The Golo Programming Language

Julien Ponge

The Golo Programming Language
Julien Ponge

Table of Contents

... Vi
IO = - oSS PR 1
1.1. EditOr / IDE SUPPOITooiueeiieeieatiesteeiesiee e seesieestessessseeseeseesseesesseessesnsesseessesnsesseessesnsesseessens 1

2 o T 1 [0 TR0 1 o SRR 1

1.3. RUNNING "HEO WOITA" ...ttt ne e 1

1.4. Compiling GOIO SOUICE COURccueirueeiieieeiiesieeiesee st te sttt et ee e e s reete e e sseeeeeneenreenes 3

1.5. Running compiled GOIO COURcoiiiiiiiiiiee ettt s ee s 3

1.6. Passing JVM-SPECITIC TIAOSeoeeieieieeeeee e 3

1.7. Bash @UEOCOMPIELIONcceeiuiiieiiieieeie ettt et e e sreesaeeneesneeeeeneesns 4
IRSHIZAS =0 1o Toro 0] o1 [=: {1'o) o [T 4

1.9, COMIMENES ...ttt ettt ae e et e e e ae e e aee e eae e eas e e aae e easeeaseesabeeseeenseaseesareeneanans 4
1.10. Variable and constant rEfErENCEScoeereeierieieee e 4

I T I T =] (= TP 5
1.12. COHECHION HEEIAIS ..oeeeieieee ettt ae e b et esne e beeneesneeneas 5
1.12.2. A NOLE ON TUPIES ..ttt ettt e esreeae e neeaeeneas 6

1.12.2. A NOLE ON MBS ...oneiiiiieiieaiieateeseeesteasseeeseesseeebeessesaseesseeaseesseeaseasseeanseesneesseesseens 6

1,13, OPEIBLOISeeeeeeeueeeieeeeeesieeateesteeeeeesaeeebeesseeeabeesaeeeaseeaseeeaseesaeeeaseesaeeaaseeaaeeanseesaneanneesnnenseans 7
1.14. Caling @ MELNOMoooiiiieee ettt e esae et e neesre e e e 8
1.15. JAVA T IVIM @ITAYS ..ottt sttt ettt ae e ae et e saeenbeentesseenaeaneeeseenseeneesneense e 8

2. Creating NEW PrOJECI(S) .eeoveerrerrerreerteeirseesteetesteesteseesseesseesesseassessesseesseaseaneesseensesseesseessesnsesseensens 10
P I 1= o (o] 0 T o 0] = o SR 10

2.2. MaVeN-OriVEN PIOJECEoceeieieieeieieesie e eee ettt e et ee s e s se et e e aeeseeensesneesseeneeeneensens 10

2.3. Gradle-ariVen PrOJECLcoieieeeeie sttt e s e ste et e s seesbeeneesaeensesneesneenneas 11

G (0o o] SRR 12
3.1, Parameter-1€SS fUNCLIONSc.oiiiiiiie et s 12

3.2. FUNCLIONS With PAIAMELEN'Sooiiieieiieeie ettt sre et e neesne e e e 12

3.3. Variable-arity fUNCLIONScoiiiiiiieieee et e e 12

3.4. Functions from other modules and IMPOISccoeeririereereneeree e 13

3.5. LOCEI FUNCLIONS ...ttt sttt et e st et e st e ae et e eneeseeeneesneans 14

3.6. MOUUIE-TEVEL SLALE ..o st sre s 15

4. JaVA INLEIOPEIADIITY ...eeeeeeieieee ettt sttt e bt eene e s re e teeneeeneeeeeneennes 16
4.1. Main function Java COMPIIANCEcoeeiuiriieieseeie ettt naeas 16

4.2. Caling StatiC MELNOUScoiiiiieiiee ettt e sre e e e sreeneas 16

4.3. Caling iNStance MELNOASc.ooiiiieeee e 16

4.4, nul | -safe instance MEthod INVOCELIONScccereiierieneee e e 17

T O (= 1o 0] o = o £ TR 17

TS = ol 1= [0 RSP 18

A7, INSLANCE TIBIAS ...ttt st e et e e e be e e e sneesteeneesneens 18

4.8. Inner classes and ENUMEIAIONScceiiiiierieeie et esaeeseesneeseeeee e 19

4.9. Clashes with Gol0o operators and €SCAPINGcoeeruereererrerreereereeseesieeeesreesseseesseeseeseesnes 20

v (O A€o] o T ox F= S\ 3 o=o L= TRR 20

LI o 11 0] I 1 [0S 22
5.1. Conditional BIranChiNGccooeeieee e et sre e e saeeneas 22

