarta Transactions transac- nust under st and="true", SUPPORTS
tion: Do not export transaction co- g SOAP fault is thrown.

ordination context.
No transaction flow: Do not im-
port transaction coordination con-

text.
SUPPORTS Jakarta Transactions transaction: Transaction flow exists. Import REQUI RED,
(Default) Export transaction coordination transaction context. SUPPORTS

context.
No transaction flow: Do not im-

No Jakarta Transactions transac- port transaction coordination con-
tion: Do not export transaction co- text.
ordination context.

MANDATORY Jakarta Transactions transaction: Transaction flow exists: Import MANDATORY,
Export transaction coordination transaction context. REQUI RED,

context. SUPPORTS
No transaction flow: Service-side

No Jakarta Transactions transac- exception isthrown.
tion: An exception is thrown.

17.1.2.1. Using the @Transactional Annotation in Your JWS File

To enable Web services atomic transactions, specify the
@om sun. xm . ws. api . t x. at. Transact i onal annotation ontheWeb service endpoint imple-
mentation class or method.

« If you specify the @ ansact i onal annotation at the Web service class level, the settings apply to
al two-way methods defined by the service endpoint interface. Y ou can override the flow type value at
the method level; however, the version must be consistent across the entire transaction.

252

Using Atomic Transactions

 You cannot explicitly specify the @r ansact i onal annotation on a Web method that is also anno-
tated with @neway.

» Web servicesatomic transactions cannot be used with the client-si de asynchronous programming model.

The format for specifying the @r ansact i onal annotation isasfollows:

Example 17.1. @Transactional annotation format
@ransacti onal (
ver si on=Tr ansacti onal . Ver si on. [WBAT10| WEAT11| WSAT12| DEFAULT] ,

val ue=Transacti onal . Transacti onFowType. [MANDATORY| SUPPORTS| NEVER]
)

For more information about the version and flow type configuration options, see Table.

The following sections provide examples of using the @ ansact i onal annotation at the Web service
implementation class and method levels, and with the EJB @TransactionAttribute annotation.

» Example: Using @Transactional Annotation on a Web Service Class
» Example: Using @Transactiona Annotation on a Web Service Method

» Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

17.1.2.1.1. Example: Using @Transactional Annotation on a Web Service Class

The following example shows how to add @r ansact i onal annotation on a Web service class. As
shown in the example, there is an active Jakarta Transactions transaction.

Example 17.2. @Transactional Annotation on a Web Service Class
package exanpl es. webservi ces. jaxws. wsat . si npl e. servi ce;

i rrbolrt jakarta.transaction. User Transacti on;

i rrbolrt j akarta.jws.WebServi ce;

i mport com sun. xm .ws. api.tx.at. Transactional ;

i mport comsun. xm .ws. api.tx.at. Transacti onal . Ver si on;
i mport comsun. xm .ws. api.tx.at. Transactional . Transacti onFl owType;

/**

* This JW5s file forns the basis of a Ws-Atonic Transaction Wb Service
* with the

* operations: createAccount, del eteAccount, transferMnet, |istAccount
*

*/

@\ébServi ce(servi ceNane = "Wsat BankTr ansf er Servi ce",

t ar get Nanespace = "http://tenpuri.org/",
port Nane = "WSHt t pBi ndi ngl Service")
@ransactional (val ue = Transacti onal . Transacti onFl owType. MANDATCRY,
version = comsun.xm . ws. api . tx. at. Transacti onal . Ver si on. WSAT10)
public class Wat BankTransf er Servi ce {

public String createAccount(String acctNo, String ampunt) throws java
.l ang. Exception {

Context ctx = null;

253

Using Atomic Transactions

User Transaction tx = null;
try {
ctx = new Initial Context();
tx = (UserTransaction) ctx.|ookup("java: conp/ User Transaction");
try {
Dat aSour ce dat aSource = (DataSource) ctx.| ookup
(" exanpl es- denpXA-2");

String sgql = "insert into wsat_acct_renote (acctno, " +
"anount) values (" + acctNo +

, + amount + ")";

int insCount = dataSource. get Connecti on()
. prepareSt atenent (sql). execut eUpdat e();

if (insCount != 1)
t hrow new j ava. | ang. Exception("insert fail at renpte" +
II- n);

racctno=" + acctNo + " ampunt=" + anount + " " +

“creating. ";
} catch (SQLException e) {
Systemout. println("**** Exception caught *****");

e. printStackTrace();

return

throw new SQLException("SQ. Exception during " +
"createAccount () at renote.");

} catch (java.lang. Exception e) {
Systemout.println("**** Exception caught ***x*"):
e.printStackTrace();
throw new j ava. | ang. Exception(e);

}

public String del eteAccount (String acctNo) throws java.l ang. Exception {

}

public String transferMney(String acctNo, String anmount,
String direction)
throws java.l ang. Exception {

}

public String |istAccount() throws java.lang. Exception {

}
}

17.1.2.1.2. Example: Using @Transactional Annotation on a Web Service Method

The following example shows how to add @' ansact i onal annotation on a Web service implemen-
tation method.

Example 17.3. @Transactional Annotation on a Web Service M ethod

package exanpl es. webservi ces.jaxws. wsat. si npl e. servi ce;

254

Using Atomic Transactions

i mport
i mport
i mport

i mport
i mport

/**

jakarta.transacti on. User Transacti on;

jakarta.jws. WebServi ce;
com sun. xm . ws. api .t x. at. Transacti onal ;
com sun. xm . ws. api . t x. at. Transacti onal . Ver si on;

com sun. xm . ws. api . t x. at. Transacti onal . Transacti onFl owType;

* This JW5s file forne the basis of a Ws-Atonic Transacti on Wb Service
* with the

* operations: createAccount, deleteAccount, transferMonet,

*

*/

@\ébSer vi ce(servi ceNane = "Wsat BankTr ansf er Ser vi ce",

t ar get Nanespace = "http://tenpuri.org/",
port Nane = "WSHt t pBi ndi ngl Service")

public class Wat BankTransf er Servi ce {

i st Account

@ransactional (val ue = Transacti onal . Transact i onFl owType. MANDATCRY,

public String createAccount(String acctNo, String amount) throws java

version = comsun. xnm . ws. api .tx. at. Transacti onal . Versi on

. WBAT10)
.l ang. Exception {

Context ctx = null;
User Transaction tx = null;

try {
ctx = new Initial Context();

tx = (UserTransaction) ctx.lookup("jakarta.transaction" +

". User Transaction");
try {

Dat aSour ce dat aSource = (DataSource) ctx.| ookup

(" exanpl es- denpXA-2") ;

String sql = "insert into wsat_acct_renpte (acctno,

"anount) values (" + acctNo +

, + amount + ")";

int insCount = dataSource. get Connection()
. prepareSt at enent (sql). execut eUpdat e() ;

if (insCount != 1)

throw new j ava. |l ang. Exception("insert fail at

Sk

return

"creating. ";
} catch (SQ.Exception e) {

acctno=" + acctNo + " anmpunt=

+ anount +

Systemout. println("**** Exception caught *****");

e. printStackTrace();

t hr ow new SQLException("SQL Exception
"createAccount () at renote.");

} catch (java.lang. Exception e) {
Systemout.println("**** Exception caught
e.printStackTrace();

t hrow new j ava. | ang. Exception(e);

during " +

*****");

renot e"

+

+

+

+

255

Using Atomic Transactions

public String del eteAccount(String acctNo) throws java.l ang. Exception {

}

public String transferMney(String acctNo, String anmount,
String direction)
throws java.l ang. Exception {

}

public String |istAccount() throws java.lang. Exception {

}
}

17.1.2.1.3. Example: Using the @Transactional and the EJB @TransactionAt-
tribute Annotations Together

The following example illustrates how to use the @r ansact i onal and EJB @r ansacti onAt -
t ri but e annotations together. In this case, the flow type values must be compatible.

Example17.4. @Transactional and the EJB @TransactionAttribute Used Together
package exanpl es. webservi ces.j axws. wsat. si npl e. servi ce;
i n:po.rt jakarta.transacti on. User Transacti on;

import jakarta.jws.WbService;

i mport javax.ejb.Transacti onAttri bute;

i mport javax.ejb. Transacti onAttri buteType;

i mport com sun. xm .ws. api.tx. at. Transacti onal ;

i mport com sun. xnm .ws. api . tx. at. Transacti onal . Ver si on;

i mport com sun. xm .ws. api.tx. at. Transacti onal . Transacti onFl owType;

/**

* This JWs file forns the basis of a Ws-Atonic Transacti on Wb Service
* with the

* operations: createAccount, deleteAccount, transferMnet, |istAccount
*

*/

@\ebSer vi ce(servi ceNane = "Wsat BankTr ansf er Ser vi ce",

t ar get Nanespace = "http://tenpuri.org/",
port Nane = "WSHt t pBi ndi ngl Service")
@ransactional (val ue = Transacti onal . Transacti onFl owType. MANDATCRY,
version = comsun. xnm . ws. api . tx. at. Transacti onal . Ver si on. W5AT10)
@ransacti onAttribute(Transacti onAttri buteType. REQUI RED)
public class Wat BankTr ansf er Servi ce {

)
17.1.2.2. Enabling Web Services Atomic Transactions Starting From
WSDL

When enabled, Web services atomic transactions are advertised in the WSDL file using apolicy assertion.

Thistable summarizesthe WS-AtomicTransaction 1.2 policy assertionsthat correspond to aset of common
Web services atomic transaction flow type and EJB Transaction attribute combinations.

256

Using Atomic Transactions

Web Services Atomic Transaction Policy Assertion Values (WS-AtomicTransaction 1.2)

Table 17.4. Web Services Atomic Transaction Policy Assertion Values (WS-
AtomicTransaction 1.2)

Atomic Transaction Flow Type EJB @r ansacti onAt - WS-AtomicTransaction 1.2 Poli-
tribute cy Assertion
MANDATORY MANDATORY, REQUI RED, SUP- <wsat : ATAsserti on/ >
PORTS
SUPPORTS REQUI RED, SUPPORTS <wsat : ATAssertion
wsp: Optional ="true"/>
NEVER REQUI RED, REQUI RES_NEW No policy advertisement
NEVER, SUPPORTS,
NOT_SUPPORTED

17.1.3. Enabling Web Services Atomic Transactions on
Web Service Clients

On aWeb service client, enable Web services atomic transactions using one of the following methods:

e Addthe @om sun. xm . ws. api . t x. at. Transacti onal annotation on the Web service ref-
erence injection point for aclient.

e Passthecom sun. xml . ws. api . t x. at. Transact i onal Feat ur e as a parameter when cre-
ating the Web service proxy or dispatch.

» Atrun-time, if the non-atomic transactional Web service client calls an atomic transaction-enabled Web
service, then based on the flow type settings:

« If the flow typeis set to SUPPORTS or NEVER on the service-side, then the call isincluded as part
of the transaction.

« If the flow typeis set to MANDATORY, then an exception is thrown.

17.1.3.1. Using @Transactional Annotation with the @WebSer-
viceRef Annotation

To enable Web services atomic transactions, specify the
@om sun. xm . ws. api . t x. at. Transact i onal annotation on the Web service client at the
Web service reference (@\ebSer vi ceRef) injection point.

See Using the @Transactional Annotation in Your JWS File for the description of @r ansact i onal
annotation format.

Thefollowing exampleillustrates how to annotate the Web service reference injection point. Asshownin
the exampl g, the active Jakarta Transactions transaction becomes a part of the atomic transaction.

Example 17.5. Using @Transactional Annotation with the @WebServiceRef
Annotation

package exanpl es. webservi ces.jaxws. wsat.sinple.client;

import jakarta.servlet.*;

257

Using Atomic Transactions

import jakarta.servlet.http.*;

i mport java.net. URL;
import javax.xm .nanespace. Q\Nane;

import jakarta.transaction. UserTransacti on;
import jakarta.transaction. SystenExcepti on;

import jakarta.xm .ws.WbServi ceRef;
i mport com sun. xm .ws. api.tx.at. Transactional ;
*/

/**

* This exanpl e denpnstrates using a Ws-Atomi ¢ Transaction to create or
* del ete an account,

* or transfer noney via Web service as a single atonic transaction.

