
The Golo Programming Language
Julien Ponge

The Golo Programming Language
Julien Ponge

iii

Table of Contents
 ... vi
1. Basics ... 1

1.1. Editor / IDE support ... 1
1.2. Hello world ... 1
1.3. Running "Hello world" .. 1
1.4. Compiling Golo source code .. 3
1.5. Running compiled Golo code .. 3
1.6. Passing JVM-specific flags .. 3
1.7. Bash autocompletion .. 3
1.8. Zsh autocompletion .. 4
1.9. Comments ... 4
1.10. Variable and constant references ... 4
1.11. Data literals ... 5
1.12. Collection literals .. 5

1.12.1. A note on tuples .. 6
1.12.2. A note on maps ... 6

1.13. Operators ... 7
1.14. Calling a method .. 8
1.15. Java / JVM arrays ... 8

2. Creating new project(s) ... 10
2.1. Free-form project .. 10
2.2. Maven-driven project ... 10
2.3. Gradle-driven project .. 11

3. Functions .. 12
3.1. Parameter-less functions ... 12
3.2. Functions with parameters ... 12
3.3. Variable-arity functions .. 12
3.4. Functions from other modules and imports ... 13
3.5. Local functions ... 14
3.6. Module-level state .. 15

4. Java interoperability .. 16
4.1. Main function Java compliance ... 16
4.2. Calling static methods .. 16
4.3. Calling instance methods ... 16
4.4. null-safe instance method invocations .. 17
4.5. Creating objects .. 17
4.6. Static fields ... 18
4.7. Instance fields ... 18
4.8. Inner classes and enumerations .. 19
4.9. Clashes with Golo operators and escaping .. 20
4.10. Golo class loader .. 20

5. Control flow ... 22
5.1. Conditional branching .. 22
5.2. case branching ... 22
5.3. match statements .. 23
5.4. while loops .. 23
5.5. for loops .. 23

The Golo Programming Language

iv

5.6. foreach loops .. 24
5.7. break and continue .. 24
5.8. Why no value from most control flow constructions? ... 25

6. Exceptions .. 26
6.1. Raising exceptions .. 26
6.2. Raising specialized exceptions ... 26
6.3. Exception handling ... 26

7. Closures ... 28
7.1. Defining and using a closure ... 28
7.2. Compact closures .. 28
7.3. Calling closures .. 28
7.4. Limitations .. 29
7.5. Closures to single-method interfaces ... 29
7.6. Direct closure passing works ... 30
7.7. Conversion to single-method interfaces ... 30
7.8. Getting a reference to a closure / Golo function .. 30
7.9. Binding and composing .. 31
7.10. Calling functions that return functions ... 32

8. Predefined functions .. 33
8.1. Console output .. 33
8.2. Console input .. 33
8.3. Exceptions ... 33
8.4. Preconditions ... 33
8.5. Arrays (deprecated) .. 34
8.6. Ranges ... 34
8.7. Closures .. 35
8.8. File I/O ... 35
8.9. Array types ... 36
8.10. Misc. ... 36

9. Class augmentations .. 37
9.1. Wrapping a string with a function ... 37
9.2. Augmenting classes .. 37
9.3. Augmentation scopes, reusable augmentations .. 38
9.4. Standard augmentations .. 39

10. Structs .. 40
10.1. Definition .. 40
10.2. JVM existence .. 40
10.3. toString() behavior ... 40
10.4. Immutable structs ... 41
10.5. Copying ... 41
10.6. equals() and hashCode() semantics ... 41
10.7. Helper methods ... 42
10.8. Private members ... 43
10.9. Augmenting structs ... 43

11. Dynamic objects .. 45
11.1. Creating dynamic objects ... 45
11.2. Defining values ... 45
11.3. Defining methods ... 46
11.4. Querying the properties .. 47

The Golo Programming Language

v

11.5. Defining a fallback behavior .. 47
12. Adapters ... 48

12.1. A simple example ... 48
12.2. Implementing interfaces ... 49
12.3. Overrides ... 49
12.4. Star implementations and overrides ... 49
12.5. Misc. ... 50

13. Dynamic code evaluation .. 51
13.1. Loading a module ... 51
13.2. Anonymous modules .. 51
13.3. Functions ... 51
13.4. Running code .. 52

14. Concurrency with workers .. 53
14.1. The big picture ... 53
14.2. Worker environments ... 53
14.3. Spawning a worker and passing messages ... 54
14.4. A complete and useless example ... 54

15. Golo template engine .. 56
15.1. Example .. 56
15.2. Directives .. 56

16. Documenting Golo code .. 58
16.1. Documentation blocks .. 58
16.2. Rendering documentation ... 58
16.3. Alignment ... 58

17. Misc. modules .. 60
17.1. JSON support (gololang.JSON) .. 60
17.2. Scala-like dynamic variable (gololang.DynamicVariable) .. 60
17.3. Observable references (gololang.Observable) ... 61

18. Common pitfalls .. 62
18.1. new .. 62
18.2. Imports .. 62
18.3. Method invocations .. 62
18.4. match is not a closure .. 63

vi

This is the documentation for the Golo programming language.

Copyright and License Notice.

Copyright 2012-2014 Institut National des Sciences Appliquées de Lyon (INSA-Lyon)

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1

Chapter 1. Basics
Let us start with the Golo basics.

1.1. Editor / IDE support
Editor and IDE support for Golo is available for:

• Vim [https://github.com/jponge/vim-golo]

• Sublime Text 2 [https://github.com/k33g/sublime-golo]

• IntelliJ IDEA (syntax highthing) [https://github.com/k33g/golo-storm]

• Eclipse [https://github.com/golo-lang/gldt] (contributed by Jeff Maury)

• Netbeans [https://github.com/golo-lang/golo-netbeans] (contributed by Serli [http://
www.serli.com/])

1.2. Hello world
Golo source code need to be placed in modules. Module names are separated with dots, as in:

Foo
foo.Bar
foo.bar.Baz
(...)

It is suggested yet not enforced that the first elements in a module name are in lowercase, and that the
last one have an uppercase first letter.

A Golo module can be executable if it has a function named main and that takes an argument for the
JVM program arguments:

module hello.World

function main = |args| {
 println("Hello world!")
}

println is a predefined function that outputs a value to the standard console. As you can easily guess,
here we output Hello, world! and that is an awesome achievement.

Newlines are important in Golo, so make sure that your editor ends files with a newline.

1.3. Running "Hello world"
Of course, we need to run this incredibly complex application.

https://github.com/jponge/vim-golo
https://github.com/jponge/vim-golo
https://github.com/k33g/sublime-golo
https://github.com/k33g/sublime-golo
https://github.com/k33g/golo-storm
https://github.com/k33g/golo-storm
https://github.com/golo-lang/gldt
https://github.com/golo-lang/gldt
https://github.com/golo-lang/golo-netbeans
https://github.com/golo-lang/golo-netbeans
http://www.serli.com/
http://www.serli.com/
http://www.serli.com/

Basics

2

Golo comes with a golo script found in the distribution bin/ folder. It provides several commands,
notably:

• version to query the Golo version, and

• compile to compile some Golo code to JVM classes, and

• run to execute some already compiled Golo code, and

• golo to directly execute Golo code from source files, and

• diagnose to print compiler internal diagnosis information, and

• doc to generate module(s) documentation, and

• new to generate new project(s).

The complete commands usage instructions can be listed by running golo --help.

The golo script comes with JVM tuning settings that may not be appropriate to your
environment. We also provide a vanilla-golo script with no tuning. You may use the
$JAVA_OPTS environment variable to provide custom JVM tuning to vanilla-golo.

Provided that golo is available from your current $PATH, you may run the program above as follows:

$ golo golo --files samples/helloworld.golo
Hello world!
$

golo golo takes several Golo source files as input. It expects the last one to have a main function to
call. The Golo code is compiled on the fly and executed straight into a JVM.

You may also pass arguments to the main function by appending --args on the command line
invocation. Suppose that we have a module EchoArgs as follows:

module EchoArgs

function main = |args| {
 foreach arg in args {
 println("-> " + arg)
 }
}

We may invoke it as follows:

$ golo golo --files samples/echo-args.golo --args plop da plop
-> plop
-> da
-> plop
$

Note that args is expected to be an array.

Finally, the --classpath flag allows to specify a list of classpath elements, which can be either
directories or .jar files. See the golo help command for details on the various Golo commands.

Basics

3

1.4. Compiling Golo source code
Golo comes with a compiler that generates JVM bytecode in .class files. We will give more details
in the chapter on interoperability with Java.

Compiling Golo files is straightforward:

$ golo compile --output classes samples/helloworld.golo
$

This compiles the code found in samples/helloworld.golo and outputs the generated classes to a
classes folder (it will be created if needed):

$ tree classes/
classes/
hello
 ### World.class

1 directory, 1 file
$

1.5. Running compiled Golo code
Golo provides a golo command for running compiled Golo code:

$ cd classes
$ golo run --module hello.World
Hello world!
$

Simple, isn’t it?

1.6. Passing JVM-specific flags
Both golo and run commands can be given JVM-specific flags using the JAVA_OPTS environment
variable.

As an example, the following runs fibonacci.golo and prints JIT compilation along the way:

Exporting an environment variable
$ export JAVA_OPTS=-XX:+PrintCompilation
$ golo golo --files samples/fibonacci.golo

...or you may use this one-liner
$ JAVA_OPTS=-XX:+PrintCompilation golo golo --files samples/fibonacci.golo

1.7. Bash autocompletion
A bash script can be found in share/shell-completion/ called golo-bash-completion that will
provide autocomplete support for the golo and vanilla-golo CLI scripts. You may either source
the script, or drop the script into your bash_completion.d/ folder and restart your terminal.

Basics

4

Not sure where your bash_completion.d/ folder is? Try /etc/bash_completion.d/ on
Linux or /usr/local/etc/bash_completion.d/ for Mac Homebrew users.

1.8. Zsh autocompletion
A zsh script can be found in share/shell-completion/ called golo-zsh-completion that works
using the golo-bash-completion to provide autocomplete support using the bash autocomplete
support provided by zsh. Place both files into the same directory and source golo-zsh-completion
from your terminal or .zshrc to give it a try!

1.9. Comments
Golo comments start with a #, just like in Bash, Python or Ruby:

This is a comment
println("WTF?") # it works here, too

1.10. Variable and constant references
Golo does not check for types at compile time, and they are not declared. Everything happens at
runtime in Golo.