5.2. case DranChing ... e 22

5.3, MAL Ch STAEIMENES ...ttt s e b e e s e e e sae e sareenneesnneeneas 23

o3 T T = o] = USRS 23

ST oY 0 o PSP USR 23

The Golo Programming Language

ST oY =Y ol o oo o1 OSSN 24
5.7. break @ CONL I NUE ..uviiiiieiieciee et e cee et e st eeste e saeesbeesaeeebeesasesbeesaeeebeesssesnbeessnesnseesanennns 24
5.8. Why no value from most control flow CONStruCtioNS?cccccvveeieece e 25
L o= o1 o 1 SRS 26
6.1. RAISING EXCEPLIONSveceeeiieeieciecteee et ste et e st e e et e s te e te e aesse e te e e e sseesseeneeaseenseeneesreeseeneenns 26
6.2. RaiSing SPeCialized EXCEPLIONSccecieieeieeiie et ee s te et e st esre e e e s e e nreeneas 26
LG T o= o 11 o T 7= | 11 o RS 26
O [0S T =SS TSRS SO 28
7.1. Defining and USING @ CIOSUIEccuveieiieiicie et e ettt e e ne e sne e 28
R ©0 4]0 7= o A ox [0 1S -SSR 28
7.3. CAlliNG CIOSUIES ...ttt sttt eere e teentesneenneenneeneennn 28
A 111 o] TSR 29
7.5. Closures to single-method INTEITACESccvevieeceece e 29
7.6. Direct CloSUre Passing WOTKScceeieeieiiesieseeseesieseesee e seessee e essesseessesnsesseessesnsesneensens 30
7.7. Conversion to single-method INTEIfaCESccvceeiieie e 30
7.8. Getting areference to a closure / GOIO fUNCLIONccceeveeieiiecicce e 30
7.9. Binding and COMPOSINGcouiiieiiieiieiieieesieeeesteesteeeesseesseeeesseesseeeesseesseesesseessesnsesseesseensens 31
7.10. Calling functions that return fUNCLIONSccooiiieiieie e 32
8. Predefined FUNCLIONSccoiiiiiieieiese sttt bbbt ettt na b 33
8.1. CONSOIE OULPULcveeeeeieeesieeieeieesteete et e st e et e st e e e e sseese e e e sseeteeseesseeseeneeeseeseennesreessennnens 33
8.2. CONSOIE IMPULeeeeeeieeiesieesie e et et e et e st e e es e eseeste e tesseesseesseeseesseensesseesseenseeneesseensesneesseensens 33
ST T o= o1 o] OSSPSR 33
8.4, PreCONMITIONSocviiviiiieiiiiiiieie ettt sttt ettt et et et besaesbens e e e e e eneas 33
AN g = YA (0 = o= o =) RSSO 34
G T = 10 TSRS 34
S O [0 S U =S ST 35
8.8, I 1O b ettt r e ae e 35
G R N 1 = VA V] 0TSSP 36
B.L0. IMHISC. .ttt ettt b et b bbbttt b bR bR R e R et et et et b bR ne e 36
9. ClaSS QUJMENLBLIONSccueeiiiiieieiesieeeeseeseetese e st eeesseesteeseesseesseaaeaseeseeseesseesseenseaseeseensesseesseeneenns 37
9.1. Wrapping a string With @ fUNCLIONcoveiiieeece e 37
0.2, AUGMENTING ClBSSES ...veiiiieieitecitecee st eieseesteeste st esteeste s e sseeteeseesteeseaseeaseeseaneesseensesnnesseensens 37
9.3. Augmentation scopes, reusable augmMENtaLioNSccvveereereeiesee e e 38
9.4. Standard aUGMENLBLIONSccceeierieiieeieeseereeeese e e seesre e e seesseeeesreesseesesseesseeseesreesseaneens 39
JO. SEFUCES ...ttt e et e et s e e s ae e e b e e eRe e e s e e sae e e s e e eme e e aseeameeeaneennneenneeaneennreenns 40
05 B B 1= 1 oo o ISP 40
10.2. VM BXISLENICEouviieieeiesiesteeieete et sttt sttt bbb b e bt be e e et e e et e benbe st e nneene e 40
ORI TS A I A Te T T 1= 7= Y/ S 40
10.4. IMMUEBDIE SITUCES ..ottt sb e bbb 41
0 T O oY/] oo OSSR 41
10.6. equal s() and hashCode() SEMANLICScceeeiiueriirieiiieeeereeeirre e e e e sbe e srbe e e sabeessaree s 41
10.7. HEIPEr MELNOAS ..ottt et e e ne e neeneeenee s 42
10.8. PriVate MEIMDENSoouiiiiiiiieieieeeeeie ettt bbbt e e e tesbenbesbennenneas 43
10.9. AUGMENTING SIFUCES ...veiieeiecie sttt sttt et s esne e e e sseeste e s e sneesneennennneen 43
R)V = o T o o] o] = £ 45
11.1. Creating dynamiC ODJECLSccciciiiieiice e 45
11.2. DEFINING VBIUES ...ttt ettt et be et e s s e nreenneene e teeneenneenes 45
11.3. DEfINING MELNOASc.oeceieiece et e s reenre e e 46
11.4. QUErYing the PrOPEITIEScccuiieeciece ettt st e e e s aeenteeneesreenneennens 47