*/

public class Wat BankTransferServl et extends HttpServlet {
String url = "http://Iocal host:7001";
URL wsdl URL = new URL(url +

"/ Wsat BankTr ansf er Servi ce/ Wsat BankTr ansf er Servi ce");

Dat aSource ds = null;
User Transaction utx = null;

try {
ctx = new Initial Context();
utx = (UserTransaction) ctx.|ookup("jakarta.transaction" +

". User Transaction");
ut x. set Transacti onTi neout (900) ;
} catch (java.lang. Exception e) {
e.printStackTrace();
}

Wsat BankTr ansf er Servi ce port = getWebServi ce(wsdl URL) ;

try {
ut x. begi n();
if (renpteAccountNo.length() > 0) {
if (action.equals("create")) {
result = port.createAccount (renoteAccount No,
amount) ;
} else if (action.equals("delete")) {
result = port.del et eAccount (renot eAccount No) ;
} else if (action.equals("transfer")) {
result = port.transferMney(renoteAccount No,
amount, direction);

}
}
utx.conmit();
result = "The transaction is commtted " + result;
} catch (java.lang. Exception e) {
try {

e.printStackTrace();
ut x. rol | back();
result = "The transaction is rolled back.
. get Message();
} catch (java.lang. Exception ex) {

"4 e

258

Using Atomic Transactions

e.printStackTrace();
result = "Exception is caught. Check stack trace.";
}
}

request.setAttribute("result", result);

@ransactional (val ue = Transacti onal . Transact i onFl owType. MANDATCRY,
version = Transactional . Versi on. WSAT10)

@\ébSer vi ceRef ()

Wsat BankTr ansf er Servi ce_Servi ce service;

private Wat BankTr ansfer Servi ce get WbService() {
return service. get WsHt t pBi ndi ngl Servi ce();

}

public String createAccount(String acctNo, String anmount) throws
java.l ang. Exception {
Context ctx = null;
User Transaction tx = null;
try {
ctx = new Initial Context();
tx = (UserTransaction) ctx.lookup("jakarta.transaction" +
". User Transaction");
try {
Dat aSour ce dat aSource = (DataSource) ctx.| ookup
(" exanpl es- dat aSour ce- denpXAPool ") ;

String sql = "insert into wsat_acct_l|ocal (acctno, " +
"anount) val ues (
" + aCCtNO + u’ " + arTDUﬂt + u)u;

int insCount = dataSource. get Connecti on()
. prepareSt atenent (sql). execut eUpdate();

if (insCount != 1)
throw new java. |l ang. Exception("insert fail at " +
"local .");

racctno=" + acctNo + " ampunt=" + anount + " " +

"creating.. ";
} catch (SQLException e) {
Systemout. println("**** Exception caught *****");

e. printStackTrace();

return

throw new SQLException("SQ. Exception during " +
"createAccount () at local.");

} catch (java.lang. Exception e) {
Systemout.println("**** Exception caught ***x*"):
e.printStackTrace();
throw new j ava. | ang. Exception(e);

}

public String del eteAccount(String acctNo) throws java.l ang. Exception {

}

public String transferMney(String acctNo, String anmount,

259

Using Atomic Transactions

String direction)
throws java.l ang. Exception {

}

public String |istAccount() throws java.lang. Exception {

}
}

17.1.3.2. Passing the TransactionalFeature to the Client

To enable Web services atomic transactions on the client of the Web service, you can pass the
com sun. xm . ws. api .t x. at. Transact i onal Feat ur e asaparameter when creating theWeb
service proxy or dispatch, asillustrated in the following example.

Example 17.6. Passing the Transactional Feature to the Client
package exanpl es. webservi ces.jaxws. wsat.sinple.client;

import jakarta.servlet.?*;
import jakarta.servlet.http.*;

i mport java.net. URL;
i mport javax.xm .nanespace. Q\Nane;

import jakarta.transaction. UserTransacti on;
import jakarta.transaction. SystenExcepti on;

i mport com sun. xm . ws. api . tx. at. Transacti onal Feat ur e;

i mport comsun. xm .ws. api.tx.at. Transacti onal . Versi on;

i mport com sun. xm .ws. api.tx.at. Transactional . Transacti onFl owType;

*/

/**
* This exanpl e denpnstrates using a Ws-Atomi ¢ Transaction to create
* or delete an account,

* or transfer noney via Web service as a single atonic transaction.
*/

public class Wat BankTransferServl et extends HttpServlet {
String url = "http://local host:7001";
URL wsdl URL = new URL(url +

"/ Wsat BankTr ansf er Ser vi ce/ Wsat BankTr ansf er Servi ce") ;

Dat aSource ds = null;
User Transaction utx = null;

try {
ctx = new Initial Context();
utx = (UserTransaction) ctx.|ookup("jakarta.transaction" +

". User Transaction");
ut x. set Transacti onTi neout (900) ;
} catch (java.lang. Exception e) {
e.printStackTrace();
}

Wsat BankTr ansf er Servi ce port = getWebServi ce(wsdl URL) ;

260

Using Atomic Transactions

try {
ut x. begi n();
if (renpteAccountNo.length() > 0) {
if (action.equals("create")) {
result = port.createAccount (renoteAccount No,
amount) ;
} else if (action.equals("delete")) {
result = port.del et eAccount (renot eAccount No) ;
} else if (action.equals("transfer")) {
result = port.transferMney(renoteAccount No,
amount, direction);

}
}
utx.conmit();
result = "The transaction is commtted " + result;
} catch (java.lang. Exception e) {
try {

e.printStackTrace();
ut x. rol | back();
result = "The transaction is rolled back. "+ e
. get Message();
} catch (java.lang. Exception ex) ({
e.printStackTrace();
result = "Exception is caught. Check stack trace.";
}
}

request.setAttribute("result", result);

/1 Passing the Transactional Feature to the dient

private Wsat BankTr ansfer Servi ce get WebServi ce(URL wsdl URL) {
Transactional Feature feature = new Transacti onal Feature();
feat ure. set Fl owType(Transacti onFl owType. MANDATCRY) ;
f eat ure. set Ver si on(Ver si on. WSAT10) ;

Wsat BankTr ansf er Servi ce_Servi ce service = new
Wsat BankTr ansf er Ser vi ce_Ser vi ce(wsdl URL,
new QNane("http://tenpuri.org/",

"Wsat BankTr ansf er Service"));

return service. get WSHt t pBi ndi ngl Servi ce(new j akarta. xm . ws. soap
. Addr essi ngFeature(), feature);

}

public String createAccount(String acctNo, String anmount) throws
java.l ang. Exception {
Context ctx = null;
User Transaction tx = null;
try {
ctx = new Initial Context();
tx = (UserTransaction) ctx.lookup("jakarta.transaction" +
". User Transaction");
try {
Dat aSour ce dat aSource = (DataSource) ctx. | ookup
(" exanpl es- dat aSour ce- denpXAPool ") ;

String sql = "insert into wsat_acct_l|ocal (acctno, " +
"anount) val ues (

261

Using Atomic Transactions

" + acctNo + ", " + amount + ")";

int insCount = dataSource. get Connecti on()
. prepareSt at enent (sql). execut eUpdat e();

if (insCount != 1)
throw new java. |l ang. Exception("insert fail at " +
"local .");

racctno=" + acctNo + " anmount=" + anount + " " +
"creating.. ";
} catch (SQLException e) {

Systemout. println("**** Exception caught *****");

e. printStackTrace();

return

t hrow new SQLException("SQ. Exception during " +
"createAccount () at local.");

} catch (java.lang. Exception e) {
Systemout.println("**** Exception caught ***x*"):
e.printStackTrace();
throw new j ava. | ang. Exception(e);

}

public String del eteAccount(String acctNo) throws java.l ang. Exception {

}

public String transferMney(String acctNo, String anmount,
String direction)
throws java.l ang. Exception {

}

public String |istAccount() throws java.lang. Exception {

}
}

17.1.4. System Level Configuration

To specify SSL be used for WS-AT protocol exchanges set thewsat . ssl . enabl ed system property
totrue,i.e start the server with - Dnsat . ssl . enabl ed=t r ue. The default valueisf al se.

Todisabled WS-AT transaction logging and recovery setthewsat . r ecovery. enabl ed system prop-
erty tof al se, i.e start the server with - Dwsat . r ecovery. enabl ed=f al se. The default valueis
true.

The WS-C and WS-AT endpoints necessary for WS-AT are deployed only when the first web service
is deployed to the container. Therefore, it is necessary to have at least one web service deployed to the
target container for WS-AT to function properly even in the case where only clients are used in the Metro
instance.

17.1.5. Compatibility

Compatibility between the Metro 2.1 and pre-2.1 (submission version) WS-AT implementionsis not sup-
ported.

262

Using Atomic Transactions

17.2. About the basicWSTX Example

The basicWSTX example shows the following on the client-side;

1. Developers use existing Jakarta Transactions APIs. Invocations of transacted web service operations
flow transactional context from client to web service. Persistent resources updated with client-created
transactions are all committed or rolled back as a single atomic transaction.

2. After the client-side code commits or aborts the Jakarta Transactions transaction, the client confirms
that all operations in the transaction succeeded or failed by using calls to veri f y methods on the
transacted web service.

Sanpl eServi ced i ent,aWSIT servlet that initiates the transaction, and nscl i ent , a client that
performs the same operations but runs on the Microsoft side, both interact with the following components
running on the service-side:

1. Si mpl eSer vi ce, aweb service implemented as a Java servlet with transacted operations. The Edit
Web Service Attributes feature in the NetBeans IDE WSIT plug-in is used to configure Transaction
Attributes of each web service operation.

2. Si npl eSer vi ceASCMIEJB, a web service implemented as container-managed transaction enter-
prise bean (CMT EJB). No configuration is necessary for this case.

3. Li brar yFacadeWebSer vi ceBean, aweb service that uses the Jakarta Persistence APl with two
JDBC resources

4. Managed Jakarta EE resources participating in a distributed transaction having its transacted updates
all committed or rolled back

The servlet and CMT EJB transacted web service operations manipulate two Jakarta Messaging re-
sources:

e j ms/ Connecti onFact ory, an XATr ansact i on connection factory

e j ms/ Queue, aJakarta Messaging queue

Theli br ar yFacadeWebSer vi ceBean web service operations manipulate the JDBC resources:

» connecti onPool , an XATr ansact i on JDBC connection pool

» jdbc/j avaPr ogr ammi nglLi br ary, aJDBC connection resource
This example shows how to use XATr ansact i on -enabled Jakarta Messaging and JDBC. The first
version of this example, showing WSIT-to-WSIT operations, has the Sanpl eSer vi ced i ent client
configured to run on one GlassFish instance and the service running on the other GlassFish instance.
Either the Java client or the Java web service could be replaced by a semantically equivalent Microsoft
implementation. The Java client is, in fact, replaced by a Microsoft WCF client in the more advanced
version of the example.
Withthe Sanpl eSer vi ced i ent client, the WS-Coordination/WS-AtomicTransaction protocol mes-
sages flow back and forth between the two GlassFish instances just as they do in the Microsoft-to-Sun

transaction interoperability scenario withthenrscl i ent client.

Thebasi cWSTX example was initially designed so it could be run in either one or in two GlassFish do-
mains. If you run the example in one domain, only one coordinator is used; no WS-Coordination protocol

263

Using Atomic Transactions

messages will be exchanged. This chapter explains how to run the example in two domains so both pro-
tocols, WS-Coordination and WS-AtomicTransaction (WS-AT), are used, as shown in WS-Coordination
and WS-AtomicTransaction Protocols in Two GlassFish Domains.

Figure 17.3. WS-Coordination and WS-AtomicTransaction Protocols in Two
GlassFish Domains

F B g)

Domain 2 Domain 1

Serviet (Root) (Subordinate) Web Service

Client AT Coordinator AT Coordinator Transacted
(Initiator App)

\ J \ 7

Transacted Application
Message Request

wscoor: register

<

WSCO0Or. response

>

Application
Message Response

WS-AT
Protocol Messages
(two-phase commit)

<

The example also providesthe mscl i ent client, which is the equivalent of the client serviet shown in
Domain 2.

Components in the basicWSTX Example shows the components that make up the two domain example.
Again, thenscl i ent client would be equivalent to the client servlet in Domain 2 in thisfigure as well.

264

Using Atomic Transactions

Figure 17.4. Componentsin the basicW ST X Example
Machine B

Domain 1

SimpleService
» (serviet web service) 4
{transacted operators)

SimpleServiceASCMTEJB

> (EJB web service)
{fransacted operators) Machine A
Domain 2
JMS Resources
Client Serviet [. :] msclient
(Txn initiator) [e e N actany] (Txn initiator)
- = [jms/Queue] " o

LibraryFacadeWebServiceBean
> (accessor EJB web service) L
(transacted operators)

v

Book
{entity)

JDBC Resources

3

jdbc/ConnectionPool
XATransaction

[jdbclfjavaProgrammingLibrary]

.