Variables are declared using the var keyword, while constant references are declared with let. It is
strongly advised that you favour let over var unless you are certain that you need mutability.

Variables and constants need to be initialized when declared. Failing to do so results in a compilation
error.

Here are a few examples:

Ok
var i = 3
i = i + 1

The assignment fails because truth is a constant
let truth = 42
truth = 666

Invalid statement, variables / constants have to be initialized
var foo

Valid names contain upper and lower case letters within the [a..z] range, underscores (_), dollar
symbols ($) and numbers. In any case, an identifier must not start with a number.

Ok, but not necessarily great for humans...
let _$_f_o_$$666 = 666

Wrong!
let 666_club = 666

Basics

5

1.11. Data literals
Golo supports a set of data literals. They directly map to their counterparts from the Java Standard
API. We give them along with examples in the data literals table below.

Java type Golo literals

null null

java.lang.Boolean true or false

java.lang.String "hello world"

java.lang.Character 'a', 'b', …

java.lang.Integer 123, -123, 1_234, …

java.lang.Long 123_L, -123_L, 1_234_L, …

java.lang.Double 1.234, -1.234, 1.234e9, …

java.lang.Float 1.234_F, -1.234_F, 1.234e9_F, …

java.lang.Class String.class, java.lang.String.class,
gololang.Predef.module, …

java.lang.invoke.MethodHandle ^foo, ^some.module::foo, …

Speaking of strings, Golo also supports multi-line strings using the """ delimiters, as in:

let text = """This is
a multi-line string.
 How
 cool
 is
 that?"""

println(text)

This snippet would print the following to the standard console output:

This is
a multi-line string.
 How
 cool
 is
 that?

1.12. Collection literals
Golo support special support for common collections. The syntax uses brackets prefixed by a
collection name, as in:

let s = set[1, 2, "a", "b"]
let v = vector[1, 2, 3]
let m = map[[1, "a"], [2, "b"]]
(...)

The syntax and type matchings are the following:

Basics

6

Collection Java type Syntax

Tuple gololang.Tuple tuple[1, 2, 3], or simply [1,
2, 3]

Array java.lang.Object[] array[1, 2, 3]

List java.util.LinkedList list[1, 2, 3]

Vector java.util.ArrayList vector[1, 2, 3]

Set java.util.LinkedHashSet set[1, 2, 3]

Map java.util.LinkedHashMap map[[1, "a"], [2, "b"]]

1.12.1. A note on tuples
Tuples essentially behave as immutable arrays.

The gololang.Tuple class provides the following methods:

• a constructor with a variable-arguments list of values,

• a get(index) method to get the element at a specified index,

• size() and isEmpty() methods that do what their names suggest,

• an iterator() method because tuples are iterable, and

• equals(other), hashCode() and toString() do just what you would expect.

1.12.2. A note on maps
The map collection literal expects entries to be specified as tuples where the first entry is the key, and
the second entry is the value. This allows nested structures to be specified as in:

map[
 ["foo", "bar"],
 ["plop", set[1, 2, 3, 4, 5]],
 ["mrbean", map[
 ["name", "Mr Bean"],
 ["email", "bean@outlook.com"]
]]
]

There are a few rules to observe:

• not providing a series of tuples will yield class cast exceptions,

• tuples must have at least 2 entries or will yield index bound exceptions,

• tuples with more than 2 entries are ok, but only the first 2 entries matter.

Because of that, the following code compiles but raises exceptions at runtime:

let m1 = map[1, 2, 4, 5]

Basics

7

let m2 = map[
 [1],
 ["a", "b"]
]

The rationale for map literals to be loose is that we let you put any valid Golo expression, like
functions returning valid tuples:

let a = -> [1, 'a']
let b = -> [2, 'b']
let m = map[a(), b()]

1.13. Operators
Golo supports the following set of operators.

Symbol(s) Description Examples

+ Addition on numbers and
strings.

1 + 2 gives 3.

"foo" + "bar" gives
"foobar".

"foo" + something where
something is any object
instance is equivalent to "foo"
+ something.toString() in
Java.

- Subtraction on numbers. 4 - 1 gives 3.

* Multiplication on numbers and
strings.

2 * 2 gives 4.

"a" * 3 gives "aaa".

/ Division on numbers. 4 / 2 gives 2.

% Modulo on numbers. 4 % 2 gives 0, 3 % 2 gives 1.

"<", "<=", "==", "!=", ">",
">="

Comparison between numbers
and objects that implement
java.lang.Comparable.
== is equivalent to calling
Object#equals(Object) in
Java.

1 < 2 gives true.

is, isnt Comparison of reference
equality.

a is b gives true only if a
and b reference the same object
instance.

and, or, not Boolean operators. not is of
course a unary operator.

true and true gives true,
not(true) gives false.

oftype Checks the type of an object
instance, equivalent to the
instanceof operator in Java.

("plop" oftype

String.class) gives true.

Basics

8

Symbol(s) Description Examples

orIfNull Evaluates an expression and
returns the value of another one
if null.

null orIfNull "a" gives "a".
foo() orIfNull 0 gives the
value of calling foo(), or 0 if
foo() returns null.

1.14. Calling a method
Although we will discuss this in more details later on, you should already know that : is used to
invoke instance methods.

You could for instance call the toString() method that any Java object has, and print it out as
follows:

println(123: toString())
println(someObject: toString())

1.15. Java / JVM arrays
As you probably know, arrays on the JVM are special objects. Golo deals with such arrays as being
instances of Object[] and does not provide a wrapper class like many languages do. A Java / JVM
array is just what it is supposed to be.

Golo adds some sugar to relieve the pain of working with arrays. Golo allows some special methods to
be invoked on arrays:

• get(index) returns the value at index,

• set(index, value) sets value at index,

• length() and size() return the array length,

• iterator() returns a java.util.Iterator,

• toString() delegates to java.util.Arrays.toString(Object[]),

• asList() delegates to java.util.Arrays.asList(Object[]),

• equals(someArray) delegates to java.util.Arrays.equals(this, someArray),

• getClass() return the array class.

Given a reference a on some array:

Gets the element at index 0
a: get(0)

Replaces the element at index 1 with "a"
a: set(1, "a")

Nice print

Basics

9

println(a: toString())

Convert to a real collection
let list = a: asList()

The methods above do not perform array bound checks.

Finally, arrays can be created with the Array function, as in:

let a = Array(1, 2, 3, 4)
let b = Array("a", "b")

You can of course take advantage of the array collection literal, too:

let a = array[1, 2, 3, 4]
let b = array["a", "b"]

10

Chapter 2. Creating new project(s)
The golo new command can create new Golo project(s):

$ golo new Foo

The command creates a new Golo module named Foo in a main.golo file with a simple function
named main that takes an argument for the JVM program arguments.

By default we create a new free-form project but you can specify the type of project with the --type
command argument. Three types of projects are currently available:

• Free-form project,

• Maven-driven project,

• Gradle-driven project.

As an example if you want to create a Maven-driven project, just add --type maven:

$ golo new Foo --type maven

By default we create the project directory where the golo command is run. If you need to create your
project directory elsewhere you can use the --path command argument:

$ golo new Bar --path /opt/golo

This creates the project directory named Bar in /opt/golo.

2.1. Free-form project
The structure of a free-form project is as follows:

$ tree Foo
Foo
imports
jars
main.golo

2.2. Maven-driven project
The structure of a Maven-driven project is as follows:

$ tree Foo
Foo
pom.xml
src
 ### main
 ### golo
 ### main.golo

The project can be built and packaged with Maven using the following command:

$ mvn package

Creating new project(s)

11

You can now run the module Foo with:

• mvn

$ mvn exec:java

• java

$ java -jar target/Foo-*-jar-with-dependencies.jar

• golo

$ cd target/classes
$ golo run --module Foo

2.3. Gradle-driven project
The structure of a Gradle-driven project is as follows:

$ tree Foo
Foo
build.gradle
src
 ### main
 ### golo
 ### main.golo

The project can be built and packaged with Gradle using the following command:

$ gradle build

You can now run the module Foo with:

• gradle

$ gradle run

• golo

$ cd build/classes/main
$ golo run --module Foo

12

Chapter 3. Functions
Functions are first-class citizen in Golo. Here is how to define and call some.

3.1. Parameter-less functions
Golo modules can define functions as follows:

module sample

function hello = {
 return "Hello!"
}

In turn, you may invoke a function with a familiar notation:

let str = hello()

A function needs to return a value using the return keyword. Some languages state that the last
statement is the return value, but Golo does not follow that trend. We believe that return is more
explicit, and that a few keystrokes in favour of readability is still a good deal.

Still, you may omit return statements if your function does not return a value:

function printer = {
 println("Hey!")
}

If you do so, the function will actually return null, hence result in the next statement is null:

result will be null
let result = printer()

3.2. Functions with parameters
Of course functions may take some parameters, as in:

function addition = |a, b| {
 return a + b
}

Parameters are constant references, hence they cannot be reassigned.

Invoking functions that take parameters is straightforward, too:

let three = addition(1, 2)
let hello_world = addition("hello ", "world!")

3.3. Variable-arity functions
Functions may take a varying number of parameters. To define one, just add ... to the last parameter
name:

Functions

13

function foo = |a, b, c...| {
 # ...
}

Here, c catches the variable arguments in an array, just like it would be the case with Java. You can
thus treat c as being a Java object of type Object[].

Calling variable-arity functions does not requiring wrapping the last arguments in an array. While
invoking the foo function above, the following examples are legit:

a=1, b=2, c=[]
foo(1, 2)

a=1, b=2, c=[3]
foo(1, 2, 3)

a=1, b=2, c=[3,4]
foo(1, 2, 3, 4)

Because the parameter that catches the last arguments is an array, you may call array methods. Given:

function elementAt = |index, args...| {
 return args: get(index)
}

then:

prints "2"
println(elementAt(1, 1, 2, 3))

3.4. Functions from other modules and
imports

Suppose that we have a module foo.Bar:

module foo.Bar

function f = {
 return "f()"
}

We can invoke f from another module by prefixing it with its module name:

let r = foo.Bar.f()

Of course, we may also take advantage of an import statement:

module Somewhere.Else

import foo.Bar

function plop = {
 return f()
}

Functions

14

Imports in Golo do not work as in Java. Golo is a dynamic language where symbols are
being resolved at runtime. Module imports are not checked at compilation time, and their
sole purpose is to help in dynamic resolution. Back to the previous example, f cannot be
resolved from the current module, and the Golo runtime subsequently tries to resolve f
from each import statement. Also, note that the order of import statements is important,
as the resolution stops at the first module having the f function.