The Golo Programming Language

12.

13.

14.

15.

16.

17.

18.

19.

11.5. Defining a fallback DENAVIONc.oociiieece s 47
0 =) = £ S 48
12.2. A SIMPIE EXAMPIE ...t e e e naeere s 48
12.2. IMplementing INLEITACEScov it e e nre s 49
12.3. OVEITIAES ..ottt sttt bbbt b et e et et e s bt s bt e bt e bt e st et et et e ntenbenbenrennes 49
12.4. Star implementations and OVEITIAEScceveeieriieiieie et ens 49
S T oSSR 50
D1 oo = (0] £ PP ORI PR APPSR 51
ST I (= < o1 = o] o SRRSO 51
13.2. PrinCIPlES @nd SYNLBXccceeiieieeiiieiieeiesieetesee st ete e ste e e s aeeaesreesreesesseesseesesneesneenneans 51
13.3. Use Cases and EXAMPIESocveiieiece ettt et sre e ne e e 54
G TG 3 I oo o 11 o S 54
13.3.2. Pre/post conditions CRECKINGcooveviiiieiieie ettt nnas 54
G T 3G T o o (] o S 56
(SRS N V1= 0104 1 o] o USSP 56
13.3.5. GENENIC CONLEXL ...eoiviviriieiieiieieite ettt sttt st sttt e et st sb e b reene e 57
DyNamicC COAE EVAIUBLIONcccueiueeiiiiie et ee sttt sttt sttt e aeete e e sreeneeneenneenns 60
I T 0= [o = 0 L1 S 60
14.2. ANONYMOUS MOUUIESocueeieeieieiesie ettt sttt te e s seeaeeseesreetesseeaneenneeneesreenes 60
G g o o TSR 60
I (U g] o o [RS 61
CoNCUITENCY WIth WOTKEFSoeeeeceeece ettt e sreene e 62
IS0 TR I 0T oo T o ox U = SRS 62
15.2. WOIKEr €NVIFONMENTSoiveiviriieiieieiesie sttt se et sttt st s et stesbesbesresne e 62
15.3. Spawning a worker and Passing MESSAESveccvevreerierreeieereesseseesseesseseesseesseseessesssessenns 63
15.4. A complete and USElESS EXAMPIEoooveciiceceee e 63
(€70 Lo I = 41 o] = (== 00 1 = O 65
00 R = 1 o) = SRS 65
16.2. DITECHIVES ..veeieieiieeeie ettt sttt ettt bbbt bt bt e et et e b e b e be e ens 65
[Dolei0 00701 (110l €To] Lo I oo o /= S 67
17.1. Documentation DIOCKScceiiiiiiiisie e s 67
17.2. Rendering dOCUMENLELIONcceeiieieesieeiieeieseesie e e se e te e e e et e ee s e st e eeesreesreenesneenseennas 67
G T N T a2 1= | S 67
IMHISC. MOTUIES ...ttt bbbt b b e s bt et e e e et e sbenbesbenbenneas 69
18.1. Standard augmentations (gol ol ang. St andar dAUGMENt At | ONS) .eeveerieeeereerieeieeseeseeeneas 69
18.2. JSON support (gol 0 @ang. JSON)ecceeeeeeeerieeeesreesseeseesseesseeessseessesssesseessesssesseessessssseessens 69
18.3. Scala-like dynamic variable (gol ol ang. Dynami cVari abl €) ...cccceeeeevieeceeseesiesieeseesienens 70
18.4. Observable references (gol ol ang. QDSEr Vabl €)ccvcceceereereseeseerie e seesee e see e e 71
18.5. Asynchronous programming helpers (gol ol ang. ASYNC) ..eveeceeveceeseese e 71
(0001 0.010] 0 I o111 =1 KSR 72
S TR0 I o 72
RS T2 1 010] 1 TSP 72
19.3. MO INVOCALIONSc.ceiiiiiiiiiiisiieiieie ettt bbbttt b b sne s 72
19.4. Mt Ch IS NOL & CIOSUIEcouiiieiiiitisiesiceiee ettt bbbttt ettt nrenns 73

Thisis the documentation for the Golo programming language.