The service, which runsin domainl, is comprised of two components:
* Si npl eSer vi ce, aweb service that isimplemented as a servlet with transacted operations

* Si npl eSer vi ceASCMIEJB, a container-managed transaction enterprise bean (CMT EJB) web ser-
vice

The Si npl eSer vi ce web service uses two Jakarta M essaging resources that are created in domainl:

265

Using Atomic Transactions

e j ms/ Connecti onFact ory, an XATr ansact i on connection factory

* j ns/ Queue, aJakarta Messaging queue

ThelLi br ar yFacadeWebSer vi ceBean web service usesthe Jakarta Persistence APl with two JDBC
resources that are created in domainl:

* connecti onPool , an XATr ansact i on JDBC connection pool

» jdbc/j avaPr ogr anmmi ngLi br ary, aJDBC connection resource

The client servlet, which runsin domain2, initiates the transaction.

17.3. Building, Deploying and Running the ba-
SicWSTX Example

Complete the foll owing steps to configure your environment then build, deploy, and runthebasi cWSTX

example.

To Build, Deploy, and Run the basicWST X Example

1.

Download the wsittutorial.zip [http://java.net/projectswsit-docs/sour ces/svn/content/trunk/
wwwi/r eleases/1.2/wsittutorial.zip] samplekit for this example.

Ensure that properties that point to your local Application Server (or GlassFish) and WSIT
Tutorial installations have been set.

a

Copy file tut-install/wsittutorial/exanpl es/bp-project/
build. properties.sanple to file tut-install/wsittutorial/exam
pl es/ bp-proj ect/buil d. properti es.

Set the j avaee. hone and wsit.tutorial.hone properties in the file tut-in-
stall/wsittutorial/exanpl es/ bp-project/build. properties.

Ensurethat Application Server (or GlassFish) and at least Ant 1.6.5 have been installed
and are on the path.

Application Server (or GlassFish) includes Ant 1.6.5, which can be found in the as-i n-
stal I /1ib/ant/ bi n directory.

Set up your environment to run the basicWST X example.

To configure your environment to run the example:

a

Changetothetut-install/wsittutorial/exanpl es/wstx/basi cWBTX/ Sam
pl eSer vi ce directory:

cd tut-install/wsittutorial/exanpl es/wstx/basi cWSTX/ Sanpl eSer vi ce
I ssue the following command to configure your environment to run the example:

ant setup

This step performs the following configuration tasks for you:

Starts domainl.

266

http://java.net/projects/wsit-docs/sources/svn/content/trunk/www/releases/1.2/wsittutorial.zip
http://java.net/projects/wsit-docs/sources/svn/content/trunk/www/releases/1.2/wsittutorial.zip
http://java.net/projects/wsit-docs/sources/svn/content/trunk/www/releases/1.2/wsittutorial.zip

Using Atomic Transactions

Creates the resources (j ns/ Queue and XATr ansacti on j ns/ Connecti onFact ory)
used in the example.

Creates and sets up two Application Server (or GlassFish) domains.
The domains can be created either on one machine or on two different machines. These steps
show you how to do it on one machine. The first domain, domainl, is created as part of the

Application Server (or GlassFish) installation.

Establishestrust between the two domains by installing each domain'ss1as security certificate
in the other domain's truststore.

Usethe NetBeans | DE to create a database connection.

a

b.

j.

Start the NetBeans | DE.

In the Servicestab, right-click Databases and select New Connection.
The New Database Connection dialog displays.

Select Java DB (Net wor k) asname

Typel ocal host intheHost field.

Type 1527 in the Port field.

Typewst xSanpl eDB in the Database field.

Typeapp in the User Name field.

Typeapp in the Password field.

Select the Remember password checkbox.

Click OK.

Register the Application Server (or GlassFish) server instances (domainl and domain2) in the
NetBeans | DE.

a

If Sun Java System Application Server (domainl) is already registered, go to Step 5j. If
it isnot, go to Step 4b.

In the Servicestab, right-click Servers, and select Add Server.

The Add Server Instance dialog appears.

Choosethe server (Sun Java System Application Server (or GlassFish V2) from the drop-
down list and give it a descriptive name, such as Sun Java System Application Server -
domainl (Server), and then click Next.

The Platform Location dialog displays.

ClickBrowse, navigate to the location wherethe Application Server (or GlassFish server)
isinstalled, then click Choose.

M ake surethat the Register L ocal Default Domain radio button has been selected.

267

Using Atomic Transactions

Usethedrop-down list to select domainl, then click Next.
The Domain Admin Login Info dialog displays.

Typeadni n in the Admin Usernamefield.

Typeadni nadm n in the Admin Password field.

Click Finish.

The server instance you just registered is the one in which you will run the web service (Sam-
pleService).

Right-click Serversand select Add Server.

The Add Server Instance dialog appears.

Choosethe server (Sun Java System Application Server (or GlassFish V2) from the drop-
down list and give it a descriptive name, such as Sun Java System Application Server -
domain2 (Client), and then click Next.

The Platform Location dialog displays.

ClickBrowse, navigate to the location wherethe Application Server (or GlassFish server)
isinstalled, then click Choose.

Make surethat the Register Local Default Domain radio button has been selected.
Usethedrop-down list to select domain2, then click Next.

The Domain Admin Login Info dialog displays.

Typeadni n in the Admin Usernamefield.

Typeadni nadm n in the Admin Password field.

Click Finish.

The server instance you just registered is the one in which you will run the web service client
(SampleServiceClient).

Open the SampleService project and associate the SampleSer vice web service with the appro-
priate instance (domainl) of the Application Server (or GlassFish server).

a

b.

Select File, then Open Project.

Browsetothet ut-i nstal | /wsi ttutorial/exanpl es/ wstx/basi cWsTX/ direc-
tory and select the SampleService proj ect.

Select the Open as Main Project check box.
Select the Open Required Projects check box.
Click Open Project.

The SampleService project and two required projects, SampleService-elb and SampleSer-

vice-war, are opened and are showB68 the Projects tab.

Using Atomic Transactions

f. IntheProjectstab, right-click SampleService, select Properties, then select the Run cate-
gory.

g. Usethe Server drop-down list to point to the default domain, domainl, for the GlassFish
server instance you registered in Step 5.

h. Click OK.
Resolve referencesto or add the Toplink Essentials Library to the SampleService-g/b project.

The SampleService-gjb project references the Toplink Essentials Library Module that is included
with NetBeans IDE. To verify whether the referenceto thislibrary is resolved in your NetBeans IDE
environment:

a Right click the SampleService-gjb project and select Properties.
b. Select thelLibrariescategory.
Y ou should see Toplink Essentials in the Compile-time Libraries pane of the Compile tab.
c. If you donot seethelibrary, click Add Library to display the Add Library dialog.
d. Locateand select Toplink Essentials and then click Add Library.
Y ou should now see Toplink Essentials in the Compile-time Libraries pane of the Compile tab.
e. Click OK.

To verify that you have Toplink Essentials library in NetBeans IDE, select Tools and then Library
Manager. Y ou should see"Toplink Essentials' intheleft pane. If you don't, you can create the library
yourself using the two Toplink JAR filesin the Application Server (or GlassFish) | i b directory and
then resolve the reference to the newly created library.

Set the proper transaction attributes for each mapping (wsdl : bi ndi ng /
wsdl : operati on)intheSi npl eServi ce- war web service.

To set the transaction attributes for the Sanpl eSer vi ce- war web service:
a. IntheProjectstab, expand the SampleService-war node.

b. ExpandtheWeb Servicesnode.

c. Right-click Simple Service and select Edit Web Service Attributes.

d. IntheQuality of Servicetab, expand thefive operation nodesand then expand the method
nodes under each operation node. Usethe Transaction drop-down list to set the appropri-
atetransaction attribute for each method:

e Setinit toRequired.

e SetpublishRequi red to Required.
e Setpubl i shSupport s to Supported.
e Setverify toRequired.

e Setget Message to Required.

269

Using Atomic Transactions

10.

11

If any other operations are displayed, ignore them.
e. Click OK.

Transaction attributes for Sanpl eSer vi ce ASCMTEJ B do not need to be set; EJB 3.0 trans-
action attributes are used.

The transaction attribute settings for the Sanpl eSer vi ce- war are
stored in the file Sanpl eService\ Sanpl eServi ce-war\ web\ VEB- | NF\ wsi t -
wst Xx. sanpl e. servi ce. Si npl e. xnl .

Deploy the SampleService web service.

Right-click SampleService and select Undeploy and Deploy. NetBeans IDE will start domainl and
deploy the web service to that domain.

Register the SampleServiceClient client with the appropriate instance (domain2) of the Appli-
cation Server (or GlassFish) server.

a. Select File, then Open Project.

b. Browsetothetut-install/wsittutorial/exanpl es/wstx/basi cWSTX/ direc-
tory and select the SampleServiceClient project.

c. Select the Open asMain Project check box.
d. Select the Open Required Projects check box.
e. Click Open Project.
The SampleServiceClient project is opened and is displayed in the Projects tab.

f. IntheProjectstab, right-click SampleServiceClient, select Properties, then select the Run
category.

g. Usethe Server drop-down list to point to domain2.
h. Click OK.

Createweb servicereferencesfor theclient (three web service clients, a simpleServlet and two
CMT EJB clients) and generate the WSDL for all.

a. IntheProjectstab, right-click SampleServiceClient, select New, then select Web Service
Client.

The New Web Service Client dialog displays.
b. Click Browse next to the Project field.
The Browse Web Services dialog displays.
c. Expand SampleService-war, select Simple, then click OK.
d. InthePackagefield, typewst x. sanpl e. cl i ent, then click Finish.

e. _Right-click SampleServiceClient, select New, then select Web Service Client.

270

Using Atomic Transactions

12.

13.

The New Web Service Client dialog displays.

Click Browse next to the Project field.

The Browse Web Services dialog displays.

Expand SampleService-g b, select SmpleAsCMTE;jb, then click OK.

In the Package field, typewst x. sanpl e. ej bcl i ent, then click Finish.
Right-click SampleServiceClient, select New, then select Web Service Client.

The New Web Service Client dialog displays.

Click Browse next to the Project field.

The New Web Service Client dialog displays.

Expand SampleService-g b, select LibraryFacadeWebServiceBean, then click OK.

In the Packagefield, typewst x. sanpl e. | i br ary, then click Finish.

If transaction attributes for the servlet (see Step 7) or CMT EJB web service have changed,
those services must be deployed and client web service references refreshed to get new web
service attributes.

To refresh the client web service references for this example:

a

b.

In the Projectstab, open the SampleServiceClient, then open Web Service References.

Right-click Simple and select Refresh Client to refresh theclient node and regenerate the
WSDL for the ssimpleServlet.

Right-click SimpleAsCMTEjb to do the same for the CMT EJB client.

Right-click LibraryFacadeWebServiceBean to do the same for the LibraryFacadeWeb-
ServiceBean client.

Deploy and run theclient.

Right-click SampleServiceClient and select Run.

NetBeansIDE will start domain2, deploy the servlet and EJB CMT clientsto that domain, then display
the results for both in a pop-up browser window, as shown in basicWSTX Resullts.

271

Using Atomic Transactions

Figure 17.5. basicWST X Results

/= WS-TX Simple Client - M=
\:.:/ hd |g, http: flocalhost: 1852 /SampleClien | % | :“’?.j A | | f P ".E
W I@ws-m Simple Client]_l - - B - & - [eage - G ook - ”

WS-TX Simple Client
Calling WS-TX Simple Web Service implemented as
Servlet

Finished publishedRequired. Sent 3 message(s)
verified 3 message(s) sent.

Finished publishSupports invocation
Pass. verified rolled back messages not sent.

Calling WS-TX Simple Web Service implemented as
CMT EJB

Finished publishedRequired. Sent 3 message(s)
verified 3 message(s) sent.

Finished publishSupports invocation
Pass wverified rolled back messages not sent.

Done & Internet #o0% -

272

Chapter 18. Managing Policies

Table of Contents

18.1. MaNaging POIICIESeiiiii ettt 273
1811 INEFOUUCTION ...ttt ettt e e e et e e e eae e e eneans 273
18.1.2. POlICY REFEIEINCES .. .eeeeiieeeei e et 273
18.1.3. WSDL IMPOIT ...ttt ettt et e e e e e eeaaeees 275
18.1.4. External Policy REFEIENCESiiiiiiieiii e 277

18.1. Managing Policies
18.1.1. Introduction

The section WSIT Configuration and WS-Policy Assertions explained how WSIT functionality is config-
ured using policies. If you are deploying a web service bundled with WSDL then all these policies are
contained in the WSDL document. A web service that hasno WSDL bundled will read the policiesfrom a
configuration file and then generate WSDL that contains these policies. This model works fine if you de-
velop afew web services and do not want to share policies. NetBeans will generate the configuration with
the policiesfor you and you do not need to be concerned with the details. Sometimes however, particularly
in larger scale deployments, you will want to use the same policiesfor all web services or you might want
to use an enterprise-wide policy. The following sections explain how to use externally defined policies.