Last but not least, you may prepend the last piece of the module name. The following invocations are
equivalent:

module Somewhere.Else

import foo.Bar

function plop = {
 let result = f()
 let result_bis = Bar.f()
 let result_full = foo.Bar.f()
 return result
}

Golo modules have a set of implicit imports:

• gololang.Predefined,

• gololang.StandardAugmentations,

• gololang,

• java.lang.

3.5. Local functions
By default, functions are visible outside of their module. You may restrict the visibility of a function
by using the local keyword:

module Foo

local function a = {
 return 666
}

function b = {
 return a()
}

Here, b is visible while a can only be invoked from within the Foo module. Given another module
called Bogus, the following would fail at runtime:

module Bogus

function i_will_crash = {
 return Foo.a()
}

Functions

15

3.6. Module-level state
You can declare let and var references at the module level, as in:

module Sample

let a = 1

var b = truth()

local function truth = {
 return 42
}

These references get initialized when the module is being loaded by the Java virtual machine. In fact,
module-level state is implemented using private static fields that get initialized in a <clinit>
method.

Module-level references are only visible from their module, although a function may provide
accessors to them.

It is important to note that such references get initialized in the order of declaration in the source file.
Having initialization dependencies between such references would be silly anyway, but one should
keep it in mind just in case.

Global state is a bad thing in general. We strongly advise you to think twice before you
introduce module-level state. Beware of potential memory leaks, just like static class
fields in the Java programming language.

16

Chapter 4. Java interoperability
Golo aims at providing a seamless 2-way interoperability with the Java programming language.

4.1. Main function Java compliance
If the Golo compiler find a unary function named main, it will be compiled to a void(String[])
static method. This main method can servers as a JVM entry point.

Suppose that we have the following Golo module:

module mainEntryPoint

function main = |args| {
 println("-> " + args: get(0))
}

Once compiled, we may invoke it as follows:

$ golo compile mainEntryPoint.golo
$ java -cp ".:golo.jar" mainEntryPoint GoloRocks
-> GoloRocks
$

4.2. Calling static methods
Golo can invoke public Java static methods by treating them as functions:

module sample

import java.util.Arrays

function oneTwoThree = {
 return asList(1, 2, 3)
}

In this example, asList is resolved from the java.util.Arrays import and called as a function.
Note that we could equivalently have written a qualified invocation as Arrays.asList(1, 2, 3).

4.3. Calling instance methods
When you have an object, you may invoke its methods using the : operator.

The following would call the toString method of any kind, then print it:

println(">>> " + someObject: toString())

Of course, you may chain calls as long as a method is not of a void return type. Golo converts Java
void methods by making them return null. This is neither a bug or a feature: the invokedynamic
support on the JVM simply does so.

Java interoperability

17

4.4. null-safe instance method invocations
Golo supports null-safe methods invocations using the "Elvis" symbol: ?:.

Suppose that we invoke the method bar() on some reference foo: foo: bar(). If foo is null, then
invoking bar() throws a java.lang.NullPointerException, just like you would expect in Java.

By contrast:

• foo?: bar() simply returns null, and

• null?: anything() returns null, too.

This is quite useful when querying data models where null values could be returned. This can
be elegantly combined with the orIfNull operator to return a default value, as illustrated by the
following example:

let person = dao: findByName("Mr Bean")
let city = person?: address()?: city() orIfNull "n/a"

This is more elegant than, say:

let person = dao: findByName("Mr Bean")
var city = "n/a"
if person isnt null {
 let address = person: address()
 if address isnt null {
 city = address: city() ofIfNull "n/a"
 }
}

The runtime implementation of null-safe method invocations is optimistic as it behaves
like a try block catching a NullPointerException. Performance is good unless most
invocations happen to be on null, in which case using ?: is probably not a great idea.

4.5. Creating objects
Golo doesn’t have an instantiation operator like new in Java. Instead, creating an object and calling its
constructor is done as if it was just another function.

As an example, we may allocate a java.util.LinkedList as follows:

module sample

import java.util

function aList = {
 return LinkedList()
}

Another example would be using a java.lang.StringBuilder.

function str_build = {
 return java.lang.StringBuilder("h"):

Java interoperability

18

 append("e"):
 append("l"):
 append("l"):
 append("o"):
 toString()
}

As one would expect, the str_build function above gives the "hello" string.

4.6. Static fields
Golo treats public static fields as function, so one could get the maximum value for an Integer as
follows:

module samples.MaxInt

local function max_int = {
 return java.lang.Integer.MAX_VALUE()
}

function main = |args| {
 println(max_int())
}

Given than most static fields are used as constants in Java, Golo does not provide support
to change their values. This may change in the future if compelling general-interest use-
cases emerge.

4.7. Instance fields
Instance fields can be accessed as functions, both for reading and writing. Suppose that we have a
Java class that looks as follows:

public class Foo {
 public String bar;
}

We can access the bar field as follows:

let foo = Foo()

Write
foo: bar("baz")

Read, prints "baz"
println(foo: bar())

An interesting behavior when writing fields is that the "methods" return the object, which means that
you can chain invocations.

Suppose that we have a Java class as follows:

public class Foo {
 public String bar;
 public String baz;

Java interoperability

19

}

We can set all fields by chaining invocations as in:

let foo = Foo(): bar(1): baz(2)

It should be noted that Golo won’t bypass the regular Java visibility access rules on fields.

What happens if there is both a field and a method with the same names?

Back to the previous example, suppose that we have both a field and a method with the
same name, as in:

public class Foo {
 public String bar;

 public String bar() {
 return bar;
 }
}

Golo resolves methods first, fields last. Hence, the following Golo code will resolve the
bar() method, not the bar field:

let foo = Foo()

Write the field
foo: bar("baz")

Calls the bar() method
println(foo: bar())

4.8. Inner classes and enumerations
We will illustrate both how to deal with public static inner classes and enumerations at once.

The rules to deal with them in Golo are as follows.

1. Inner classes are identified by their real name in the JVM, with nested classes being separated by a
$ sign. Hence, Thread.State in Java is written Thread$State in Golo.

2. Enumerations are just normal objects. They expose each entry as a static field, and each entry is an
instance of the enumeration class.

Let us consider the following example:

module sample.EnumsThreadState

import java.lang.Thread$State

function main = |args| {

 # Call the enum entry like a function
 let new = Thread$State.NEW()
 println("name=" + new: name() + ", ordinal=" + new: ordinal())

Java interoperability

20

 # Walk through all enum entries
 foreach element in Thread$State.values() {
 println("name=" + element: name() + ", ordinal=" + element: ordinal())
 }
}

Running it yields the following console output:

$ golo golo --files samples/enums-thread-state.golo
name=NEW, ordinal=0
name=NEW, ordinal=0
name=RUNNABLE, ordinal=1
name=BLOCKED, ordinal=2
name=WAITING, ordinal=3
name=TIMED_WAITING, ordinal=4
name=TERMINATED, ordinal=5
$

4.9. Clashes with Golo operators and
escaping

Because Golo provides a few named operators such as is, and or not, they are recognized as operator
tokens.

However, you may find yourself in a situation where you need to invoke a Java method whose name
is a Golo operator, such as:

Function call
is()

Method call
someObject: foo(): is(): not(): bar()

This results in a parsing error, as is and not will be matched as operators instead of method
identifiers.

The solution is to use escaping, by prefixing identifiers with a backtick, as in:

Function call
`is()

Method call
someObject: foo(): `is(): `not(): bar()

4.10. Golo class loader
Golo provides a class loader for directly loading and compiling Golo modules. You may use it as
follows:

import fr.insalyon.citi.golo.compiler.GoloClassLoader;

public class Foo {

 public static void main(String... args) throws Throwable {

Java interoperability

21

 GoloClassLoader classLoader = new GoloClassLoader();
 Class<?> moduleClass = classLoader.load("foo.golo", new FileInputStream("/path/to/foo.golo"));
 Method bar = moduleClass.getMethod("bar", Object.class);
 bar.invoke(null, "golo golo");
 }
}

This would work with a Golo module defined as in:

module foo.Bar

function bar = |wat| -> println(wat)

Indeed, a Golo module is viewable as a Java class where each function is a static method.

GoloClassLoader is rather dumb at this stage, and you will get an exception if you try to
load two Golo source files with the same module name declaration. This is because it will
attempt to redefine an already defined class.

Later in the glorious and glamorous future, Golo will have objects and not just functions.
Be patient, it’s coming in!

22

Chapter 5. Control flow
Control flow in Golo is imperative and has the usual constructions found in upstream languages.

5.1. Conditional branching
Golo supports the traditional if / else constructions, as in:

if goloIsGreat() {
 println("Golo Golo")
}

if (someCondition) {
 doThis()
} else if someOtherCondition {
 doThat()
} else {
 doThatThing()
}

The condition of an if statement does not need parenthesis. You may add some to clarify a more
elaborated expression, though.

5.2. case branching
Golo offers a versatile case construction for conditional branching. It may be used in place of
multiple nested if / else statements, as in:

function what = |obj| {
 case {
 when obj oftype String.class {
 return "String"
 }
 when obj oftype Integer.class {
 return "Integer"
 }
 otherwise {
 return "alien"
 }
 }
}

A case statement requires at least 1 when clause and a mandatory otherwise clause. Each clause is
being associated with a block. It is semantically equivalent to the corresponding if / else chain:

function what = |obj| {
 if obj oftype String.class {
 return "String"
 } else if obj oftype Integer.class {
 return "Integer"
 } else {
 return "alien"
 }
}

Control flow

23

when clauses are being evaluated in the declaration order, and only the first satisfied one is
being executed.

5.3. match statements
The match statement is a convenient shortcut for cases where a case statement would be used to
match a value, and give back a result. While it may resemble pattern matching operators in some
other languages it is not fully equivalent, as Golo does not support destructuring.

match is a great addition to the Golo programmer:

let item = "foo@bar.com"

let what_it_could_be = -> match {
 when item: contains("@") then "an email?"
 when item: startsWith("+33") then "a French phone number?"
 when item: startsWith("http://") then "a website URL?"
 otherwise "I have no clue, mate!"
}

prints "an email?"
println(what_it_could_be(item))

The values to be returned are specified after a then keyword that follows a boolean expression to be
evaluated.