Copyright and License Notice.
Copyri ght 2012-2014 Institut National des Sciences Appliquées de Lyon (I NSA-Lyon)

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http: //ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied
See the License for the specific | anguage governi ng perm ssions and
limtations under the License.

Vi

Chapter 1. Basics

Let us start with the Golo basics.

1.1. Editor / IDE support

Editor and IDE support for Golo is available for:

» Vim [https://github.com/jponge/vim-gol o]

Sublime Text 2 & 3 [https://github.com/k33g/sublime-gol o]

IntelliJ IDEA (syntax highthing) [https://github.com/k33g/golo-storm]

Eclipse [https://github.com/gol o-lang/gldt] (contributed by Jeff Maury)

Netbeans [https:.//github.com/gol o-lang/gol o-netbeans] (contributed by Serli [http://
www.serli.com/])

1.2. Hello world

Golo source code need to be placed in modules. Module names are separated with dots, asin:
Foo

f oo. Bar
f 0o. bar . Baz

(...)

It is suggested yet not enforced that the first elements in a module name are in lowercase, and that the
last one have an uppercase first letter.

A Golo module can be executableif it has a function named nai n and that takes an argument for the
JVM program arguments:

nodul e hel |l o. Wor | d
function main = |args| {

printin("Hello world!")
}

print | nisapredefined function that outputs a value to the standard console. Asyou can easily guess,
here we output Hel | o, wor | d! and that is an awesome achievement.

Newlines are important in Golo, so make sure that your editor ends files with a newline.

1.3. Running "Hello world"

Of course, we need to run thisincredibly complex application.

https://github.com/jponge/vim-golo
https://github.com/jponge/vim-golo
https://github.com/k33g/sublime-golo
https://github.com/k33g/sublime-golo
https://github.com/k33g/golo-storm
https://github.com/k33g/golo-storm
https://github.com/golo-lang/gldt
https://github.com/golo-lang/gldt
https://github.com/golo-lang/golo-netbeans
https://github.com/golo-lang/golo-netbeans
http://www.serli.com/
http://www.serli.com/
http://www.serli.com/

Basics

Golo comes with agol o script found in the distribution bi n/ folder. It provides several commands,
notably:

* versi on to query the Golo version, and

 conpi | e to compile some Golo codeto VM classes, and

* run to execute some already compiled Golo code, and

* gol o to directly execute Golo code from source files, and

* di agnose to print compiler internal diagnosis information, and

* doc to generate module(s) documentation, and

new to generate new project(s).

The complete commands usage instructions can be listed by running gol o - - hel p. A command usage
instructions can be listed by running gol o - - usage ${conmmand}.

The gol o script comes with VM tuning settings that may not be appropriate to your
environment. We also provide avani | | a- gol o script with no tuning. Y ou may use the
$JAVA_OPTS environment variable to provide custom JVM tuning to vani | | a- gol o.

Provided that gol o isavailable from your current $PATH, you may run the program above as follows:

$ golo golo --files sanpl es/ hel |l oworl d. gol o

Hell o worl d!

$ golo golo --files sanples/ --nodule hello. Wrld
Hell o worl d!

$

gol o gol o takes several Golo source files (*.golo and directories) asinput. It expects the last one to
have amai n function to call (or use - - nodul e to define the golo module with the mai n function). The
Golo code is compiled on the fly and executed straight into a JVM.

Y ou may also pass arguments to the mai n function by appending - - ar gs on the command line
invocation. Suppose that we have a module EchoAr gs as follows:

nodul e EchoArgs

function main = |args| {
foreach arg in args {
println("-> " + arg)

}
}

We may invokeit asfollows:

$ golo golo --files sanpl es/ echo-args.golo --args plop da plop
-> plop

-> da

-> plop

Basics

$
Note that ar gs is expected to be an array.

Finaly, the - - cl asspat h flag allowsto specify alist of classpath elements, which can be either
directoriesor . j ar files. Seethegol o hel p command for details on the various Golo commands.