18.1.2. Policy References

Policies arereferenced using the XML element PolicyReference. Hereis an example of aWSDL fragment
that contains a policy and its reference:

Example 18.1.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definitions
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/

oasi s-200401-wss-wssecurity-utility-1.0.xsd"

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"
xm ns:tns="http://service.test.policy.ws.xmn.sun.com"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns="http://schemas. xm soap. or g/ wsdl /"
t ar get Nanespace="http://service.test.policy.ws.xn .sun.com"
name="Test Servi ceServi ce">

<wsp: Pol i cy
wsu: | d="Test Ser vi cePor t Bi ndi ngPol i cy"
xm ns: wsaws="ht t p: // www. w3. or g/ 2005/ 08/ addr essi ng"
xm ns:wsrme"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r ni pol i cy" >
<wsp: Exact | yOne>
<wsp: Al | >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="htt p: // ww. w3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<wsr m RMAssertion/ >
</wsp: Al |l >
</ wsp: Exact | yOne>

273

Managing Policies

</wsp: Pol i cy>

<bi ndi ng nanme="Test Servi cePort Bi ndi ng" type="tns: Test Servi ce">
<wsp: Pol i cyRef erence URI ="#Test Servi cePort Bi ndi ngPol i cy"/>
<soap: bi ndi ng transport="http://schenmas. xnl soap. org/ soap/ http
styl e="docunent"/ >
<oper ati on nane="echo" >
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ operati on>
</ bi ndi ng>

</definitions>

Above you see one policy defined with the id TestServicePortBindingPolicy. This policy is referenced
by the PolicyRefer ence element in the WSDL binding section. Y ou can see here that the policy reference
#T estServicePortBindingPolicy isrelative assignified by theleading # character. Thisistelling the policy
processor that it isto look for this policy only in the enclosing document.

An aternativeto WS-Policy identifiers and rel ative references are WS-Policy Names [http://www.w3.org/
TR/2007/REC-ws-policy-20070904/#Policy ldentification]. A Name is an absolute URI that can be re-
solved across document boundaries. Here is an example of aWSDL fragment that contains a policy iden-
tified by a Name and the corresponding PolicyReference:

Example 18.2.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definitions
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/

oasi s-200401-wss-wssecurity-utility-1.0.xsd"

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"
xm ns:tns="http://service.test.policy.ws.xmnm.sun.com"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns="http://schemas. xm soap. org/ wsdl /"
t ar get Nanespace="http://service.test.policy.ws.xnl.sun.com"
name="Test Servi ceServi ce">

<wsp: Pol i cy
Nanme="http://service.test.policy.ws.xn.sun.com
Test Ser vi cePor t Bi ndi ngPol i cy"
xm ns: wsaws="ht t p: // www. wW3. or g/ 2005/ 08/ addr essi ng"
xm ns:wsrme"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r n pol i cy" >
<wsp: Exact | yOne>
<wsp: Al | >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="ht t p: // www. wW3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<wsr m RMAssertion/ >
</wsp: Al | >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

<bi ndi ng nanme="Test Servi cePort Bi ndi ng" type="tns: Test Servi ce">
<wsp: Pol i cyRef erence

274

http://www.w3.org/TR/2007/REC-ws-policy-20070904/#Policy_Identification
http://www.w3.org/TR/2007/REC-ws-policy-20070904/#Policy_Identification
http://www.w3.org/TR/2007/REC-ws-policy-20070904/#Policy_Identification

Managing Policies

URI ="http://service.test.policy.ws.xnl.sun.com
Test Ser vi cePort Bi ndi ngPol i cy"/ >
<soap: bi ndi ng transport="http://schenmas. xm soap. or g/ soap/ http"
styl e="docunent"/ >
<oper ati on nane="echo" >
<soap: operati on soapAction=""/>
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ operati on>
</ bi ndi ng>

</definitions>

The mechanism of using a PolicyReference element to reference apolicy is defined in WS-Policy [http://
www.w3.0rg/ TR/2007/REC-ws-policy-20070904/#Policy References]. The PolicyReference element in
the above examplesis a direct child element of the WSDL hinding element. That effectively means that
we attached the policy with id TestServicePortBindingPolicy to this particular WSDL binding element.
In theory, policies could be attached to any WSDL element using that technique. In practice however,
policies may only be attached to afew select elements, depending on the policy assertions that the policy
contains. In the example above we have one addressing and one reliable messaging assertion. Both may
only be attached to WSDL port and WSDL binding elements.

18.1.3. WSDL Import

The WSDL import [http://www.w3.org/TR/wsdl# _document-n] statement lets us to manage policies in
one central document and refer to these policies from any other WSDL document. The policies contained
in aseparate WSDL document are best identified using the WS-Policy Name attribute because that allows
to reference these policies by an absolute URI that does not depend on the location of the imported WSDL
document. Here is an example of how this may look.

Example 18.3. policieswsdl

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions xmns:tns="http://policies.test.policy.ws.xm.sun.con"
xm ns: wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns="http://schenmas. xnm soap. org/ wsdl /"
tar get Nanespace="http://policies.test.policy.ws.xm.sun.com"
name="Pol i ci es" >

<wsp: Policy
Nanme="http://policies.test.policy.ws.xm.sun.conl
Rel i abl eMessagi ngPol i cy"
xm ns: wsaws="ht t p: // www. w3. or g/ 2005/ 08/ addr essi ng"
xm ns:wsrme"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r ni pol i cy" >
<wsp: Exact | yOne>
<wsp: Al | >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="ht t p: // ww. w3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<wsr m RMAssertion/ >
</wsp: Al |l >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

<wsp: Policy

275

http://www.w3.org/TR/2007/REC-ws-policy-20070904/#Policy_References
http://www.w3.org/TR/2007/REC-ws-policy-20070904/#Policy_References
http://www.w3.org/TR/2007/REC-ws-policy-20070904/#Policy_References
http://www.w3.org/TR/wsdl#_document-n
http://www.w3.org/TR/wsdl#_document-n

Managing Policies

Name="http://policies.test.policy.ws.xm.sun.conl SecurePolicy"
xm ns: sp="http://schemas. xm soap. or g/ ws/ 2005/ 07/ securi typolicy">
<wsp: Exact| yOne>
<wsp: Al | >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="ht t p: // ww. w3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<sp: Symmet ri cBi ndi ng>
<wsp: Pol i cy>
<sp: Prot ecti onToken>
<wsp: Pol i cy>
<sp: X509Token
sp: | ncl udeToken="http://schermas. xm soap. or g/
ws/ 2005/ 07/ securitypolicy/ |l ncludeToken/ Never" >
<wsp: Pol i cy>
<sp: WsX509V3Tokenl10/ >
</wsp: Pol i cy>
</ sp: X509Token>
</wsp: Pol i cy>
</ sp: Prot ecti onToken>
<sp: Layout >
<wsp: Pol i cy>
<sp: Strict/>
</wsp: Pol i cy>
</ sp: Layout >
<sp: | ncl udeTi nest anp/ >
<sp: Onl ySi gnEnt i r eHeader sAndBody/ >
<sp: Al gori t hnBui t e>
<wsp: Pol i cy>
<sp: Basi c128/ >
</wsp: Pol i cy>
</ sp: Al gorithnfuite>
</wsp: Pol i cy>
</ sp: Synmet ri cBi ndi ng>
<sp: Ws11>
<wsp: Pol i cy>
<sp: Must Support Ref Keyl denti fier/>
<sp: Must Support Ref | ssuer Seri al / >
<sp: Must Support Ref Thunbpri nt/ >
<sp: Must Support Ref Encr ypt edKey/ >
</wsp: Pol i cy>
</sp: Wsl1ll>
</wsp: Al >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

</definitions>

Example 18.4. reliable-ser vice.wsdl

<?xm version="1.0" encodi ng="UTF- 8" ?>
<definitions xm ns: soap="http://schenmas. xn soap. or g/ wsdl / soap/"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena"
xm ns: wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns="http://schenas. xnm soap. org/ wsdl /"
xm ns:tns="http://reliable.service.test.policy.ws.xn.sun.com"
t ar get Nanespace="http://
reliable.service.test.policy.ws.xm.sun.conl"
nane="Rel i abl eServi ce">

<i mport nanmespace="http://reliable.service.test.policy.ws.xm.sun. com"

276

Managing Policies

| ocation=".../policies.wsdl"/>

<bi ndi ng nane="Rel i abl eSer vi cePort Bi ndi ng"
type="tns: Rel i abl eServi ce">
<wsp: Pol i cyRef erence
URI ="http://policies.test.policy.ws.xm.sun.conl
Rel i abl eMessagi ngPol i cy"/ >
<soap: bi ndi ng transport="http://schenmas. xm soap. or g/ soap/ http"
styl e="docunent"/ >
<oper ati on nane="echo" >
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ operati on>
</ bi ndi ng>

</dé%{nitions>
Example 18.5. secur e-service.wsdl

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions xm ns: soap="http://schenmas. xn soap. or g/ wsdl / soap/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns="http://schemas. xnm soap. org/ wsdl /"
xm ns:tns="http://secure.service.test.policy.ws.xnm.sun.com"
t ar get Nanespace="http://
secure. service.test.policy.ws.xm.sun.com"”
name="Secur eServi ce" >

<i nport namespace="http://secure.service.test.policy.ws.xm.sun.com"
| ocation=".../policies.wsdl"/>

<bi ndi ng nanme="Secur eServi cePort Bi ndi ng" type="tns: SecureService">
<wsp: Pol i cyRef erence
URI ="http://policies.test.policy.ws.xmn.sun.com SecurePolicy"/>
<soap: bi ndi ng transport="http://schenmas. xm soap. or g/ soap/ http"
styl e="docunent"/ >
<operation nane="echo">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ operati on>
</ bi ndi ng>

</définitions>
18.1.4. External Policy References

Since the PolicyReference is a URI, it comes natural to use an absolute URI instead of arelative URI.
This is exactly how you would attach an external policy, i.e. a policy that is not contained in the same

277

Managing Policies

document as the PolicyReference. Y ou still need to reference the policy ID by attaching it to the URI of
the document. Here is an example of afile that contains the same policy as the one that was inside the
WSDL document previously:

Example 18.6.

<wsp: Pol i cy wsu: | d="Test Servi cePort Bi ndi ngPol i cy"
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/
oasi s-200401-wss-wssecurity-utility-1.0.xsd"
xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: wsaws="ht t p: // ww. w3. or g/ 2005/ 08/ addr essi ng"
xm ns:wsrm="http://schemas. xm soap. or g/ ws/ 2005/ 02/ rmi pol i cy" >
<wsp: Exact | yOne>
<wsp: Al | >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="ht t p: // ww. wW3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<wsr m RMAssertion/ >
</wsp: Al l >
</ wsp: Exact | yOne>
</ wsp: Pol i cy>

L et's assume the document above can beretrieved from the URI http://example.test/policy. Y ou could now
writeaWSDL document like this:

Example 18.7.

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions xm ns:soap="http://schenmas. xn soap. or g/ wsdl / soap/"
xm ns:tns="http://service.test.policy.ws.xm.sun.conl"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena"
xm ns: wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns="http://schenmas. xm soap. org/ wsdl /"
tar get Nanespace="http://service.test.policy.ws.xmn.sun.com"
nane="Test Servi ceServi ce">

<bi ndi ng nanme="Test Servi cePort Bi ndi ng" type="tns: Test Servi ce">
<wsp: Pol i cyRef erence
URI ="http://exanpl e. test/ policy#Test Servi cePort Bi ndi ngPol i cy"/ >
<soap: bi ndi ng transport="http://schenmas. xm soap. or g/ soap/ http"
styl e="docunent"/ >
<oper ati on nane="echo" >
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</i nput >
<out put >
<soap: body use="literal"/>
</ out put >
</ operati on>
</ bi ndi ng>

</definitions>

Note that the PolicyReference above uses an absolute URI. It references the document URI appended
with the # character and the ID of the policy. The fact that you need to state the particular ID allows to
contain multiple policies inside one document and reference single policies out of that document. Hereis
an example of a document with more than one policy:

278

Managing Policies

Example 18.8.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<policies xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/
oasi s-200401- wss-wssecurity-utility-1.0.xsd"
xm ns: wsoma="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy/
optim zedm neseri al i zati on”
xm ns: wsaws="ht t p: / / www. w3. or g/ 2006/ 05/ addr essi ng/ wsdl "
xm ns:wsrm="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r mi pol i cy" >

<wsp: Policy wsu:|d="d obal RMPol i cy" >
<wsp: Exact| yOne>
<wsp: Al | >
<wsaws: Usi ngAddr essi ng
xm ns: wsaws="ht t p: / / www. w3. or g/ 2006/ 05/ addr essi ng/ wsdl "/ >
<wsr m RMAssertion/ >
</wsp: Al >
</ wsp: Exact | yOne>
</ wsp: Pol i cy>

<wsp: Policy wsu:ld="d obal M onPol i cy">
<wsp: Exact| yOne>
<wsp: Al | >
<wsoma: Opti m zedM nmeSeri al i zati on/ >
</wsp: Al >
</ wsp: Exact | yOne>
</ wsp: Pol i cy>

</ policies>

The policies are contained by a policies element so that this document is valid XML. This
root element may actually have any name. Assuming that this document has the absolute URI
http://example.test/policies, you can now create references for both policies: <Pol i cyRef er ence
URI =" http://exanpl e. test/ polici es#d obal RMPol i cy"/ >and<Pol i cyRef erence
URI =" http://exanpl e. test/ polici es#d obal M onmPol i cy"/ >.