Like case statements, a match construct needs at least one when clause and one otherwise clause.

5.4. while loops
While loops in Golo are straightforward:

function times = |n| {
 var times = 0
 while (times < n) { times = times + 1 }
 return times
}

The parenthesis in the while condition may be omitted like it is the case for if statements.

5.5. for loops
This is the most versatile loop construction, as it features:

1. a variable declaration and initialization (a Golo variable is always initialized anyway), and

2. a loop progress condition, and

3. a loop progress statement.

The following function shows a for loop:

Control flow

24

function fact = |value, n| {
 var result = 1
 for (var i = 0, i < n, i = i + 1) {
 result = result * value
 }
 return result
}

As you can see, it is very much like a for loop in Java, except that:

• the for loop elements are separated by ',' instead of ';', and

• there cannot be multiple variables in the loop, and

• there cannot be multiple loop progress statements.

Again, this choice is dictated by the pursue of simplicity.

5.6. foreach loops
Golo provides a "for each" style of iteration over iterable elements. Any object that is an instance of
java.lang.Iterable can be used in foreach loops, as in:

function concat_to_string = |iterable| {
 var result = ""
 foreach item in iterable {
 result = result + item
 }
 return result
}

In this example, item is a variable within the foreach loop scope, and iterable is an object that is
expected to be iterable.

You may use parenthesis around a foreach expression, so foreach (foo in bar) is equivalent to
foreach foo in bar.

Although Java arrays (Object[]) are not real objects, they can be used with foreach
loops. Golo provides a iterator() method for them.

5.7. break and continue
Although not strictly necessary, the break and continue statements can be useful to simplify some
loops in imperative languages.

Like in Java and many other languages:

• break exits the current inner-most loop, and

• continue skips to the next iteration of the current inner-most loop.

Consider the following contrived example:

Control flow

25

module test

function main = |args| {
 var i = 0
 while true {
 i = i + 1
 if i < 40 {
 continue
 } else {
 print(i + " ")
 }
 if i == 50 {
 break
 }
 }
 println("bye")
}

It prints the following output:

40 41 42 43 44 45 46 47 48 49 50 bye

Golo does not support break statements to labels like Java does. In fact, this is a goto statement in
disguise.

5.8. Why no value from most control flow
constructions?

Some programming languages return values from selected control flow constructions, with the
returned value being the evaluation of the last statement in a block. This can be handy in some
situations such as the following code snippet in Scala:

println(if (4 % 2 == 0) "even" else "odd")

The Golo original author recognizes and appreciates the expressiveness of such construct. However,
he often finds it harder to spot the returned values with such constructs, and he thought that trading a
few keystrokes for explicitness was better than shorter construct based in implicitness.

Therefore, most Golo control flow constructions do not return values, and programmers are instead
required to extract a variable or provide an explicit return statement.

26

Chapter 6. Exceptions
Exception handling in Golo is simple. There is no distinction between checked and unchecked
exceptions.

6.1. Raising exceptions
Golo provides 2 predefined functions for raising exceptions:

• raise(message) throws a java.lang.RuntimeException with a message given as a string, and

• raise(message, cause) does the same and specifies a cause which must be an instance of
java.lang.Throwable.

Throwing an exception is thus as easy as:

if somethingIsWrong() {
 raise("Woops!")
}

6.2. Raising specialized exceptions
Of course not every exception shall be an instance of java.lang.RuntimeException. When a more
specialized type is required, you may simply instantiate a Java exception and throw it using the throw
keyword as in the following example:

module golotest.execution.Exceptions

import java.lang.RuntimeException

function runtimeException = {
 throw RuntimeException("w00t")
}

6.3. Exception handling
Exception handling uses the familiar try / catch, try / catch / finally and try / finally
constructions. Their semantics are the same as found in other languages such as Java, especially
regarding the handling of finally blocks.

The following snippets show each exception handling form.

Good old try / catch
try {
 something()
} catch (e) {
 e: printStackTrace()
}

A try / finally
try {

Exceptions

27

 doSomething()
} finally {
 cleanup()
}

Full try / catch / finally construct
try {
 doSomething()
} catch (e) {
 e: printStackTrace()
 case {
 when e oftype IOException.class {
 println("Oh, an I/O exception that I was expecting!")
 }
 when e oftype SecurityException.class {
 println("Damn, I didn't expect a security problem...")
 throw e
 }
 otherwise {
 throw e
 }
 }
} finally {
 cleanup()
}

Because Golo is a weakly typed dynamic language, you need to check for the exception
type with the oftype operator. In a statically typed language like Java, you would instead
have several catch clauses with the exception reference given a specific type. We suggest
that you take advantage of the case branching statement.

28

Chapter 7. Closures
Golo supports closures, which means that functions can be treated as first-class citizen.

7.1. Defining and using a closure
Defining a closure is straightforward as it derives from the way a function can be defined:

let adder = |a, b| {
 return a + b
}

At runtime, a closure is an instance of java.lang.invoke.MethodHandle. This means that you can
do all the operations that method handles support, such as invoking them or inserting arguments as
illustrated in the following example:

let adder = |a, b| {
 return a + b
}
println(adder: invokeWithArguments(1, 2))

let addToTen = adder: bindTo(10)
println(addToTen: invokeWithArguments(2))

As one would expect, this prints 3 and 12.

7.2. Compact closures
Golo supports a compact form of closures for the cases where their body consists of a single
expression. The example above can be simplified as:

let adder = |a, b| -> a + b

You may also use this compact form when defining regular functions, as in:

module Foo

local function sayHello = |who| -> "Hello " + who + "!"

Prints "Hello Julien!"
function main = |args| {
 println(sayHello("Julien"))
}

7.3. Calling closures
While you may take advantage of closures being method handles and call them using
invokeWithArguments, there is a (much) better way.

When you have a reference to a closure, you may simply call it as a regular function. The previous
adder example can be equivalently rewritten as:

let adder = |a, b| -> a + b

Closures

29

println(adder(1, 2))

let addToTen = adder: bindTo(10)
println(addToTen(2))

7.4. Limitations
Closures have access to the lexical scope of their defining environment. Consider this example:

function plus_3 = {
 let foo = 3
 return |x| -> x + foo
}

The plus_3 function returns a closure that has access to the foo reference, just as you would expect.
The foo reference is said to have been captured and made available in the closure.

It is important to note that captured references are constants within the closure. Consider the
following example:

var a = 1
let f = {
 a = 2 # Compilation error!
}

The compilation fails because although a is declared using var in its original scope, it is actually
passed as an argument to the f closure. Because function parameters are implicitly constant
references, this results in a compilation error.

That being said, a closure has a reference on the same object as its defining environment, so a mutable
object is a sensible way to pass data back from a closure as a side-effect, as in:

let list = java.util.LinkedList()
let pump_it = {
 list: add("I heard you say")
 list: add("Hey!")
 list: add("Hey!")
}
pump_it()
println(list)

which prints [I heard you say, Hey!, Hey!].

7.5. Closures to single-method interfaces
The Java SE APIs have plenty of interfaces with a single method:
java.util.concurrent.Callable, java.lang.Runnable, javax.swing.ActionListener, etc.

The predefined function asInterfaceInstance can be used to convert a method handle or Golo
closure to an instance of a specific interface.

Here is how one could pass an action listener to a javax.swing.JButton:

let button = JButton("Click me!")
let handler = |event| -> println("Clicked!")
button: addActionListener(asInterfaceInstance(ActionListener.class, handler))

Closures

30

Because the asInterfaceInstance call consumes some readability budget, you may refactor it with
a local function as in:

local function listener = |handler| -> asInterfaceInstance(ActionListener.class, handler)

(...)
let button = JButton("Click me!")
button: addActionListener(listener(|event| -> println("Clicked!")))

Here is another example that uses the java.util.concurrent APIs to obtain an executor, pass it a
task, fetch the result with a Future object then shut it down:

function give_me_hey = {
 let executor = Executors.newSingleThreadExecutor()
 let future = executor: submit(asInterfaceInstance(Callable.class, -> "hey!"))
 let result = future: get()
 executor: shutdown()
 return result
}

7.6. Direct closure passing works
When a function or method parameter of a Java API expects a single method interface type, you can
pass a closure directly, as in:

(...)
let button = JButton("Click me!")
button: addActionListener(|event| -> println("Clicked!"))

Note that this causes the creation of a method handle proxy object for each function or method
invocation. For performance-sensitive contexts, we suggest that you use either asInterfaceInstance
or the to conversion method described hereafter.

7.7. Conversion to single-method
interfaces

Instead of using asInterfaceInstance, you may use a class augmentation which is described later
in this documentation. In short, it allows you to call a to method on instances of MethodHandle,
which in turn calls asInterfaceInstance. Back to the previous examples, the next 2 lines are
equivalent:

Calling asInterfaceInstance
future = executor: submit(asInterfaceInstance(Callable.class, -> "hey!"))

Using a class augmentation
future = executor: submit((-> "hey!"): to(Callable.class))

7.8. Getting a reference to a closure / Golo
function

You may also take advantage of the predefined fun function to obtain a reference to a closure, as in:

Closures

31

import golotest.Closures

local function local_fun = |x| -> x + 1

function call_local_fun = {

 # local_fun, with a parameter
 var f = fun("local_fun", golotest.Closures.module, 1)

 # ...or just like this if there is only 1 local_fun definition
 f = fun("local_fun", golotest.Closures.module)

 return f(1)
}

Last but not least, we have an even shorter notation if function are not overridden:

import golotest.Closures

local function local_fun = |x| -> x + 1

function call_local_fun = {

 # In the current module
 var f = ^fun

 # ...or with a full module name
 f = ^golotest.Closures::fun

 return f(1)
}

7.9. Binding and composing
Because closure references are just instances of java.lang.invoke.MethodHandle, you can bind its
first argument using the bindTo(value) method. If you need to bind an argument at another position
than 0, you may take advantage of the bindAt(position, value) augmentation:

let diff = |a, b| -> a - b
let minus10 = diff: bindAt(1, 10)

10
println(minus10(20))

You may compose function using the andThen augmentation method:

let f = (|x| -> x + 1): andThen(|x| -> x - 10): andThen(|x| -> x * 100)

-500
println(f(4))

Closures

32

7.10. Calling functions that return
functions

Given that functions are first-class objects in Golo, you may define functions (or closures) that return
functions, as in:

let f = |x| -> |y| -> |z| -> -> x + y + z

You could use intermediate references to use the f function above:

let f1 = f(1)
let f2 = f1(2)
let f3 = f2(3)

Prints '6'
println(f3())

Golo supports a nicer syntax if you don’t need intermediate references:

Prints '6'
println(f(1)(2)(3)())

This syntax only works following a function or method invocation, not on expressions.
This means that:

foo: bar()("baz")

is valid, while:

(foo: bar())("baz")

is not. Let us say that "It is not a bug, it is a feature".