1.4. Compiling Golo source code

Golo comes with a compiler that generates VM bytecodein . cl ass files. We will give more details
in the chapter on interoperability with Java.

Compiling Golo filesis straightforward:

$ golo conpile --output classes sanpl es/hell oworld. golo
$

This compiles the code found in sanpl es/ hel | owor | d. gol o and outputs the generated classesto a
cl asses folder (it will be created if needed):
$ tree cl asses/
cl asses/
hell o
Worl d. cl ass

1 directory, 1 file
$

1.5. Running compiled Golo code

Golo provides agol o command for running compiled Golo code:
$ cd cl asses
$ golo run --nodul e hell o. Worl d

Hel |l o worl d!
$

Simple, isn't it?

1.6. Passing JVM-specific flags

Both gol o and r un commands can be given JVM-specific flags using the JAVA_OPTS environment
variable.

As an example, the following runsf i bonacci . gol o and prints J'T compilation along the way:

Exporting an environnment variable
$ export JAVA OPTS=- XX: +Pri nt Conpi | ati on
$ golo golo --files sanpl es/fibonacci.gol o

...0r you may use this one-Iliner
$ JAVA OPTS=- XX: +Pri nt Conpi |l ati on golo golo --files sanpl es/fibonacci.gol o

Basics

1.7. Bash autocompletion

A bash script can be found in shar e/ shel | - conpl eti on/ called gol o- bash- conpl et i on that will
provide autocomplete support for the gol o and vani I | a- gol o CLI scripts. You may either sour ce
the script, or drop the script into your bash_conpl et i on. d/ folder and restart your terminal.

Not sure where your bash_conpl eti on. d/ folderis? Try / et ¢/ bash_conpl eti on. d/ on
o Linux or / usr/ 1 ocal / et ¢/ bash_conpl eti on. d/ for Mac Homebrew users.

1.8. Zsh autocompletion

A zsh script can be found in shar e/ shel | - conpl eti on/ called gol o- zsh- conpl et i on that works
using the gol o- bash- conpl et i on to provide autocomplete support using the bash autocomplete
support provided by zsh. Place both filesinto the same directory and sour ce gol o- zsh- conpl eti on
from your terminal or . zshr c to giveit atry!

1.9. Comments

Golo comments start with a#, just like in Bash, Python or Ruby:

This is a conment
println("WF?") # it works here, too

1.10. Variable and constant references

Golo does not check for types at compile time, and they are not declared. Everything happens at
runtime in Golo.

Variables are declared using the var keyword, while constant references are declared with 1 et . Itis
strongly advised that you favour | et over var unlessyou are certain that you need mutability.

Variables and constants need to be initialized when declared. Failing to do so resultsin acompilation
error.

Here are afew examples:

Ok
var i = 3

i =i +1

The assignnent fails because truth is a constant
let truth = 42

truth = 666

Invalid statement, variables / constants have to be initialized
var foo

Valid names contain upper and lower case letters withinthe[a. . z] range, underscores (_), dollar
symbols ($) and numbers. In any case, an identifier must not start with a number.

Basics

Ok, but not necessarily great for humans..
let _$_ f_o_$$666 = 666

Wong!
l et 666_club = 666

1.11. Data literals

Golo supports a set of data literals. They directly map to their counterparts from the Java Standard
API. We give them along with examplesin the data literal s table below.

Javatype Golo literals

nul | nul |

j ava. | ang. Bool ean true orfal se

java.lang. String "hell o worl d"

j ava. |l ang. Char act er a','b', ...

j ava. |l ang. | nt eger 123,-123,1 234, ...

java.l ang. Long 123 1,-123_L,1 234 1, ...

j ava. |l ang. Doubl e 1.234,-1.234,1.234€9, ...

j ava. |l ang. Fl oat 1.234 F,-1.234 F,1.234e9 F, ...

j ava.l ang. d ass String.class,java.lang. String. cl ass,
gol ol ang. Pr edef . nodul e, ...

j ava. |l ang. i nvoke. Met hodHandl e ~f oo, *sone. nodul e: : f oo, ...

Speaking of strings, Golo also supports multi-line stringsusing the" " " delimiters, asin:

let text = """This is
a nulti-line string.
How
cool
is
that?"""

println(text)

This snippet would print the following to the standard console output:

This is
a multi-line string.
How
cool
is
t hat ?

1.12. Collection literals

Golo support special support for common collections. The syntax uses brackets prefixed by a
collection name, asin:

Basics

let s = set[1, 2, "a", "b"]

let v = vector[1, 2, 3

let m=pmap[[1, "a"], [2, "b"]]

#(...)