Note that unlike the approach discussed in section WSDL Import, external policy references may not be
interoperable with other products.

279

Chapter 19. Monitoring and
Management

Table of Contents

19.1

19.2.

19.1. Introduction to Metro IMX MONITOMNGuoveenieeieie e e e e e e e 280
19.2. Enabling and Disabling MONITOMNGcccuuiiiuieii e e e e e e e e ean s 280
19.2.1. Enabling and disabling Metro monitoring via system propertiesccoovevvveennnnns 281
19.2.2. Enabling and disabling endpoint monitoring via policyc.cccovvviiiieiiiiiiinceies 281
19.2.3. Enabling and disabling client monitoring Via poliCyccocveiviiiiieiiiieriiieeeneeann, 281
19.3. MONItOriNg TAENLIFIEIS . .ove i e e e e e e e e anaeees 282
19.3.1. Endpoint Monitoring 1dentifiersovvvriiiir e 282
19.3.2. Client monitoring identifiersoovvui i e 283
19.3.3. Identifier CharaCter MapPinNgccevuieee i e e e e e e e e e ean s 283
19.3.4. Resolving Monitoring Root Name ConfliCtSoovvviiviniiiiiiii e 283
19.4. Available Monitoring INfOrmMationovvee i e 284
19.4.1. WSCHent INfOrMELIONcceuuiiiiiiiieiei et eeaens 286
19.4.2. WSENAPOIint INFOrMatioNc.ueiieieiii e e e e e e e ean s 287
19.4.3. WSNonceManager INfOrmationc..vevuuieiiieii e e e e e e e e e e e 288
19.4.4. WSRM SCSessionManager INformationccccuieviiieiinoiiinieeeee e eeeneeeenns 289
19.4.5. WSRM SequenceManager INfOrmationcc.veiuiiieiiieiiiieeie e eeee e 290
RS [0 = S PP 291

Introduction to Metro JMX Monitoring

JMX monitoring and management is built into Metro-based services and clients. Monitoring allows one
to view the state of parts of Metro runtime system while it is in operation. Management allows one to
change values dynamically. The rest of this document will refer to Metro monitoring and management
as simply "monitoring".

Metro monitoring should not be confused with Metro's Web Service Configuration Management (Metro
CM). Monitoring enables one to view the state of the Metro runtime, whereas Metro CM is for
(re)configuring aweb service.

Enabling and Disabling Monitoring

M etro-based services have monitoring turned on by default.
Metro-based clients have monitoring turned off by default.

Clients are off by default because there is no standard way to dispose of a client and release its resources.
Metro does include a proprietary method for disposing a proxy. Assuming you have an AddNunber s
service:

Example 19.1.
AddNunber sPort Type port = new AddNunbersServi ce(). get AddNunbersPort ();

((java.io.C oseabl e)port).close();

280

Monitoring and Management

If you enable client monitoring itisrecommended you cl ose client proxieswhen they are no longer used.

19.2.1. Enabling and disabling Metro monitoring via sys-
tem properties

Metro has two system properties for controlling monitoring scoped to the IVM:

Example 19.2.

com sun. xm . ws. noni t ori ng. endpoi nt
com sun. xm . ws. noni toring. client

Setting either to f al se will disable all monitoring for Metro-based endpoints (i.e., web services) or
clients, respectively, inaJvM.

19.2.2. Enabling and disabling endpoint monitoring via
policy

Metro includesapolicy assertion for enabling and disabling monitoring for specific servicesand endpoints.
For an endpoint (using an AddNunber sSer vi ce asan example):

Example 19.3.

<servi ce name="AddNunber sServi ce">
<port name="AddNunbersPort" bi ndi ng="t ns: AddNurnber sPor t Bi ndi ng" >
<wsp: Pol i cy>
<sunman: ManagedSer vi ce
xm ns: sunman="http://java. sun. com xm / ns/ net r o/ managenment "
managenent ="f al se"
noni tori ng="true">
</ sunman: ManagedSer vi ce>
</wsp: Pol i cy>
</ port>
</ service>
The ManagedSer vi ce assertion is placed inside (or referenced from) the port element in the
endpoint's WSDL (if creating a service from WSDL) or in the endpoint's configuration file (if creating
aservice from Java).

This assertion is used by both Metro CM and monitoring. See Metro CM for the meaning and operation
of the managenent attribute.

Metro monitoring is turned off for the specific endpoint if the noni t or i ng attributeisset to f al se.
If the policy assertion or the noni t or i ng attribute is not present, or the moni t or i ng attribute is set
to t r ue then monitoring is turned on for that endpoint (unless endpoint monitoring is turned off for the
VM).

19.2.3. Enabling and disabling client monitoring via poli-
Cy

For aclient the Managedd i ent assertionis used:

281

Monitoring and Management

Example 19.4.
<sunman: Managedd i ent
xm ns: sunman="htt p://java. sun. com xm / ns/ net r o/ managemnment "
managenent ="f al se"
noni tori ng="true"
>
</ sunman: Managedd i ent >

Thisisplaced inside the <ser vi ce>/ <por t > element of the*. xm file corresponding to the service
referenced fromthesr c/j ava/ META- I NF/ wsi t - cl i ent . xm configuration file. (Note: the exam-
plepathtothewsi t - cl i ent. xm fileiswherethefileislocated when building using NetBeans.)

When thenoni t or i ng attribute of Managedd i ent issettot r ue then monitoring will be turned on
for that specific client (unlessthe client VM property issetto f al se).

19.3. Monitoring Identifiers

19.3.1. Endpoint Monitoring Identifiers
19.3.1.1. Default Endpoint Monitoring Identifiers

Each endpoint is given a unique monitoring identifier (also call "root name"). That identifier is made up
of (in order):

» The context path (if it isavailable).
e Thelocal part of the service name.
» Thelocal part of the port name.

For example, suppose one creates aweb application with a context path of / AddNumnber sSer vi ce and
a Metro web service is deployed under that context path with an AddNunber sSer vi ce service name
and aAddNunber sPort port name. Then the identifier will be:

Example 19.5.
/ AddNurber sSer vi ce- AddNunber sSer vi ce- AddNunber sPor t

When deploying in GlassFish an | NFOlog message is output to GlassFish'sser ver . | og filewhen the
monitoring root is created. In this example the message would be:

Example 19.6.

Metro monitoring rootname successfully set to: anx:pp=/non/server-
mon[server], t ype=WSEndpoi nt, nane=/ AddNunber sSer vi ce- AddNunber sSer vi ce-
AddNunber sPor t

Thenane partistheidentifier. Theanx: pp=. . . partreflectsthat thisMetro endpoint isfederated under
GlassFish's AMX tree. Note: when deploying in non-GlassFish containers then Metro monitoring will be
under atop-level node: com sun. netr o.

19.3.1.2. User-assigned Endpoint Monitoring ldentifiers

It is possible to give user-assigned identifiers to monitoring endpoints. Include an i d attribute in the
ManagedSer vi ce policy assertion. For example:

282

Monitoring and Management

Example 19.7.
<sunnan: ManagedSer vi ce
xm ns: sunman="http://java. sun. com xm / ns/ net r o/ managenent "
nanagenent ="f al se"
noni tori ng="true"
i d="Exanpl eServi ce"
>
</ sunman: ManagedSer vi ce>

In this case, the | NFOlog will say:

Example 19.8.

Metro monitoring rootname successfully set to: anx:pp=/non/server-
non[server], t ype=WSEndpoi nt , name=Exanpl eSer vi ce

19.3.2. Client monitoring identifiers

19.3.2.1. Default Client Monitoring ldentifiers

Each client stubisgiven aunique monitoring identifier. That identifier isthe endpoint address of the service
it will communicate with. For example, for a client of the AddNurber sSer vi ce above the identifier,
as shown in GlassFish'slog, will be:

Example 19.9.

Metro nonitoring rootnane successfully set to: anx:pp=/non/server-
non[server], type=WsC i ent, nane=http-//1 ocal host - 8080/ AddNunber sSer vi ce/
AddNunber sSer vi ce

(Notethat "' characters have been replaced with '-'. See below for more info.)
19.3.2.2. User-assigned Client Monitoring ldentifiers

To give auser-assigned identifier usethei d attribute in the Managedd i ent policy assertion.

19.3.3. Identifier Character Mapping

Some characters in aroot name are converted to the -' character. Thisis to avoid the need to quote char-
actersthat are not legal in IMX. The regular expression used to find and replace those charactersis:

Example 19.10.

AN PN NN? =],

19.3.4. Resolving Monitoring Root Name Conflicts

It is possible that two root names can be the same. This can happen when deploying web services with
the same service name and port name under different context paths in non-GlassFish containers because
the context path is not available to the naming mechanism when in other containers. This can also happen
when two different proxies are communicating with the same service.

283

Monitoring and Management

When root names clash, then the rootname has - <N> appended, where Nis a unique integer.

19.4. Available Monitoring Information

To show what monitoring information is available we will use two tools:
* JConsole [http://mwww.openjdk.org/tool /svc/jconsol e/index.html]
» Jmxterm [http://www.cyclopsgroup.org/projects/jmxterm/]

Neither of thesetoolsisofficially supported by GlassFish nor Metro. However, they areuseful for browsing
the mbeansina JVM.

Thefollowing screenshot shows one client and two services running inside the sameinstance of GlassFish.

Figure 19.1. Monitoring - One client and two services running inside the same
instance of GlassFish

Java Monitering & Management Console

Connection Window Help

e 00 pid: 48069 glassfish.jar --domain domainl indir /Applications /NetBeans / i b74a-12_02_2009/ ish/ ins /domain1l
I Overview Memory Threads Classes VM Summary — MBeans] <=
¥ [amx ibute values
» [LJ2EEDomain Name Value
> [J2EEServer Children Jjavax.management.ObjectName[2]
» [0 JDBCDataSource Name ExampleService
» [JDBCDriver Parent amx:pp=/mon, type=server-mon,name=server
addressingVersion W3C
> DBCR
EJ esource bindinglD http://schemas.xmisoap.org/wsdl/soap /http
> M container org.glassfish.webservices.JAXWSContainer@2 7cale3b
» [Servier dumpHTTPMessages false
¥ [WsClient N
¥ [/mon/server-mon(server] abular Navigation
» @ http-//localhost-8080/AddNumbersService /AddNumbersService
¥ [WSEndpoint < Composite Navigation 2/2
¥ [@ /mon/server-mon(server]
» @@ j517-PingService-PingPort features Na“;j 5 tva\ue
enabled true
v ? Bxampleservice D com.sun.xml.ws.rm.ReliableMessagingFeature

> Notifications
¥ [WSNonceManager
¥ [l /mon/server-mon|(server] /WSEnd point[/s17-PingService-PingPort]

» @ NonceManager JaxwsRuntimeVersion JAX-WS RI 2.2-hudson-752-

policy ServiceMap={} EndpointMap ={PolicyMapKey({http://fo...
¥ [WSRMSCSessionManager portName {http:/ /foo/JAddNumbersPart
¥ [l /mon/server-mon|(server] /WSEnd point[/s17-PingService-PingPort] seiMode WSDLLocation
» @ RM_SC_SessionManager serviceDefinitionimports java.lang.String[1]
¥ [/mon/server-mon|server] /WSEnd (ExampleService] seN!ceDeﬂnmnnURL ﬁ\e.IAddNumberssawlte.wsd_
» @ RM_SC_SessionManager serviceName {http:/ /foo/}AddNumbersService
= g soapVersionHttpBindingld http://schemas.xmlisoap.org/wsdl/soap /http
¥ [WSRMSequenceManager wsdIEndpointaddress REPLACE_WITH_ACTUAL URL
¥ [/mon/server-mon(server] /WSClient[http -/ /localhost-8080/AddNumbersService /AddNumbersService] wsdIPortTypeName {http:/ /foo/}AddNumbers
b @ RMSequenceManager
¥ [/mon/server-mon(server] /WSEnd point{ExampleService] s (Refresh)
» @ RMSequenceManager p S’

Metro has five mbean types:
+ WSClient
» General information for aclient.
» WSEndpoint
¢ General information for an endpoint.
* WSNonceM anager

< Nonce [http://en.wikipedia.org/wiki/Cryptographic_nonce] manager used by endpoints to prevent
replay attacks.