33

Chapter 8. Predefined functions
Every Golo module definition comes with gololang.Predefined as a default import. It provides
useful functions.

8.1. Console output
print and println do just what you would expect.

print("Hey")
println()

println("Hey")

8.2. Console input
readln() or readln(strMessage) reads a single line of text from the console. It always returns a
string.

readPassword() or readPassword(strPassword) reads a password from the console with
echoing disabled. It always returns a string. There are also secureReadPassword() and
secureReadPassword(strPassword) variants that return a char[] array.

let name = readln("what's your name? ")
let value = readln()
let pwd = readpwd("type your password:")

8.3. Exceptions
raise can be used to throw a java.lang.RuntimeException. It comes in two forms: one with a
message as a string, and one with a message and a cause.

try {
 ...
 raise("Somehow something is wrong")
} catch (e) {
 ...
 raise("Something was wrong, and here is the cause", e)
}

8.4. Preconditions
Preconditions are useful, especially in a dynamically-typed language.

require can check for a boolean expression along with an error message. In case of error, it throws an
AssertionError.

function foo = |a| {
 require(a oftype String.class, "a must be a String")

Predefined functions

34

 ...
}

You may also use requireNotNull that… well… checks that its argument is not null:

function foo = |a| {
 requireNotNull(a)
 ...
}

8.5. Arrays (deprecated)
Golo provides functions to deal with Java arrays (Object[]).

• the Array function takes a variable number of arguments and returns a Java array from them,

• the aget function takes an array and an index to return the element at that position,

• the aset function takes an array, an index and a value to set the element at that position,

• the alength function returns the length of an array,

• the atoList function calls the java.util.Arrays.asList(values...) method.

let a = Array(1, 2, 3)
require(alength(a) == 3, "a must be of length 3")
require(aget(a, 0) == 1, "the first element shall be 1")
aset(a, 0, 666)
require(aget(a, 0) == 666, "the new first element shall be 666")

Those functions were introduced for the needs of the early developments of Golo.
They will be removed at some point before the release of version 0, so please use the
corresponding array object methods instead: get, set, length, …

8.6. Ranges
The range function yields an iterable range over either Integer or Long bounds:

Prints 1 2 (...) 100
foreach i in range(1, 101) {
 print(i + " ")
}

let r = range(0, 6): incrementBy(2)
println("Start: " + r: from())
println("End: " + r: to())
foreach i in r {
 println(i)
}

println("Increment: " + r: increment())

The lower bound is inclusive, the upper bound is exclusive.

Predefined functions

35

8.7. Closures
Given a closure reference or a method handle, one can convert it to an instance of an interface with a
single method declaration, as in:

local function listener = |handler| -> asInterfaceInstance(ActionListener.class, handler)

(...)
let button = JButton("Click me!")
button: addActionListener(listener(|event| -> println("Clicked!")))

It is possible to test if an object is a closure or not with the isClosure function. This is useful to
support values and delayed evaluation, as in:

if isClosure(value) {
 map: put(key, value())
} else {
 map: put(key, value)
}

You can get a reference to a closure using the predefined fun function:

import golotest.Closures

local function local_fun = |x| -> x + 1

function call_local_fun = {
 let f = fun("local_fun", golotest.Closures.module)
 return f(1)
}

Because functions may be overloaded, there is a form that accepts an extra parameter for specifying
the number of parameters:

import golotest.Closures

local function local_fun = |x| -> x + 1

function call_local_fun = {
 let f = fun("local_fun", golotest.Closures.module, 1)
 return f(1)
}

8.8. File I/O
Sometimes it is very desirable to read the content of a text file. The fileToText function does just
that:

let text = fileToText("/some/file.txt", "UTF-8")

The first parameter is either a java.lang.String, a java.io.File or a java.nio.file.Path.
The second parameter represents the encoding charset, either as a java.lang.String or a
java.nio.charset.Charset.

We can write some text to a file, too:

Predefined functions

36

textToFile("Hello, world!", "/foo/bar.txt")

The textToFile function overwrites existing files, and creates new ones if needed.

These functions are provided for convenience, so if you need more fine-grained control over reading
and writing text then we suggest that you look into the java.nio.file package.

In addition, if you need to verify that a file exists, you can use the fileExists function.

if fileExists("/foo/bar.txt") {
 println("file found!")
}

As in the other File I/O methods, the parameter is either a java.lang.String, a java.io.File or a
java.nio.file.Path. The fileExists function will return true if the file exists, false if it doesn’t.

8.9. Array types
Golo does not provide a literal syntax for array types, such as Object[].class in Java.

Instead, we provide 3 helper functions.

• isArray(object): returns a boolean if object is an array.

• objectArrayType(): returns Object[].class.

• arrayTypeOf(type): given type as a java.lang.Class, returns an array of type type[].

8.10. Misc.
mapEntry gives instances of java.util.AbstractMap.SimpleEntry, and is used as follows:

let e = mapEntry("foo", "bar")

prints "foo => bar"
println(e: getKey() + " => " + e: getValue())

37

Chapter 9. Class augmentations
Many dynamic languages support the ability to extend existing classes by adding new methods to
them. You may think of categories in Objective-C and Groovy, or open classes in Ruby.

This is generally implemented by providing meta-classes. When some piece of code adds a method
foo to, say, SomeClass, then all instances of SomeClass get that new foo method. While very
convenient, such an open system may lead to well-known conflicts between the added methods.

Golo provides a more limited but explicit way to add methods to existing classes in the form of class
augmentations.

9.1. Wrapping a string with a function
Let us motivate the value of augmentations by starting with the following example. Suppose that we
would like a function to wrap a string with a left and right string. We could do that in Golo as follows:

function wrap = |left, str, right| -> left + str + right

(...)
let str = wrap("(", "foo", ")")
println(str) # prints "(abc)"

Defining functions for such tasks makes perfect sense, but what if we could just add the wrap method
to all instances of java.lang.String instead?

9.2. Augmenting classes
Defining an augmentation is a matter of adding a augment block in a module:

module foo

augment java.lang.String {
 function wrap = |this, left, right| -> left + this + right
}

function wrapped = -> "abc": wrap("(", ")")

More specifically:

1. a augment definition is made on a fully-qualified class name, and

2. an augmentation function takes the receiver object as its first argument, followed by optional
arguments, and

3. there can be as many augmentation functions as you want, and

4. there can be as many augmentations as you want.

It is a good convention to name the receiver this, but you are free to call it differently.

Class augmentations

38

Also, augmentation functions can take variable-arity arguments, as in:

augment java.lang.String {

 function concatWith = |this, args...| {
 var result = this
 foreach(arg in args) {
 result = result + arg
 }
 return result
 }
}

(...)
function varargs = -> "a": concatWith("b", "c", "d")

It should be noted that augmentations work with class hierarchies too. The following example adds
an augmentation to java.util.Collection, which also adds it to concrete subclasses such as
java.util.LinkedList:

augment java.util.Collection {
 function plop = |this| -> "plop!"
}

(...)
function plop_in_a_list = -> java.util.LinkedList(): plop()

9.3. Augmentation scopes, reusable
augmentations

By default, an augmentation is only visible from its defining module.

Augmentations are clear and explicit as they only affect the instances from which you have
decided to make them visible.

It is advised to place reusable augmentations in separate module definitions. Then, a module that
needs such augmentations can make them available through imports.

Suppose that you want to define augmentations for dealing with URLs from strings. You could define
a string-url-augmentations.golo module source as follows:

module my.StringUrlAugmentations

import java.net

augment java.lang.String {

 function toURL = |this| -> URL(this)

 function httpGet = |this| {
 # Open the URL, get a connection, grab the body as a string, etc
 # (...)
 }

 # (...)

Class augmentations

39

}

Then, a module willing to take advantage of those augmentations can simply import their defining
module:

module my.App

import my.StringUrlAugmentations

function googPageBody = -> "http://www.google.com/": httpGet()

As a matter of style, we suggest that your module names end with Augmentations.
Because importing a module imports all of its augmentation definitions, we suggest that
you modularize them with fine taste (for what it means).

9.4. Standard augmentations
Golo comes with a set of pre-defined augmentations over collections, strings, closures and more.

These augmentation do not require a special import, and they are defined in the
gololang.StandardAugmentations module.

Here is an example:

let odd = [1, 2, 3, 4, 5]: filter(|n| -> (n % 2) == 0)

let m = map[]
println(m: getOrElse("foo", -> "bar"))

The full set of standard augmentations is documented in the generated golodoc (hint: look for doc/
golodoc in the Golo distribution).

40

Chapter 10. Structs
Golo allows the definition of simple structures using the struct keyword. They resemble structures in
procedural languages such as C struct or Pascal records. They are useful to store data when the set
of named entries is fixed.

10.1. Definition
Structures are defined at the module-level:

module sample

struct Person = { name, age, email }

function main = |args| {
 let p1 = Person("Mr Bean", 54, "bean@gmail.com")
 println(p1: name())
 let p2 = Person(): name("John"): age(32): email("john@b-root.com")
 println(p2: age())
}

When declaring a structure, it also defines two factory functions: one with no arguments, and one
with all arguments in their order of declaration in the struct statement. When not initialized, member
values are null.

Each member yields a getter and a setter method: given a member a, the getter is method a() while
the setter is method a(newValue). It should be noted that setter methods return the structure instance
which makes it possible to chain calls as illustrated in the previous example while building p2.

10.2. JVM existence
Each struct is compiled to a self-contained JVM class.

Given:

module sample

struct Point = { x, y }

a class sample.types.Point is being generated.