The syntax and type matchings are the following:

Collection Javatype Syntax

Tuple gol ol ang. Tupl e tuple[1, 2, 3],orsimply[1,
2, 3]

Array java. |l ang. Obj ect[] array[1, 2, 3]

List java.util.LinkedLi st list[1, 2, 3]

V ector java.util.ArraylLi st vector[1, 2, 3]

Set java. util.Li nkedHashSet set[1, 2, 3]

Map java. util.Li nkedHashMap map[[1l, "a"], [2, "b"]]

1.12.1. A note on tuples

Tuples essentialy behave as immutable arrays.

The gol ol ang. Tupl e class provides the following methods:
 aconstructor with a variable-arguments list of values,

* aget (i ndex) method to get the element at a specified index,

* size() andi sEnpty() methodsthat do what their names suggest,
e aniterator() method because tuples areiterable, and

* equal s(ot her), hashCode() andtoString() do just what you would expect.

1.12.2. A note on maps

The map collection literal expects entries to be specified as tuples where the first entry is the key, and
the second entry isthe value. This allows nested structures to be specified asin:

map|
["foo", "bar"],
["pl op", set[1l, 2, 3, 4, 5]],
["nrbean", map|
["name", "M Bean"],
["email", "bean@utl| ook.coni']
11
]

There are afew rules to observe:
* not providing a series of tuples will yield class cast exceptions,

 tuplesmust have at least 2 entries or will yield index bound exceptions,

Basics

* tuples with more than 2 entries are ok, but only the first 2 entries matter.

Because of that, the following code compiles but raises exceptions at runtime:

let mL = map[1l, 2, 4, 5]
let m2 = map|

[1],

["a, "b"]

]

The rationale for map literals to be loose is that we let you put any valid Golo expression, like
functions returning valid tuples:

let a=->[1, 'a']
let b =->[2, 'b']
let m= map[a(), b()]

1.13. Operators

Golo supports the following set of operators.

Symbol(s) Description Examples
+ Addition on numbers and 1 + 2gives3.
strings.

"foo" + "bar" gives
"foobar".

"foo" + somethi ng where
sonet hi ng iSany object
instance is equivalent to " f oo"
+ sonet hing.toString() in

Java.
- Subtraction on numbers. 4 - 1Qivess.
* Multiplication on numbersand |2 * 2 gives4.
strings.
"a" * 3gives"aaa".
/ Division on numbers. 4 | 2(gives2.
% Modulo on numbers. 4 %2 gives0,3 % 2 gives1.
RS e T T Comparison between numbers |1 < 2 givestrue.
">z and objects that implement

j ava. | ang. Conpar abl e.
== isequivalent to calling
bj ect #equal s(Obj ect) in

Java.
is,isnt Comparison of reference ais bgivestrueonlyifa
equality. and b reference the same object
instance.
and, or, not Boolean operators. not is of true and true givestrue,
course aunary operator. not (true) givesfal se.

Basics

Symbol(s) Description Examples

of t ype Checks the type of an object ("pl op" oftype
instance, equivalent to the String. class) givestr ue.
i nst anceof operator in Java.

orlfNull Evaluates an expression and null orlfNull "a" gives"a".
returns the value of another one |foo() orlfNull 0 givesthe
if nul 1. value of calling f oo(), or 0 if

foo() returnsnul | .

1.14. Calling a method

Although we will discuss thisin more details later on, you should already know that : is used to
invoke instance methods.

Y ou could for instance call thet oSt ri ng() method that any Java object has, and print it out as
follows:

println(123: toString())
println(soneCbject: toString())

1.15. Java / JVM arrays

Asyou probably know, arrays on the VM are specia objects. Golo deals with such arrays as being
instances of oj ect [] and does not provide awrapper class like many languages do. A Java/ VM
array isjust what it is supposed to be.

Golo adds some sugar to relieve the pain of working with arrays. Golo allows some special methods to
be invoked on arrays:

e get (i ndex) returnsthevalueat i ndex,

* set (index, value) Setsval ue ati ndex,

* length() andsize() returnthearray length,

* iterator() returnsajava.util.lterator,

* toString() delegatestojava. util.Arrays.toString(Qbject[]),

* asList() delegatestojava.util.Arrays. asLi st (Object[]),

* equal s(someArray) delegatestojava. util. Arrays. equal s(this, soneArray),
* getd ass() returnthearray class.