« Thisonly exists on the endpoint side, scoped per-endpoint.

284

http://www.openjdk.org/tools/svc/jconsole/index.html
http://www.openjdk.org/tools/svc/jconsole/index.html
http://www.cyclopsgroup.org/projects/jmxterm/
http://www.cyclopsgroup.org/projects/jmxterm/
http://en.wikipedia.org/wiki/Cryptographic_nonce
http://en.wikipedia.org/wiki/Cryptographic_nonce

Monitoring and Management

» WSRM SCSessionManager
* Manages Reliable Messaging (RM) and/or Secure Conversation (SC) sessions.
< Thisonly exists on the endpoint side, scoped per-endpoint.
* WSRM SequenceM anager
* Manages Reliable Messaging sequences.
e Thisexists on both client and endpoints sides, scoped per-stub and per-endpoint respectively.
In the screenshot thereis
 oneclient that is connected to the AddNunber sSer vi ce
e twoendpoints: a/ s17. .. serviceand an Exanpl eSer vi ce
» oneWSNonceManager associated withthe/ s17. . . service
» two WERMBCSessi onManager s, one for each of the two services
» two WSRMBequenceManager s, one associated with the client, the other with Exanpl eSer vi ce.

Using Jmxterm you can find these same mbeans (note: the output of beans show alot of beans, this has
been edited to only show Metro's mbeans):

Example 19.11.

java -jar <Jnxtermjar>

Wel come to JMX terminal. Type "hel p" for avail abl e commands.
$>open | ocal host : 8686

#Connection to | ocal host: 8686 is opened

$>beans

#domai n = anx:
anmx: nane=/ s17- Pi ngSer vi ce- Pi ngPort, pp=/ non/ server-non[server], t ype=\WSEndpoi nt

amx: nane=Exanpl eSer vi ce, pp=/ non/ server -non[server], t ype=WSEndpoi nt

amx: nane=NonceManager , pp=/ mon/ server - mon[server]/ WSEndpoi nt [/ s17- Pi ngSer vi ce-
Pi ngPort], t ype=W5NonceManager

amx: nane=RVMSequenceManager , pp=/ non/ server-non[server]/WsClient[http-//
| ocal host - 8080/ AddNunber sSer vi ce/ AddNunber sSer vi ce] , t ype=\WERMSequenceManager

amx: nane=RVBequenceManager , pp=/ non/ server - non[server]/
WSEndpoi nt [Exanpl eSer vi ce], t ype=WSRMSequenceManager

amx: nane=RM_SC_Sessi onManager, pp=/ non/ server - non[server]/ WSEndpoi nt[/s17-
Pi ngSer vi ce- Pi ngPort], t ype=WSRMSCSessi onManager

amx: nane=RM_SC_Sessi onManager, pp=/ non/ server - non[server]/
WSEndpoi nt [Exanpl eSer vi ce] , t ype=WSRMSCSessi onManager

amx: nane=htt p-//1 ocal host - 8080/ AddNunber sSer vi ce/ AddNunber sSer vi ce, pp=/ non/
server-non[server],type=WsC i ent

285

Monitoring and Management

19.4.1. WSClient Information

The following screenshot shows the top-level information available for each client:

Figure 19.2. Monitoring - top-level information available for each client

800 Java Monitoring & 1ent Console
Connection Window Help
eno pid: 48069 glassfish.jar --domain domainl indir /. icati NetBeans /glassfish-v3-b74a-12_02_. / i ins/domainl
[overview Memory Threads Classes VM Summary MBeans] ==
v O amx Attribute values
» (1] J2EEDomain Name Value
> [J2EEServer chil 'rvice/AddNumbersService], type=WSR} \ager , name=RHSeq T
» [JDBCDatasource idren € Dl >
» (11 JDBCDriver Container org.glassfish.webservices.wsClientContainer@730d6938
» (il JDBCResource Name http-/ flocalhost-8080 /AddNumbersService /AddNumbersService
» BEYM Parent amx:pp=/mon,type=server-mon,name=server
> [serviet - abular Navigation
¥ [l WsClient
¥ [@ /monj/server-mon(server] Composite Navigation
¥ @ http-//localhost-8080/AddNumbersService/AddN
> gnameToPortinfaMap Name Value
> Notifications key {http:/ /foo/}AddNumbersPort
¥ [WSEndpoint value com.sun.xml.ws.client. SEIPortinfo@2e644784
¥ @l /mon/server-mon(server]
» @ js17-PingService-PingPort
v @ ExampleService
b Attributes serviceClass class foo.AddNumbersService
» Notifications serviceName {http:/ /foo/ AddNumbersService
v [WsNonceManager wsdIDocumentLocation file: /Users fcarr/ftptmp /NBfAddNumbersClient/build fweb /WEB-INF fwsdl/localhost_8080/AddNumb. .
wsdlService com.sun.xml.ws.model.wsdl.WSDLServicelmpl@57a83d23
¥ @ /mon/server-mon(server] /WSEndpoint[/s17-PingServi
» @ NonceManager
¥ [WSRMSCSessionManager
¥ [@ /mon/server-mon(server] WSEndpoint[/s17-PingServi
» @ RM_SC_SessionManager
v @@ /mon/server-mon(server] \WSEnd point(ExampleServics
» @ RM_SC_sessionManager
¥ [WSRMSequenceManager ¥
¥ [l /mon/server-mon(server] /WSClient[http-/ /localhost-£ v (m\
> —

 Children: the WsRVMBequenceManager that is used by this client.

» Container: the container in which the client is deployed---in this case: GlassFish. Note that the actual
container object has not been instrumented with monitoring so it Java class@address is printed.

» Name: the root name given for this client.

* Parent: show the WsCl i ent under the AMX mbean.

» gnameToPortinfoMap: an internal map used by the runtime system.
* serviceClass: The SEI (service endpoint interface).

* serviceName: From the WSDL.

» wsdlDocumentL ocation: Where the WSDL used to create the client lives. (Note: when a service is
created using NetBeansit makesalocal copy of the WSDL, thereforethe exampleshowsaf i | e instead
of anht t p location.)

» wsdlService: an internal data structure that is not instrumented.

To see these attributes in jmxterm:

Example 19.12.

$>bean anx: name=http-//1 ocal host - 8080/ AddNunber sSer vi ce/
AddNunber sSer vi ce, pp=/ nmon/ server-non[server], t ype=WsC i ent

$>i nfo

286

Monitoring and Management

#cl ass nanme = WBA i ent
attributes

% - Children ([Ljavax.nanagenent. Obj ect Name;, r)
% - Container (java.lang.String, r)
% - Nane (java.lang.String, r)
%3 - Parent (javax.nanagenent. ObjectNanme, r)
%6l - gnaneToPort | nfoMap (j avax. managenent. opennbean. Tabul arData, r)
% - serviceCass (java.lang.String, r)
% - serviceNanme (java.lang.String, r)
% - wsdl Docurment Location (java.lang.String, r)
%8 - wsdl Service (java.lang. String, r)
$>get Nane

Name = http-//1ocal host-8080/ AddNurber sSer vi ce/ AddNunber sSer vi ce;

19.4.2. WSEndpoint Information

Figure 19.3. Monitoring - WSEndpoint infor mation

Java Monitoring & Management Console

Connection Window Help

800 id: 48069 glassfish.jar --domain domainl --domaindir /Applications/NetBeans/glassfish-v3-b74a-12 02_2009/glassfish/domains/domainl
[Overview Memory Threads Classes VM Summary MBeans | =g=
v @mamx ; i values Ii
¥ [1)2EEDomain Name Value
b [J2EEServer oint[ExampleService], type=WSRMSCSessiconManager, name=RM75C75esslonManager@
» [0 JDBCDataSource Children 1
» (i JDBCDriver oint[ExampleService], typ: nager, v
» [JDBCResource L _Alis
> M Name ExampleService
Parent amx:pp=/mon,type = Server-mon,name=server
» [servier addressingversion W3C
v @@ WSClient bindingID http:/ /schemas.xmisoap.org/wsdl/soap /htip
¥ [/mon/server-mon[server] container org.glassfish.webservices.JAXWSContainer@2 7cae3b
¥ @ http-//localhost-8080/AddNumbersService /AddN | || dUMPHTTPMessages false
> Attributes < Tabular Navigation
> Notifications
¥ @ WSEndpoint B . fem—"
¥ [/mon/server-mon[server] << < Composite Navigation 1/2 >
¥ @ [517-PingService-PingPort features Name Value
> Attributes - enabled true
> Notifications iD hrep: / fwww.w3.0rg/ 200508 faddressing/module
¥ @ ExampleService
-
> Notifications
¥ [WsNonceManager jaxwsRuntimeVersion JAX-WS RI 2.2-hudson-752-
¥ @ /mon/server-mon[server]/WSEndpoint[/s17-PingServi policy ServiceMap={} EndpointMap={PolicyMapKey({http:/ /foo/}AddNumbersService, {http:/ /ffoo/jAddNum...
» @ NonceManager portName {http:f /foo/}AddNumbersPort
v [WSRMSCSessionManager seiModelWsDLLocation
¥ [@ /mon/server-mon[server] /WSEndpoint[/s17-PingServi serviceDefinitionimports file:/AddMumbersService_schemal.xsd m‘
> @ RM_SC_SEssiun!\Aanagar N . : serviceDefinitionURL file:/AddNumbersService. wsd|
¥ @ fmon/server-mon(: 1 1pleServic| serviceName {http: / /foo/)AddNumbersService
b @ RM_SC_SessionManager soapVersionHttpBindingld http:/ fschemas.xmlisoap.org/wsdl/soap /http
v [l WSRMSequenceManager wsdlEndpointAddress REPLACE_WITH_ACTUAL_URL
¥ [/mon/server-mon(server]/W5Clienthttp-/ /localhost-& wsdIPortTypeName {htp:/foo/JAddNumbers
» @ RMSequenceManager B pr—
= PN i 0 Refresh

 Children: in this example there are two other mbeans associated with the example service.
 addressingVersion: generally thiswill be WBC unless explicitly using a different version of addressing.
 bindinglD: the namespace for the type of binding used for the service.

* dumpHTTPMessages. when set to t r ue then HTTP messages received and sent by this service are
"dumped" into the log file. It is possible to dynamically set this value. Just click on the value, typein
the value and hit return using JConsole. In jmxterm:

Example 19.13.

$>bean anx: nanme=Exanpl eSer vi ce, pp=/ non/ server - non[server], t ype=WSEndpoi nt

287

Monitoring and Management

$>set dunpHTTPMessages true

« features: the "features' (see the Jakarta XML Web Services specification) used in this endpoint. Using
jmxterm (assuming the bean has been set as in dump above;

Example 19.14.

$>get features
features = [{
enabl ed = true;
iD= http://ww. w3. org/ 2005/ 08/ addr essi ng/ nodul e;

HoA
enabl ed = true;
iD= comsun.xm .ws.rm Rel i abl eMessagi ngFeat ur e;

Pl

 jaxwsRuntimeVersion: the version of the Jakarta X ML Web Services specification which isimplement-
ed by Metro.

 policy: A representation of the policy used by the endpoint. The entire policy is more easily viewed
using jmxterm: $>get pol i cy. Note: the format of the policy output can and will change.

» portName: The WSDL port name.

» seiModelWSDL L ocation: not currently supported.

* serviceDefinitionlmports: alist of any of filesimported by the main WSDL file for this service.
* serviceDefinitionURL: the service's WSDL.

* serviceName: The WSDL service name.

 soapVersionHttpBindingld: The namespace of the HTTP binding.

 wsdlEndpointAddress:. thisgenerally will not contain the real addresssinceit dependson aclient calling
the service to exist and the value is taken before that happens.

» wsdlPortTypeName: The WSDL port type.

19.4.3. WSNonceManager Information

This allows one to examine the contents of a nonce manager of a specific service. Using jmxterm:

Example 19.15.

$>bean anx: name=NonceManager, pp=/ non/ server - non[server]/ WSEndpoi nt[/s17-
Pi ngSer vi ce- Pi ngPort], t ype=WsNonceManager

$>get NonceCache

NonceCache = {
maxNonceAge = 900000;
nonceCache = {
(F2j z9Mkcl 9CGcshk1KOsnDPhC) = {

288

Monitoring and Management

key = F2j z9Mcl 9Gcshk1KOsnDPhC;
val ue = 2009-12-03T22: 21: 39Z;
I
I
ol dNonceCache = {

I

schedul ed = true;
wasCancel ed = fal se;

b
19.4.4. WSRMSCSessionManager Information

Examine reliable messaging and secure conversation keys and sessions for a specific service. Using jmx-
term:

Example 19.16.