It is important to note that:

1. each struct class is final,

2. each struct class inherits from gololang.GoloStruct,

3. proper definitions of toString(), hashCode() and equals() are being provided.

10.3. toString() behavior
The toString() method is being overridden to provide a meaningful description of a structure
content.

Structs

41

Given the following program:

module test

struct Point = { x, y }

function main = |args| {
 println(Point(1, 2))
}

running it prints the following console output:

struct Point{x=1, y=2}

10.4. Immutable structs
Structure instances are mutable by default. Golo generates a factory function with the Immutable
prefix to directly build immutable instances:

module test

struct Point = { x, y }

function main = |args| {

 let p = ImmutablePoint(1, 2)
 println(p)

 try {
 # Fails! (p is immutable)
 p: x(100)
 } catch (expected) {
 println(expected: getMessage())
 }
}

10.5. Copying
Instances of a structure provide copying methods:

• copy() returns a shallow copy of the structure instance, and

• frozenCopy() returns a read-only shallow copy.

Trying to invoke any setter methods on an instance obtained through frozenCopy() raises a
java.lang.IllegalStateException.

The result of calling copy() on a frozen instance is a mutable copy, not a frozen copy.

10.6. equals() and hashCode() semantics
Golo structures honor the contract of Java objects regarding equality and hash codes.

Structs

42

By default, equals() and hashCode() are the ones of java.lang.Object. Indeed, structure
members can be changed, so they cannot be used to compute stable values.

Nevertheless, structure instances returned by frozenCopy() have stable members, and members are
being used.

Consider the following program:

module test

struct Point = { x, y }

function main = |args| {

 let p1 = Point(1, 2)
 let p2 = Point(1, 2)
 let p3 = p1: frozenCopy()
 let p4 = p1: frozenCopy()

 println("p1 == p2 " + (p1 == p2))
 println("p1 == p3 " + (p1 == p3))
 println("p3 == p4 " + (p3 == p4))

 println("#p1 " + p1: hashCode())
 println("#p2 " + p2: hashCode())
 println("#p3 " + p3: hashCode())
 println("#p4 " + p4: hashCode())
}

the console output is the following:

p1 == p2 false
p1 == p3 false
p3 == p4 true
#p1 1555845260
#p2 104739310
#p3 994
#p4 994

It is recommended that you use Immutable<name of struct>(...) or frozenCopy()
when you can, especially when storing values into collections.

10.7. Helper methods
A number of helper methods are being generated:

• members() returns a tuple of the member names,

• values() returns a tuple with the current member values,

• isFrozen() returns a boolean to check for frozen structure instances,

• iterator() provides an iterator over a structure where each element is a tuple [member, value],

• get(name) returns the value of a member by its name,

Structs

43

• set(name, value) updates the value of a member by its name, and returns the same structure.

10.8. Private members
By default, all members in a struct can be accessed. It is possible to make some elements private by
prefixing them with _, as in:

struct Foo = { a, _b, c }

(...)

let foo = Foo(1, 2, 3)

In this case, _b is a private struct member. This means that foo: _b() and foo: _b(666) are valid
calls only if made from:

• a function from the declaring module, or

• an augmentation defined in the declaring module.

Any call to, say, foo: _b() from another module will yield a NoSuchMethodError exception.

Private struct members also have the following impact:

• they do not appear in members() and values() calls, and

• they are not iterated through iterator()-provided iterators, and

• they are being used like other members in equals() and hashCode(), and

• they do not appear in toString() representations.

10.9. Augmenting structs
Structs provide a simple data model, especially with private members for encapsulation.

Augmenting structs is encouraged, as in:

module Plop

struct Point = { _id, x, y }

augment Plop.types.Point {

 function str = |this| -> "{id=" + this: _id() + ",x=" + this: x() + ",y=" + this: y() + "}"
}

When an augmentation on a struct is defined within the same module, then you can omit the full type
name of the struct:

module Plop

struct Point = { _id, x, y }

Structs

44

augment Point {

 function str = |this| -> "{id=" + this: _id() + ",x=" + this: x() + ",y=" + this: y() + "}"
}

Again, it is important to note that augmentations can only access private struct members when they
originate from the same module.

Don’t do this at home

Of course doing the following is a bad idea, with the concise augmentation taking over the
fully-qualified one:

module Foo

struct Value = { v }

augment Foo.types.Value {

 function a = |this| -> "a"
}

This will discard the previous augmentation...
augment Value {

 function b = |this| -> "a"
}

function check = {
 let v = Value(666)

 # Ok
 v: b()

 # Fails, the concise augmentation overrides the fully-qualifed one
 v: a()
}

45

Chapter 11. Dynamic objects
Dynamic objects can have values and methods being added and removed dynamically at runtime. You
can think of it as an enhancement over using hash maps and putting closures in them.

11.1. Creating dynamic objects
Creating a dynamic object is as simple as calling the DynamicObject function:

let foo = DynamicObject()

Dynamic objects have the following reserved methods, that is, methods that you cannot override:

• define(name, value) allows to define an object property, which can be either a value or a
closure, and

• get(name) gives the value or closure for a property name, or null if there is none, and

• undefine(name) removes a property from the object, and

• mixin(dynobj) mixes in all the properties of the dynamic object dynobj, and

• copy() gives a copy of a dynamic object, and

• freeze() locks an object, and calling define will raise an IllegalStateException, and

• isFrozen() checks whether a dynamic object is frozen or not, and

• properties() gives the set of entries in the dynamic object, and

• hasMethod(name) checks if a method is defined or not in the dynamic object, and

• invoker(name, type) which is mostly used by the Golo runtime internals, and

• fallback(handler) defines a fallback behavior for property invocation.

11.2. Defining values
Defining values also defines getter and setter methods, as illustrated by the next example:

let person = DynamicObject():
 define("name", "MrBean"):
 define("email", "mrbean@gmail.com")

prints "Mr Bean"
println(person: name())

prints "Mr Beanz"
person: name("Mr Beanz")
println(person: name())

Dynamic objects

46

Calling a setter method for a non-existent property defines it, hence the previous example can be
rewritten as:

let person = DynamicObject(): name("MrBean"): email("mrbean@gmail.com")

prints "Mr Bean"
println(person: name())

prints "Mr Beanz"
person: name("Mr Beanz")
println(person: name())

11.3. Defining methods
Dynamic object methods are simply defined as closures. They must take the dynamic object object as
their first argument, and we suggest that you call it this. You can then define as many parameters as
you want.

Here is an example where we define a toString-style of method:

local function mrbean = -> DynamicObject():
 name("Mr Bean"):
 email("mrbean@gmail.com"):
 define("toString", |this| -> this: name() + " <" + this: email() + ">")

function main = |args| {

 let bean = mrbean()
 println(bean: toString())

 bean: email("mrbean@outlook.com")
 println(bean: toString())
}

You cannot overload methods, that is, providing methods with the same name but different
signatures.

It is strongly recommended that you use define to create and update methods. Consider
the following example:

let obj = DynamicObject():
 plop(|this| -> "Plop!")

Any call such as obj: plop() properly calls plop(). Because the dynamic object is fresh
and new, the first call to plop creates a property since it is currently missing.

That being said, the following would fail:

obj: plop(|this| -> "Plop it up!")

Indeed, when the value of a dynamic object property is a function, it is understood to be
a method, hence calling plop like it would be a setter method fails because there already
exists a property that is a function, and it has a different signature. It needs to be updated as
in:

Dynamic objects

47

obj: define('plop', |this| -> "Plop it up!")

As a rule of thumb, prefer named setters for values and define for methods. It is
acceptable to have named definitions for methods if and only if a call happens after
the object creation and before any call to mixin (remember that it injects properties
from other objects, including methods).

11.4. Querying the properties
The properties() method returns a set of entries, as instances of java.util.Map.Entry. You can
thus write code such as:

function dump = |obj| {
 foreach prop in obj: properties() {
 println(prop: getKey() + " -> " + prop: getValue())
 }
}

Because dynamic object entries mix both values and method handles, do not forget that the predefined
isClosure(obj) function can be useful to distinguish them.

11.5. Defining a fallback behavior
The fallback(handler) method let’s the user define a method that is invoked whenever the initial
method dispatch fails. Here is an example of how to define a fallback.

Calling a setter method for a non-existent property defines it, thus the fallback is not
applicable for setters.

let dynob = DynamicObject():
 fallback(|this, method, args...| {
 return "Dispatch failed for method: " + method + ", with args: " + args: asList(): join(" ")
 })

println(dynob: casperGetter())
println(dynob: casperMethod("foo", "bar"))

Dispatch failed for method: casperGetter, with args:
Dispatch failed for method: casperMethod, with args: foo bar

48

Chapter 12. Adapters
There is already much you can do while in Golo land using functions, closures, structs, augmentations
and dynamic objects.

Yet, the JVM is a wider ecosystem and you will soon be tempted to integrate existing Java libraries
into your code. Calling Java libraries from Golo is quite easy, but happens when you need to subclass
classes or provide objects that implement specific interfaces?

As you can easily guess, this is all what adapters are about: they allow the definition of objects at
runtime that can extend and inherit Java types.

12.1. A simple example
Let us get started with a simple example of a web application based on the nice Spark micro-
framework [http://www.sparkjava.com/].

Spark requires route handlers to extend an abstract base class called spark.Route. The following
code snippet does just that:

module sparky

import spark
import spark.Spark

function main = |args| {
 let conf = map[#
 ["extends", "spark.Route"], #
 ["implements", map[#
 ["handle", |this, request, response| { #
 return "Golo, world!"
 }]
]]
]
 let fabric = AdapterFabric() #
 let routeMaker = fabric: maker(conf) #
 let route = routeMaker: newInstance("/hello") #
 get(route) #
}

An adapter configuration is provided by a map object.
The extends key allows specifying the name of the parent class (java.lang.Object by
default).
The implements provides a map of method implementations.
The implementation is given by a closure whose signature matches the parent class definition,
and where the first argument is the receiver object that is going to be the adapter instance.
An adapter fabric provides context for creating adapters. It manages its own class loader.
An adapter maker creates instances based on a configuration.
The newInstance() method calls the right constructor based on the parent class constructors
and provided argument types.
The spark.Spark.get() static is method is happy as we feed it a subclass of spark.Route.

http://www.sparkjava.com/
http://www.sparkjava.com/
http://www.sparkjava.com/

Adapters

49

Adapter objects implement the gololang.GoloAdapter marker interface, so you can do
type checks on them a in: (foo oftype gololang.GoloAdapter.class).