Given areference a on some array:

CGets the el enent at index O
a: get(0)

Basics

Repl aces the elenent at index 1 with "a"
a: set(1, "a")

Nice print
println(a: toString())

Convert to a real collection
let list = a: asList()

The methods above do not perform array bound checks.

Finally, arrays can be created with the Ar r ay function, asin:

let a
let b

Array(1l, 2, 3, 4)
Array("a", "b")

Y ou can of course take advantage of the ar r ay collection literal, too:

let a
let b

array[1, 2, 3, 4]
array["a", "b"]

Chapter 2. Creating new project(s)

The gol o newcommand can create new Golo project(s):

$ gol o new Foo

The command creates a new Golo module named Foo in amai n. gol o file with asimple function
named mai n that takes an argument for the VM program arguments.

By default we create a new free-form project but you can specify the type of project with the - - t ype
command argument. Three types of projects are currently available:

» Free-form project,

* Maven-driven project,

» Gradle-driven project.

As an exampleif you want to create a Maven-driven project, just add - - t ype naven:
$ gol o new Foo --type maven

By default we create the project directory where the gol o command is run. If you need to create your
project directory elsewhere you can use the - - pat h command argument:

$ golo new Bar --path /opt/golo

This creates the project directory named Bar in/ opt/ gol o.

2.1. Free-form project

The structure of afree-form project is as follows:

$ tree Foo
Foo

i nports
#H## jars

mai n. gol o

2.2. Maven-driven project

The structure of a Maven-driven project is as follows:

$ tree Foo
Foo
pom xmi
src
mai n
gol o
mai n. gol o

The project can be built and packaged with Maven using the following command:

$ mvn package

10

Creating new project(s)

Y ou can now run the module Foo with:

* nvn

$ nmvn exec:java

* java

$ java -jar target/Foo-*-jar-w th-dependencies.jar
* golo

$ cd target/cl asses
$ golo run --nodul e Foo

2.3. Gradle-driven project

The structure of a Gradle-driven project is as follows:

$ tree Foo

Foo
buil d. gradl e
H#H## src

main

gol o
mai n. gol o

The project can be built and packaged with Gradle using the following command:

$ gradl e build

Y ou can how run the module Foo with:
e gradle

$ gradle run

* golo

$ cd buil d/cl asses/ main
$ golo run --nodul e Foo

11

Chapter 3. Functions

Functions are first-class citizen in Golo. Here is how to define and call some.

3.1. Parameter-less functions

Golo modules can define functions as follows:

nmodul e sanpl e

function hello = {
return "Hello!"

}
In turn, you may invoke a function with a familiar notation:

let str = hell o()

A function needs to return avalue using ther et ur n keyword. Some languages state that the last
statement is the return value, but Golo does not follow that trend. We believe that r et ur n ismore
explicit, and that afew keystrokesin favour of readability is still agood deal.

Still, you may omit r et ur n statements if your function does not return avalue:

function printer = {
println("Hey!")
}

If you do so, the function will actually return nul | , hencer esul t in the next statement isnul | :

result will be null
let result = printer()

3.2. Functions with parameters

Of course functions may take some parameters, asin:

function addition = |a, b|] {
return a + b

}
E Parameters are constant references, hence they cannot be reassigned.
[foe

Invoking functions that take parametersis straightforward, too:

let three = addition(1l, 2)
let hello world = addition("hello ", "world!")

3.3. Variable-arity functions

Functions may take a varying number of parameters. To define one, just add . . . to the last parameter
name:

12

Functions

function foo = |a, b, c...| {
...

}

Here, ¢ catches the variable argumentsin an array, just like it would be the case with Java. Y ou can
thustreat ¢ as being a Java object of type oj ect [] .

Calling variable-arity functions does not require wrapping the last argumentsin an array. While
invoking the f oo function above, the following examples are legit:

a=1, b=2, cT[]
foo(1l, 2)

a=1, b=2, c=[3]
foo(1l, 2, 3)

a=1, b=2, c=[3,4]
foo(1l, 2, 3, 4)

Because the parameter that catches the last argumentsis an array, you may call array methods. Given:

function element At = |index, args...| {
return args: get(index)

}

then:

prints "2"

println(elementAt(1, 1, 2, 3))

3.4. Functions from other modules and
Imports

Suppose that we have a module f oo. Bar :
nodul e foo. Bar

function f = {
return "f()"

}

We can invokef from another module by prefixing it with its module name:

let r = foo.Bar.f()

Of course, we may also take advantage of ani nport Statement:
nodul e Sonewher e. El se

i mport foo. Bar

function plop = {

return f()

}

13

Functions

Imports in Golo do not work as in Java. Golo is a dynamic language where symbols are

being resolved at runtime. Module imports are not checked at compilation time, and their
sole purposeisto help in dynamic resolution. Back to the previous example, f cannot be
resolved from the current module, and the Golo runtime subsequently tries to resolve f
from eachi nport statement. Also, note that the order of i nport statements isimportant,
as the resolution stops at the first module having thef function.