$>bean anx: name=RM SC_Sessi onManager , pp=/ non/ server - non[server]/
WSEndpoi nt [Exanpl eSer vi ce] , t ype=WSRMSCSessi onManager

$>get keys

keys = [uui d: 8593ceab- 9328- 41f e- 986a- abf 0745¢c4470, uui d: 0987f a78-
cd7d-4clc-9ec2- e849b7f 68881 | ;

$>get sessions

sessions = [{
creationTinme = 1259879310907;
| ast AccessedTi ne = 1259879310907;
securitylnfo = {
creationTine = null;
expirationTime = null;
externalld = null;
identifier = null;
i ssuedTokenCont ext = nul | ;
secret = null;
b
sessi onKey = uui d: 8593ceab- 9328- 41f e- 986a- abf 0745¢c4470;
oA
creationTine = 1259866808000;
| ast AccessedTi ne = 1259866808000;
securitylnfo = {
creationTine = null;
expirationTime = null;
externalld = null;
identifier = null;
i ssuedTokenCont ext = nul | ;
secret = null;
b
sessi onKey = uui d: 0987f a78-cd7d- 4clc- 9ec2- e849h7f 68881;
P

289

Monitoring and Management

19.4.5. WSRMSequenceManager Information

Figure 19.4. Monitoring - WSRM SequenceM anager | nfor mation

Java Monitering & Management Conscle

Connection Window Help

800 pid: 48069 ish.jar --d in domainl indir /. icati i 3-b74a-12_02_. f sfish ins/domainl
[Overview Memory Threads Classes VM Summary - MBeans] ==
» Notifications ibute value
v @l WSEndpoint Name Value
¥ [l /mon/server-mon[server] Children Jjavax.management.ObjectName([0]
¥ @ /s17-PingService-PingPort Name RMSequenceManager
» Attributes Parent amx:pp=/mon/server-mon[server],type=WSEnd E vice
¥ Notifications < Tabular Navigation 1/2 (>
¥ @ ExampleService
b Auributes

Composite Navigation
> Notifications

¥ [0 WiNonceManager

boundSequences Name Value
¥ [/mon/server-mon[server] /WSEndpaint{/s17-PingService- key uuid:-8593ceab-9328-41fe-986a-abf0745c4470
¥ @ NonceManager value uuid:d34c4lca-4606-4f6c-8c62-51219872caed
b Atributes

» Notifications
v [l WSRMSCSessionManager

¥ @ /mon/server-mon[server]/WSEndpoint{/s17 -PingService- concurrentlyOpenedinbound... 1
v @ RM_SC_SessionManager ~|||persistent false
» Anribures < Tabular Navigation 1/2 [>

b Notifications
¥ [l /mon/server-mon[server]/WSEndpoint[ExampleService]
¥ @ RM_SC_SessionManager
b Attributes

Composite Navigation

sequences Name value
¥ Notifications key uuid:8593ceab-9328-4 1fe-986a-abf0745c4470
v [WSRMSequenceManager value Sequence
¥ [/mon/server-mon[server]/WsClient[http-/ /localhost-808(
v @ RMSequenceManager
> Attributes
¥ Notifications uniqueEnd pointid {http:/ /foo/}AddNumbersService::{http:/ /foo/ }Add NumbersPort
¥ [l /mon/server-mon[server]/WSEndpoint[ExampleService]
¥ @ RMSequenceManager
> Y
» Notifications [l (Refresh)

e s

 boundSequences: generally aninbound sequence will be bound to an outbound sequence so that requests
and replies are reliable. This table gives the sequence identifiers for those pairs.

« concurrentlyOpenedinbound: the number of inbound sequences opened.
» persistent: true if using Metro's persistent reliable messaging.

 sequences. amap from a sequence identifier to information on that sequence. In jmxterm:

Example 19.17.

$>bean anx: nane=RMSequenceManager, pp=/ non/ server - non[server]/
WSEndpoi nt [Exanpl eSer vi ce], t ype=WSRMSequenceManager

$>get sequences

sequences = {

(uui d: 5145dede- 618b- 4da3- 9004- ¢715770934d2) = {
key = uui d: 5145de4e- 618b-4da3-9004-c715770934d2;
val ue = {

ackRequested = fal se;
boundSecurityTokenReferenceld = nul | ;

cl osed = fal se;

expired = fal se;

hasUnacknow edgedMessages = true;

i d = uui d: 5145dede- 618b- 4da3- 9004- c715770934d2;
last ActivityTime = 1259880084724;

| ast MessageNunber = 1;

state = CREATED;

290

Monitoring and Management

s
s
(" uui d: d16b0f b9- 7e80- 4598- a3e2- 789c9bac9474) = {
key = uui d: d16b0f b9- 7e80- 4598- a3e2- 789c9bac9474;
value = {
ackRequest ed = fal se;
boundSecurityTokenRef erenceld = nul | ;
closed = fal se;
expired = fal se;
hasUnacknowl edgedMessages = fal se;
i d = uui d: d16b0f b9- 7e80- 4598- a3e2- 789c9bac9474;
last ActivityTime = 1259880084724,
| ast MessageNunber = 1;
state = CREATED;
s
s
s

* uniqueEndpointld: Anidentifier used by the reliable messaging implementation. Note: thisisnot related
to client and endpoint root name identifiers

19.5. Notes

The AMX mbean is created lazily. Therefore, if one deploys an endpoint in GlassFish and then looks for
the Metro WSEndpoi nt mbeans using JConsole there are times where the AM X mbean does not appear.
To activate it start up the asadmin GUI or CLI. Or use jmxterm and issueitsdormai ns command.

In some cases Metro endpoint mbeans will not appear until the endpoint receivesitsfirst client invocation.

WSCl i ent mbeans can appear and disappear quickly if the stub is just used for one call then closed
immediately. A stub that usesreliable messaging or secure conversation generally staysactive longer since
it will most likely be used for multiple calls.

291

Chapter 20. Further Information

Table of Contents

20.1. LinkS t0 MOre iNfOrMEIONcvuieieieiei e e e e e e e et e et e aeans 292

20.1. Links to more information

For more information on Metro, visit the Metro web site at https:.//eclipse-eedj.github.io/metro-wsit/ . On
that site, you will find information about the specifications implemented in Metro product, source code,
support information, links to documentation updates, and much more.

Some other sources that contain blogs and/or screencasts about using Metro include the following:
» Sun Metro Bloggers:

http://planets.sun.com/webservices [http://planets.sun.com/webservices]
» Metro: An Overview: (of the WSIT portion of Metro)

https://eclipse-eedj.github.io/metro-wsit/docs/tango-overview.pdf [https://eclipse-eed].github.io/
metro-wsit/docs/tango-overview.pdf]

» Web Services blog:
https://bl ogs.oracle.com/arungupta/webservices-3 [https://bl ogs.oracl e.com/arungupta/webservices-3]
» Manual Web Service Configuration Starting From Java Case (and others):

https://bl ogs.oracle.com/japod/manual -web-service-configuration-in-from-java-case [https://
bl ogs.oracle.com/japod/manual -web-service-configuration-in-from-java-case]

» Develop WSTrust Application Using NetBeans (and others):
http://bl ogs.sun.com/shyamrao/ [http://blogs.sun.com/shyamrao/]
 Security in Metro (and others):
http://blogs.sun.com/ashutosh/ [http://blogs.sun.com/ashutosh/]
* Metro Screencasts:

https://eclipse-eed].github.io/metro-wsit/discover/screencasts.html [https://eclipse-eedj.github.io/
metro-wsit/discover/screencasts.htmi]

» WS-* Specifications Implemented by Metro:

https://eclipse-eedj.github.io/metro-wsit/specification-links.html [https://eclipse-eedj.github.io/metro-
wsit/specification-links.html]

292

https://eclipse-ee4j.github.io/metro-wsit/
http://planets.sun.com/webservices/
http://planets.sun.com/webservices/
https://eclipse-ee4j.github.io/metro-wsit/docs/tango-overview.pdf
https://eclipse-ee4j.github.io/metro-wsit/docs/tango-overview.pdf
https://eclipse-ee4j.github.io/metro-wsit/docs/tango-overview.pdf
https://blogs.oracle.com/arungupta/webservices-3
https://blogs.oracle.com/arungupta/webservices-3
https://blogs.oracle.com/japod/manual-web-service-configuration-in-from-java-case
https://blogs.oracle.com/japod/manual-web-service-configuration-in-from-java-case
https://blogs.oracle.com/japod/manual-web-service-configuration-in-from-java-case
http://blogs.sun.com/shyamrao/
http://blogs.sun.com/shyamrao/
http://blogs.sun.com/ashutosh/
http://blogs.sun.com/ashutosh/
https://eclipse-ee4j.github.io/metro-wsit/discover/screencasts.html
https://eclipse-ee4j.github.io/metro-wsit/discover/screencasts.html
https://eclipse-ee4j.github.io/metro-wsit/discover/screencasts.html
https://eclipse-ee4j.github.io/metro-wsit/specification-links.html
https://eclipse-ee4j.github.io/metro-wsit/specification-links.html
https://eclipse-ee4j.github.io/metro-wsit/specification-links.html

	Metro User Guide
	Table of Contents
	Preface
	Chapter 1. Introduction to Metro
	1.1. Required Software
	1.2. What is WSIT?
	1.2.1. Bootstrapping and Configuration
	1.2.2. Message Optimization Technology
	1.2.3. Reliable Messaging Technology
	1.2.4. Security Technology

	1.3. How Metro Relates to .NET Windows Communication Foundation (WCF)
	1.4. Metro Specifications
	1.4.1. Bootstrapping and Configuration Specifications
	1.4.2. Message Optimization Specifications
	1.4.3. Reliable Messaging Specifications
	1.4.4. Security Specifications

	1.5. How the Metro Technologies Work
	1.5.1. How Message Optimization Works
	1.5.2. How Reliable Messaging Works
	1.5.3. How Security Works
	1.5.3.1. How Security Policy Works
	1.5.3.2. How Trust Works
	1.5.3.3. How Secure Conversation Works

	Chapter 2. Using Metro
	2.1. Metro Tools
	2.1.1. Useful tools for your toolbox

	2.2. Using Mavenized Metro Binaries
	2.2.1. Using Metro in a Maven project
	2.2.1.1. Using Metro Tools from Maven

	2.2.2. Using Metro in a non-Maven project

	2.3. Developing with NetBeans
	2.3.1. Registering GlassFish with the IDE
	2.3.2. Creating a Web Service
	2.3.3. Configuring Metro's WSIT Features in the Web Service
	2.3.4. Deploying and Testing a Web Service
	2.3.5. Creating a Client to Consume a WSIT-Enabled Web Service

	2.4. Developing with Eclipse
	2.4.1. Setup
	2.4.2. Create a Metro Web Services Endpoint
	2.4.3. Creating Web Service Client using Wsimport CLI
	2.4.4. Creating Web Service Client using Wsimport Ant Task
	2.4.5. Creating Web Service Client using SOAP UI Plugin

	2.5. Logging
	2.5.1. Dynamic tube-based message logging
	2.5.1.1. Examples

	2.5.2. Dumping SOAP messages on client
	2.5.2.1. Transport level dump
	2.5.2.2. Transport-agnostic dump

	2.5.3. Dumping SOAP messages on server

	2.6. Using Eclipse implementation of Jakarta XML Web Services / Metro with Java SE
	2.6.1. Using Eclipse implementation of Jakarta XML Web Services with Java SE
	2.6.1.1. Endorsed directory

	2.6.2. Using Metro with Java SE
	2.6.2.1. Tomcat
	2.6.2.2. GlassFish
	2.6.2.3. Stand-alone applications

	2.7. Deploying Metro endpoint
	2.7.1. The WAR Contents
	2.7.2. Using sun-jaxws.xml
	2.7.2.1. The web.xml File

	2.8. Handlers and MessageContext
	2.8.1. Efficient Handlers in Metro

	2.9. Deploying Metro with ...
	2.9.1. WebLogic 12
	2.9.1.1. Known Issues

	2.10. Developing client application with locally packaged WSDL
	2.10.1. Service API to pass the WSDL information
	2.10.2. Xml Catalog
	2.10.3. Using -wsdlLocation switch

	2.11. How to invoke and endpoint by overriding endpoint address in the WSDL
	2.11.1. BindingProvider.ENDPOINT_ADDRESS_PROPERTY
	2.11.2. Create Service using updated WSDL

	2.12. Maintaining State in Web Services
	2.13. FastInfoset
	2.13.1. Using FastInfoset

	2.14. High Availability Support in Metro

	Chapter 3. Compiling WSDL
	3.1. Compiling multiple WSDLs that share a common schema
	3.2. Dealing with schemas that are not referenced
	3.3. Customizing XML Schema binding
	3.3.1. How to get simple and better typed binding