12.2. Implementing interfaces
This is as easy as providing a java.lang.Iterable as part of the configuration:

let result = array[1, 2, 3]
let conf = map[
 ["interfaces", ["java.io.Serializable", "java.lang.Runnable"]],
 ["implements", map[
 ["run", |this| {
 for (var i = 0, i < result: length(), i = i + 1) {
 result: set(i, result: get(i) + 10)
 }
 }]
]]
]
let runner = AdapterFabric(): maker(conf): newInstance()
runner: run() #

As you may guess, this changes the result array values to [11, 12, 13].

12.3. Overrides
Implementations are great, but what happens if you need to call the parent class implementation of a
method? In Java, you would use a super reference, but Golo does not provide that.

Instead, you can override methods, and have the parent class implementation given to you as a method
handle parameter:

let conf = map[
 ["overrides", map[
 ["toString", |super, this| -> ">>> " + super(this)]
]]
]
println(AdapterFabric(): maker(conf): newInstance(): toString()) #

This prints something like: >>> $Golo$Adapter$0@12fc7ceb.

You can mix both implementations and overrides in an adapter configuration.

12.4. Star implementations and overrides
You can pass * as a name for implementations or overrides. In such cases, the provided closure
become the dispatch targets for all methods that do not have an implementation or override. Note that
providing both a star implementation and a star override is an error.

Let us see a concrete example:

Adapters

50

let carbonCopy = list[] #
let conf = map[
 ["extends", "java.util.ArrayList"],
 ["overrides", map[
 ["*", |super, name, args| { #
 if name == "add" {
 if args: length() == 2 {
 carbonCopy: add(args: get(1)) #
 } else {
 carbonCopy: add(args: get(1), args: get(2)) #
 }
 }
 return super: spread(args) #
 }
]]
]]
let list = AdapterFabric(): maker(conf): newInstance()
list: add("bar")
list: add(0, "foo")
list: add("baz") #

We create an empty list, more on that later.
A star override takes 3 parameters: the parent class implementation, the method name and the
arguments into an array (the element at index 0 is the receiver).
We copy into carbonCopy.
Same here, but we dispatch to a different method
We just call the parent class implementation of whatever method it is. Note that spread allows
to dispatch a closure call with an array of arguments.
At this point carbonCopy contains ["foo", "bar", "baz"] (and so does list, too).

The case of star implementation is similar, except that the closure takes only 2 parameters: |name,
args|.

12.5. Misc.
The AdapterFabric constructor can also take a class loader as a parameter. When none is provided,
the current thread context class loader is being used as a parent for an AdapterFabric-internal
classloader. There is also a static method withParentClassLoader(classloader) to obtain a fabric
whose class loader is based on a provided parent.

As it is often the case for dynamic languages on the JVM, overloaded methods with the same
name but different methods are painful. In such cases, we suggest that you take advantage of star-
implementations or star-overrides as illustrated above on a ArrayList subclass where the 2 add(obj)
and add(index, obj) methods are being intercepted.

Finally we do not encourage you to use adapters as part of Golo code outside of providing bridges to
third-party APIs.

51

Chapter 13. Dynamic code evaluation
Golo provides facilities for dynamically evaluating code from strings in the form of the
gololang.EvaluationEnvironment class. It provides an API that is useful both when used from
Golo code, or when used from a polyglot JVM application that embeds Golo.

13.1. Loading a module
The code of a complete module can be evaluated by the asModule method:

let env = gololang.EvaluationEnvironment()
let code =
"""
module foo

function a = -> "a!"
function b = -> "b!"
"""
let mod = env: asModule(code)
let a = fun("a", mod)
let b = fun("b", mod)
println(a())
println(b())

It is important to note that an EvaluationEnvironment instance has a GoloClassloader, and that
attempting to evaluate module code with the same module declaration will cause an error. Indeed, a
class loader cannot load classes with the same name twice.

13.2. Anonymous modules
The anonymousModule method is similar to asModule, except that the code to evaluate is free of
module declaration:

let env = gololang.EvaluationEnvironment()
let code =
"""
function a = -> "a!"
function b = -> "b!"
"""
let mod = env: anonymousModule(code)
let a = fun("a", mod)
let b = fun("b", mod)
println(a())
println(b())

The modules that get evaluated through anonymousModule have unique names, hence this method is
suitable in cases where the same code is to be re-evaluated several times.

13.3. Functions
The asFunction and def methods evaluate function code. Here is how asFunction can be used:

Dynamic code evaluation

52

let env = gololang.EvaluationEnvironment()
let code = "return (a + b) * 2"
let f = env: asFunction(code, "a", "b")
println(f(10, 20))

It evaluates straight code as the body of a function. Note that imports can be used to specify import
statements to be available while evaluation the code:

env:
 imports("java.util.LinkedList", "java.util.HashMap"):
 asFunction("""let l = LinkedList()
let m = HashMap()""")

The def method is similar, except that it has the parameters definition in the code to evaluate:

let env = gololang.EvaluationEnvironment()
let code = "|a, b| -> (a + b) * 2"
let f = env: def(code)
println(f(10, 20))

13.4. Running code
The first form of run method works as follows:

let env = gololang.EvaluationEnvironment()
let code = """println(">>> run")
foreach i in range(0, 3) {
 println("w00t")
}
return 666"""
println(env: run(code)) # => "w00t"x3 and "666"

The second form allows passing parameter values in a map:

let env = gololang.EvaluationEnvironment()
let code = """println(">>> run_map")
println(a)
println(b)
"""
let values = java.util.TreeMap(): add("a", 1): add("b", 2)
env: run(code, values)

It is important not to abuse run, as each invocation triggers the generation of a one-shot class. If the
same code is to be run several times, we suggest that you take advantage of either def or asFunction.

53

Chapter 14. Concurrency with workers
Concurrency is hard. Fortunately for us the java.util.concurrent packages bring useful
abstractions, data types and execution mechanisms to get concurrency "a little bit better".

Golo doesn’t provide a equivalent to the synchronized keyword of Java. This is on-purpose: when
facing concurrency, we advise you to just use whatever is in java.util.concurrent.

That being said we provide a simple abstraction for concurrent executions in the form of workers.
They pretty much resemble JavaScript web workers or isolates in Dart, albeit they do not really
isolate the workers data space.

14.1. The big picture
A worker is simply a Golo function that can be executed concurrently. You can pass messages to a
worker, and they are eventually received and handled by their target worker. In other words, workers
react to messages in an asynchronous fashion.

Communications between a worker and some client code happens through ports. A port is simply an
object that is responsible for dispatching a message to its worker.

Ports are obtained by spawning a worker function from a worker environment. Internally, a worker
environment manages a java.util.concurrent executor, which means that you do not have to deal
with thread management.

14.2. Worker environments
Worker environments are defined in the gololang.concurrent.workers.WorkerEnvironment
class / module.

You can directly pass an instance of java.util.concurrent.ExecutorService to its constructor, or
you may go through its builder object and call either of the following static methods:

• withCachedThreadPool() uses a cached thread pool,

• withFixedThreadPool(size) uses a fixed number of threads in a pool,

• withFixedThreadPool() uses a pool with 1 thread per processor core,

• withSingleThreadExecutor() uses a single executor thread.

In most scenarios withCachedThreadPool() is a safe choice, but as usual, your mileage varies. If you
have many concurrent tasks to perform and they are not IO-bound, then withFixedThreadPool() is
probably a better option. You should always measure, and remember that you can always pass a fine-
tuned executor to the WorkerEnvironment() constructor.

Worker environments also provide delegate methods to their internal executor. It is important to call
shutdown() to close the workers environment and release the threads pool. You can also call the
awaitTermination, isShutdown and isTerminated methods whose semantics are exactly those of
java.util.concurrent.ExecutorService.

Concurrency with workers

54

14.3. Spawning a worker and passing
messages

Worker functions take a single parameter which is the message to be received. To obtain a port, you
need to call the spawn(target) function of a worker environment, as in:

let env = WorkerEnvironment.builder(): withFixedThreadPool()
let port = env: spawn(|message| -> println(">>> " + message))

A port provides a send(message) method:

port: send("hello"): send("world")

Messages are being put in a queue, and eventually dispatched to the function that we spawned.

14.4. A complete and useless example
To better understand how workers can be used, here is a (fairly useless) example:

module SampleWithWorkers

import java.lang.Thread
import java.util.concurrent
import gololang.concurrent.workers.WorkerEnvironment

local function pusher = |queue, message| -> queue: offer(message) #

local function generator = |port, message| { #
 foreach i in range(0, 100) {
 port: send(message) #
 }
}

function main = |args| {

 let env = WorkerEnvironment.builder(): withFixedThreadPool()
 let queue = ConcurrentLinkedQueue()

 let pusherPort = env: spawn(^pusher: bindTo(queue))
 let generatorPort = env: spawn(^generator: bindTo(pusherPort))

 let finishPort = env: spawn(|any| -> env: shutdown()) #

 foreach i in range(0, 10) {
 generatorPort: send("[" + i + "]")
 }
 Thread.sleep(2000_L)
 finishPort: send("Die!") #

 env: awaitTermination(2000)
 println(queue: reduce("", |acc, next| -> acc + " " + next))
}

In this example, we spawn 3 workers:

Concurrency with workers

55

the first repeats a message 100 times,
…forwarding them to another one,
…that ultimately pushes them to a concurrent queue.
A message is sent to a final worker,
…that shuts the workers environment down.

As an aside, the example illustrates that worker functions may take further dependencies as
arguments. The pusher function takes a queue target and generator needs a port.

You can satisfy dependencies by pre-binding function arguments, all you need is to make sure that
each function passed to spawn only expects a single message as its argument, as in:

• ^pusher: bindTo(queue), and

• ^generator: bindTo(pusherPort), and

• env: spawn(|any| -> env: shutdown()) where the worker function is defined as a closure, and
implicitly captures its env dependency from the surrounding context.

56

Chapter 15. Golo template engine
Golo comes with a built-in template engine that is reminiscent of Java Server Pages or Ruby ERB. It
compiles template text into Golo functions.

15.1. Example
Consider the following example.

let template = """
<%@params posts %>
<!DOCTYPE html>
<html>
 <head>
 <title>Golo Chat</title>
 </head>
 <body>
 <form action="/" method="post">
 <input type="text" name="msg">
 <input type="submit" value="Send">
 </form>
 <div>
 <h3>Last posts</h3>
 <% foreach post in posts { %>
 <div>
 <%= post %>
 </div>
 <% } %>
 </div>
 </body>
</html>
"""

This multi-line string has a Golo template. It can be compiled into a function as follows:

let tpl = gololang.TemplateEngine(): compile(template)
println(tpl(someDataModel: posts()))

15.2. Directives
As you may have guess from the previous example:

• Golo code snippets are placed in <% %> blocks, and

• expressions can output values using <%= %>, and

• <%@import foo.bar.Baz %> causes foo.bar.Baz to be imported, and

• <%@params foo, bar, baz %> causes the template function to have 3 parameters, i.e., it is a |
foo, bar, baz| { ... } function.

When no <%@params ... %> exists, the function is assumed to have a single params parameter.

Golo template engine

57

The template engine is a simple one and makes no verification either on the templates
or the resulting Golo source code. The compile method may throw a GoloCompilation
exception though, and you can query the exception getSourceCode() and getProblems()
methods to obtain more details.

58

Chapter 16. Documenting Golo code
Of course you can document your code using comments (#), but who reads source code?

16.1. Documentation blocks
Golo provides a support for documentation blocks on modules, functions, augmentations and structs.
Blocks are delimited by ---- and contain free-form Markdown text [http://daringfireball.net/projects/
markdown/syntax].

Here is a quick example:

This is a *nice* module that does a bunch of useless things.

See more at [our website](http://www.typeunsafe.org).

module Hello

Adds 2 elements, which is quite surprising given the name.

* `x` is the first argument,
* `y` is the second argument.

The following snipped prints `3`:

 let result = adder(1, 2)
 println(result)

Impressive!

function adder = |x, y| -> x + y

16.2. Rendering documentation
The golo doc command can render documentation in html (the default) or markdown format:

$ golo doc --output target/documentation src/**/*.golo

Please consult golo help for more details.

16.3. Alignment
It is sometimes necessary to indent documentation blocks to match the surrounding code format.
Documentation blocks erase indentation based on the indentation level of the opening block:

The most useful augmentation *ever*.

augment java.lang.String {

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax

Documenting Golo code

59

 Creates a URL from a string, as in: `let url = "http://foo.bar/plop": toURL()`.

 function toURL = |this| -> java.net.URL(this)
}

When generating documentation from the code above, the documentation block of the toURL function
is unindented of 2 spaces.

60

Chapter 17. Misc. modules
Not everything fits into the main documentation. We encourage you to also look at the javadocs and
golodocs.

The next subsections provide summaries of misc. modules found as part of Golo.

17.1. JSON support (gololang.JSON)
Golo includes the JSON Simple [https://code.google.com/p/json-simple/] library to provide JSON
support.

While json-simple only supports encoding from lists and maps, this API brings support for sets,
arrays, Golo tuples, dynamic objects and structs.

Given a simple data structure, we can obtain a JSON representation:

let data = map[
 ["name", "Somebody"],
 ["age", 69],
 ["friends", list[
 "Mr Bean", "John B", "Larry"
]]
]
let asText = JSON.stringify(data)

Given some JSON as text, we can get back a data structure:

let data = JSON.parse(text)
println(data: get("name"))

The gololang.JSON module also provides helpers for JSON serialization and deserialization with
both dynamic objects and structs.

17.2. Scala-like dynamic variable
(gololang.DynamicVariable)

Golo has a DynamicVariable type that mimics the eponymous class from the Scala standard library.

A dynamic variable has inheritable thread-local semantics: updates to its value are confined to the
current thread and its future child threads.

Given the following code:

let dyn = DynamicVariable("Foo")
println(dyn: value())

let t1 = Thread({
 dyn: withValue(666, {
 println(dyn: value())
 })

https://code.google.com/p/json-simple/
https://code.google.com/p/json-simple/

Misc. modules

61

})

let t2 = Thread({
 dyn: withValue(69, {
 println(dyn: value())
 })
})

t1: start()
t2: start()
t1: join()
t2: join()
println(dyn: value())

one gets an output similar to:

Foo
69
666
Foo

with the 69 and 666 swapping order over runs.

17.3. Observable references (gololang.Observable)
An observable value notifies observers of updates in a thread-safe manner. An observable can also be
constructed from another observable using the map and filter combinators:

let foo = Observable("Foo")
foo: onChange(|v| -> println("foo = " + v))

let mapped = foo: map(|v| -> v + "!")
mapped: onChange(|v| -> println("mapped = " + v))

foo: set("69")

This yields the following output:

foo = 69
mapped = 69!

62

Chapter 18. Common pitfalls
Discovering a new programming language is fun. Yet, we all make mistakes in the beginning, as we
idiomatically repeat habits from other languages.

Because Golo works closely with the Java programming language, it is likely that Java programmers
will make some of the following mistakes early on.

18.1. new
Golo does not have a new operator for allocating objects. Instead, one should just call a constructor as
a function:

Good
let foo = java.util.LinkedList()

Compilation fails
let foo = new java.util.LinkedList()

18.2. Imports
Golo does not have star imports like in Java. Imports are only used at runtime as Golo tries to resolve
names of types, functions, and so on.

You must think of import statements as a notational shortcut, nothing else. Golo tries to resolve a
name as-is, then tries to complete with every import until a match is found.

import java.util
import java.util.concurrent.AtomicInteger

(...)

Direct resolution at runtime
let foo = java.util.LinkedList()

Resolution with the 1st import
let foo = LinkedList()

Resolution with the 2nd import
let foo = AtomicInteger(666)

18.3. Method invocations
Keep in mind that instance methods are invoked using the : operator, not with dots (.) like in many
languages.

This is a common mistake!

Calls toString() on foo
foo: toString()

Looks for a function toString() in module foo

Common pitfalls

63

foo.toString()

18.4. match is not a closure
One thing to keep in mind is that match returns a value, and that it is not a closure unless you want it
to.

let foo = match {
 case plop then 1
 case ploped then 2
 otherwise -1
}

Ok
println(foo)

Bad! foo is an integer!
println(foo("abc"))

	The Golo Programming Language
	Table of Contents
	
	Chapter 1. Basics
	1.1. Editor / IDE support
	1.2. Hello world
	1.3. Running "Hello world"
	1.4. Compiling Golo source code
	1.5. Running compiled Golo code
	1.6. Passing JVM-specific flags
	1.7. Bash autocompletion
	1.8. Zsh autocompletion
	1.9. Comments
	1.10. Variable and constant references
	1.11. Data literals
	1.12. Collection literals
	1.12.1. A note on tuples
	1.12.2. A note on maps

	1.13. Operators
	1.14. Calling a method
	1.15. Java / JVM arrays

	Chapter 2. Creating new project(s)
	2.1. Free-form project
	2.2. Maven-driven project
	2.3. Gradle-driven project

	Chapter 3. Functions
	3.1. Parameter-less functions
	3.2. Functions with parameters
	3.3. Variable-arity functions
	3.4. Functions from other modules and imports
	3.5. Local functions
	3.6. Module-level state

	Chapter 4. Java interoperability
	4.1. Main function Java compliance
	4.2. Calling static methods
	4.3. Calling instance methods
	4.4. null-safe instance method invocations
	4.5. Creating objects
	4.6. Static fields
	4.7. Instance fields
	4.8. Inner classes and enumerations
	4.9. Clashes with Golo operators and escaping
	4.10. Golo class loader

	Chapter 5. Control flow
	5.1. Conditional branching
	5.2. case branching
	5.3. match statements
	5.4. while loops
	5.5. for loops
	5.6. foreach loops
	5.7. break and continue
	5.8. Why no value from most control flow constructions?

	Chapter 6. Exceptions
	6.1. Raising exceptions
	6.2. Raising specialized exceptions
	6.3. Exception handling

	Chapter 7. Closures
	7.1. Defining and using a closure
	7.2. Compact closures
	7.3. Calling closures
	7.4. Limitations
	7.5. Closures to single-method interfaces
	7.6. Direct closure passing works
	7.7. Conversion to single-method interfaces
	7.8. Getting a reference to a closure / Golo function
	7.9. Binding and composing
	7.10. Calling functions that return functions

	Chapter 8. Predefined functions
	8.1. Console output
	8.2. Console input
	8.3. Exceptions
	8.4. Preconditions
	8.5. Arrays (deprecated)
	8.6. Ranges
	8.7. Closures
	8.8. File I/O
	8.9. Array types
	8.10. Misc.

	Chapter 9. Class augmentations
	9.1. Wrapping a string with a function
	9.2. Augmenting classes
	9.3. Augmentation scopes, reusable augmentations
	9.4. Standard augmentations

	Chapter 10. Structs
	10.1. Definition
	10.2. JVM existence
	10.3. toString() behavior
	10.4. Immutable structs
	10.5. Copying
	10.6. equals() and hashCode() semantics
	10.7. Helper methods
	10.8. Private members
	10.9. Augmenting structs

	Chapter 11. Dynamic objects
	11.1. Creating dynamic objects
	11.2. Defining values
	11.3. Defining methods
	11.4. Querying the properties
	11.5. Defining a fallback behavior

	Chapter 12. Adapters
	12.1. A simple example
	12.2. Implementing interfaces
	12.3. Overrides
	12.4. Star implementations and overrides
	12.5. Misc.

	Chapter 13. Dynamic code evaluation
	13.1. Loading a module
	13.2. Anonymous modules
	13.3. Functions
	13.4. Running code

	Chapter 14. Concurrency with workers
	14.1. The big picture
	14.2. Worker environments
	14.3. Spawning a worker and passing messages
	14.4. A complete and useless example

	Chapter 15. Golo template engine
	15.1. Example
	15.2. Directives

	Chapter 16. Documenting Golo code
	16.1. Documentation blocks
	16.2. Rendering documentation
	16.3. Alignment

	Chapter 17. Misc. modules
	17.1. JSON support (gololang.JSON)
	17.2. Scala-like dynamic variable (gololang.DynamicVariable)
	17.3. Observable references (gololang.Observable)

	Chapter 18. Common pitfalls
	18.1. new
	18.2. Imports
	18.3. Method invocations
	18.4. match is not a closure