	3.4. Generating Javadocs from WSDL documentation
	3.5. Passing Java Compiler options to Wsimport

	Chapter 4. SOAP
	4.1. SOAP headers
	4.1.1. Adding SOAP headers when sending requests
	4.1.2. Accessing SOAP headers for incoming messages
	4.1.3. Adding SOAP headers when sending replies
	4.1.4. Mapping additional WSDL headers to method parameters

	4.2. Schema Validation
	4.2.1. Server Side Schema Validation
	4.2.2. Client Side Schema Validation

	Chapter 5. HTTP
	5.1. HTTP headers
	5.1.1. Sending HTTP headers on request
	5.1.2. Accessing HTTP headers of the response

	5.2. HTTP compression
	5.3. HTTP cookies
	5.3.1. Enabling cookie support
	5.3.2. Accessing HTTP cookies in the response
	5.3.3. Accessing HTTP cookies on the server

	5.4. HTTP client streaming support
	5.5. Access HTTP headers in a Handler
	5.5.1. From Client side handler
	5.5.2. From Server side handler

	5.6. HTTP Timeouts
	5.7. HTTP Persistent Connections (keep-alive)
	5.8. HTTPS HostnameVerifier
	5.9. HTTPS SSLSocketFactory
	5.10. HTTP address in soap:address and import locations

	Chapter 6. Processing Large Data
	6.1. Receiving large SOAP requests
	6.1.1. Provider<Message>

	6.2. Binary Attachments (MTOM)
	6.2.1. MTOM
	6.2.1.1. What is MTOM?
	6.2.1.2. xmime:expectedContentType to Java type mapping
	6.2.1.3. xmime:contentType attribute

	6.2.2. Enabling MTOM on server
	6.2.3. Enabling MTOM on client
	6.2.4. MTOM threshold
	6.2.5. .NET interoperability
	6.2.5.1. Using Metro distribution
	6.2.5.2. Using Eclipse Implementation of Jakarta XML Web Services distribution
	6.2.5.2.1. JAX-WS RI endpoint and .NET client
	6.2.5.2.2. Eclipse Implementation of Jakarta XML Web Services client and .NET endpoint

	6.3. Large Attachments
	6.3.1. Client Side
	6.3.2. Server Side
	6.3.3. Configuration
	6.3.4. Large Attachments Summary

	Chapter 7. Bootstrapping and Configuration
	7.1. What is a Server-Side Endpoint?
	7.2. Creating a Client from WSDL
	7.3. Client From WSDL Examples

	Chapter 8. Message Optimization
	8.1. Creating a MTOM Web Service
	8.2. Configuring Message Optimization in a Web Service
	8.3. Deploying and Testing a Web Service with Message Optimization Enabled
	8.4. Creating a Client to Consume a Message Optimization-enabled Web Service
	8.5. Message Optimization and Secure Conversation

	Chapter 9. SOAP/TCP Web Service transport
	9.1. What is SOAP/TCP?
	9.2. Creating a SOAP/TCP enabled Web Service
	9.3. Configuring Web Service to be able to operate over SOAP/TCP transport
	9.4. Deploying and Testing a Web Service with SOAP/TCP Transport Enabled
	9.5. Creating a Client to Consume a SOAP/TCP-enabled Web Service
	9.6. Configuring Web Service client to operate over SOAP/TCP transport

	Chapter 10. Using Reliable Messaging
	10.1. Introduction to Reliable Messaging
	10.2. Configuring Web Service Endpoint
	10.3. Configuring Web Service Client
	10.4. Configurable features summary
	10.5. Creating Web Service Providers and Clients that use Reliable Messaging
	10.6. Using Secure Conversation With Reliable Messaging
	10.7. High Availability Support in Reliable Messaging

	Chapter 11. WS-MakeConnection support
	11.1. Introduction to WS-MakeConnection
	11.2. Configuring Web Service Endpoint
	11.2.1. Configuration via an WS-Policy expression
	11.2.2. Configuration via a Java annotation

	11.3. Configuring Web Service Client

	Chapter 12. Using WSIT Security
	12.1. Configuring Security Using NetBeans IDE
	12.2. Summary of Configuration Requirements
	12.2.1. Summary of Service-Side Configuration Requirements
	12.2.2. Summary of Client-Side Configuration Requirements
	12.2.2.1. Configuring Username Authentication on the Client
	12.2.2.2. Example SAML Callback Handlers

	12.3. Security Mechanisms
	12.3.1. Username Authentication with Symmetric Key
	12.3.2. Username Authentication with Password Derived Keys
	12.3.3. Mutual Certificates Security
	12.3.4. Symmetric Binding with Kerberos Tokens
	12.3.5. Transport Security (SSL)
	12.3.5.1. Transport Security (SSL) Workaround

	12.3.6. Message Authentication over SSL
	12.3.7. SAML Authorization over SSL
	12.3.8. Endorsing Certificate
	12.3.9. SAML Sender Vouches with Certificates
	12.3.10. SAML Holder of Key
	12.3.11. STS Issued Token
	12.3.12. STS Issued Token with Service Certificate
	12.3.13. STS Issued Endorsing Token

	12.4. Configuring SSL and Authorized Users
	12.4.1. Configuring SSL For Your Applications
	12.4.2. Adding Users to GlassFish

	12.5. Configuring Keystores and Truststores
	12.5.1. Specifying Aliases with the Updated Stores
	12.5.2. Configuring the Keystore and Truststore
	12.5.3. Configuring Validators

	12.6. Configuring Kerberos for GlassFish and Tomcat
	12.6.1. For GlassFish
	12.6.2. For Tomcat

	12.7. Securing Operations and Messages
	12.7.1. Supporting Token Options

	12.8. Configuring A Secure Token Service (STS)
	12.9. Example Applications
	12.9.1. Example: Username Authentication with Symmetric Key (UA)
	12.9.2. Example: Username with Digest Passwords
	12.9.3. Example: Mutual Certificates Security (MCS)
	12.9.4. Example: Transport Security (SSL)
	12.9.5. Example: SAML Authorization over SSL (SA)
	12.9.6. Example: SAML Sender Vouches with Certificates (SV)
	12.9.7. Example: STS Issued Token (STS)
	12.9.8. Example: Broker Trust STS (BT)
	12.9.9. Example: STS Issued Token With SecureConversation (STS+SC)
	12.9.10. Example: Kerberos Token (Kerb)

	Chapter 13. WSIT Security Features: Advanced: Topics
	13.1. Using Security Mechanisms
	13.2. Understanding WSIT Configuration Files
	13.2.1. Service-Side WSIT Configuration Files
	13.2.2. Client-Side WSIT Configuration Files

	13.3. Security Mechanism Configuration Options
	13.4. Building custom STS
	13.4.1. Handling Claims with Metro STS

	13.5. Handling Token and Key Requirements at Run Time
	13.6. Advanced Usages of STS in Security
	13.6.1. Token Caching and Sharing
	13.6.2. ActAs and Identity Delegation

	Chapter 14. WSIT Example Using a Web Container Without NetBeans IDE
	14.1. Environment Configuration Settings
	14.1.1. Setting the Web Container Listener Port
	14.1.2. Setting the Web Container Home Directory

	14.2. WSIT Configuration and WS-Policy Assertions
	14.3. Creating a Web Service without NetBeans
	14.3.1. Creating a Web Service From Java
	14.3.1.1. Web Service Implementation Java File
	14.3.1.2. wsit-package.service.xml File

	14.3.2. Creating a Web Service From WSDL
	14.3.2.1. WSDL File
	14.3.2.2. Web Service Implementation File

	14.4. Building and Deploying the Web Service
	14.4.1. Building and Deploying a Web Service Created From Java
	14.4.2. Building and Deploying a Web Service Created From WSDL
	14.4.3. Deploying the Web Service to a Web Container
	14.4.3.1. Deploying to GlassFish
	14.4.3.2. Deploying to Apache Tomcat

	14.4.4. Verifying Deployment

	14.5. Creating a Web Service Client
	14.5.1. Creating a Client from Java
	14.5.1.1. Client Java File (fromjava)
	14.5.1.2. Client Configuration File (fromjava)

	14.5.2. Creating a Client from WSDL
	14.5.2.1. Client Java File (fromwsdl)
	14.5.2.2. Client Configuration File (fromwsdl)

	14.6. Building and Deploying a Client
	14.7. Running a Web Service Client
	14.8. Undeploying a Web Service

	Chapter 15. Accessing Metro Services Using WCF Clients
	15.1. Creating a WCF Client
	15.1.1. Prerequisites to Creating the WCF Client
	15.1.2. Examining the Client Class
	15.1.3. Building and Running the Client
	15.1.3.1. Generating the Proxy Class and Configuration File
	15.1.3.1.1. To Build the AddNumbers Client
	15.1.3.1.2. To Customize the build.bat File
	15.1.3.1.3. To Run the AddNumbers Client

	Chapter 16. Data Contracts
	16.1. Web Service - Start from Java
	16.1.1. Data Types
	16.1.1.1. Primitives and Wrappers
	16.1.1.2. BigDecimal Type
	16.1.1.3. java.net.URI Type
	16.1.1.4. Duration
	16.1.1.5. Binary Types
	16.1.1.6. XMLGregorianCalendar Type
	16.1.1.7. UUID Type
	16.1.1.8. Typed Variables
	16.1.1.9. Collections Types
	16.1.1.9.1. List of Nillable Elements
	16.1.1.9.2. List of Optional Elements
	16.1.1.9.3. List of Values

	16.1.1.10. Array Types

	16.1.2. Fields and Properties
	16.1.2.1. @XmlElement Annotation
	16.1.2.2. @XmlAttribute Annotation
	16.1.2.3. @XmlElementRefs Annotation

	16.1.3. Java Classes
	16.1.3.1. @XmlType Annotation - Anonymous Type
	16.1.3.2. @XmlType Annotation - xs:all
	16.1.3.3. @XmlType Annotation - Simple Content

	16.1.4. Open Content
	16.1.5. Enum Type
	16.1.6. Package-level Annotations
	16.1.6.1. @XmlSchema Annotation
	16.1.6.2. Not Recommended Annotations

	16.2. Web Service - Start from WSDL
	16.3. Customizations for WCF Service WSDL
	16.3.1. generateElementProperty Attribute
	16.3.1.1. Default Binding
	16.3.1.2. Customized Binding
	16.3.1.3. mapSimpleTypeDef Attribute

	16.4. Developing a Microsoft .NET Client
	16.5. BP 1.1 Conformance

	Chapter 17. Using Atomic Transactions
	17.1. Using Web Services Atomic Transactions
	17.1.1. Overview of Web Services Atomic Transactions
	17.1.2. Enabling Web Services Atomic Transactions on Web Service Endpoint
	17.1.2.1. Using the @Transactional Annotation in Your JWS File
	17.1.2.1.1. Example: Using @Transactional Annotation on a Web Service Class
	17.1.2.1.2. Example: Using @Transactional Annotation on a Web Service Method
	17.1.2.1.3. Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

	17.1.2.2. Enabling Web Services Atomic Transactions Starting From WSDL

	17.1.3. Enabling Web Services Atomic Transactions on Web Service Clients
	17.1.3.1. Using @Transactional Annotation with the @WebServiceRef Annotation
	17.1.3.2. Passing the TransactionalFeature to the Client

	17.1.4. System Level Configuration
	17.1.5. Compatibility

	17.2. About the basicWSTX Example
	17.3. Building, Deploying and Running the basicWSTX Example

	Chapter 18. Managing Policies
	18.1. Managing Policies
	18.1.1. Introduction
	18.1.2. Policy References
	18.1.3. WSDL Import
	18.1.4. External Policy References

	Chapter 19. Monitoring and Management
	19.1. Introduction to Metro JMX Monitoring
	19.2. Enabling and Disabling Monitoring
	19.2.1. Enabling and disabling Metro monitoring via system properties
	19.2.2. Enabling and disabling endpoint monitoring via policy
	19.2.3. Enabling and disabling client monitoring via policy

	19.3. Monitoring Identifiers
	19.3.1. Endpoint Monitoring Identifiers
	19.3.1.1. Default Endpoint Monitoring Identifiers
	19.3.1.2. User-assigned Endpoint Monitoring Identifiers

	19.3.2. Client monitoring identifiers
	19.3.2.1. Default Client Monitoring Identifiers
	19.3.2.2. User-assigned Client Monitoring Identifiers

	19.3.3. Identifier Character Mapping
	19.3.4. Resolving Monitoring Root Name Conflicts

	19.4. Available Monitoring Information
	19.4.1. WSClient Information
	19.4.2. WSEndpoint Information
	19.4.3. WSNonceManager Information
	19.4.4. WSRMSCSessionManager Information
	19.4.5. WSRMSequenceManager Information

	19.5. Notes

	Chapter 20. Further Information
	20.1. Links to more information