Last but not least, you may prepend the last piece of the module name. The following invocations are
equivalent:

nodul e Sonmewher e. El se

i mport foo. Bar

function plop = {
let result = f()
let result _bis = Bar.f()

let result full = foo.Bar.f()
return result

}

Golo modules have a set of implicit imports:
¢ gol ol ang. Predefi ned,

* gol ol ang. St andar dAugnent at i ons,

¢ gol ol ang,

* java.lang.

3.5. Local functions

By default, functions are visible outside of their module. Y ou may restrict the visibility of afunction
by using thel ocal keyword:

nodul e Foo

| ocal function a = {
return 666

}

function b = {
return a()

}

Here, b isvisible while a can only be invoked from within the Foo module. Given another module
called Bogus, the following would fail at runtime:

nodul e Bogus
function i _wll _crash = {

return Foo. a()

}

14

Functions

3.6. Module-level state

You can declarel et and var references at the module level, asin:

nodul e Sanpl e

let a 1

var b truth()

| ocal function truth = {
return 42

}

These references get initialized when the module is being loaded by the Java virtual machine. In fact,
module-level stateisimplemented using pri vat e stati c fieldsthat get initializedina<clinit>
method.

Module-level references are only visible from their module, although a function may provide
accessors to them.

It isimportant to note that such references get initialized in the order of declaration in the source file.
Having initialization dependencies between such references would be silly anyway, but one should
keep it in mind just in case.

introduce module-level state. Beware of potential memory leaks, just like st at i ¢ class

: Global state isabad thing in general. We strongly advise you to think twice before you
fields in the Java programming language.

15

Chapter 4. Java interoperability

Golo aims at providing a seamless 2-way interoperability with the Java programming language.

4.1. Main function Java compliance

If the Golo compiler find a unary function named mai n, it will be compiled to avoi d(String[])
static method. This mai n method can serversasa JvVM entry point.

Suppose that we have the following Golo module:
nodul e mai nEnt r yPoi nt
function main = |args| {
println("->" + args: get(0))
}
Once compiled, we may invoke it as follows:
$ gol o conpil e mai nEnt ryPoi nt. gol o
$ java -cp ".:golo.jar" nainEntryPoi nt CGol oRocks

-> (ol oRocks
$

4.2. Calling static methods

Golo can invoke public Java static methods by treating them as functions:
nodul e sanpl e
i mport java.util.Arrays

function oneTwoThree = {
return asList(1, 2, 3)

}

In thisexample, asLi st isresolved fromthej ava. util. Arrays import and called as a function.
Note that we could equivalently have written aqualified invocation as Arr ays. asLi st (1, 2, 3).

4.3. Calling instance methods

When you have an object, you may invoke its methods using the : operator.
The following would call thet oSt ri ng method of any kind, then print it:
println(">>> " + someObject: toString())

Of course, you may chain calls as long as a method is not of avoi d return type. Golo converts Java
voi d methods by making them return nul | . Thisis neither abug or afeature: the invokedynamic
support on the VM simply does so.

16

Javainteroperability

4.4. ...-safe instance method invocations

Golo supports nul | -safe methods invocations using the " Elvis' symbol: 2: .

Suppose that we invoke the method bar () on some referencef oo: foo: bar (). If fooisnul |, then
invoking bar () throwsaj ava. | ang. Nul | Poi nt er Except i on, just like you would expect in Java.

By contrast:
e foo?: bar() simply returnsnul |, and
* null?: anything() returnsnul |, too.

Thisis quite useful when querying data models where nul | values could be returned. This can
be elegantly combined with the or I f Nul I operator to return a default value, asillustrated by the
following example:

| et person = dao: findByNane("M Bean")
let city = person?: address()?: city() orlfNull "n/a"

Thisis more elegant than, say:

| et person = dao: findByName("M Bean")
var city = "n/a"
if person isnt null ({
| et address = person: address()
if address isnt null ({
city = address: city() of IfNull "n/a"

}
}

The runtime implementation of nul | -safe method invocations is optimistic asit behaves
likeatry block catching aNul | Poi nt er Except i on. Performance is good unless most
invocations happen to be on nul |, in which case using ?: is probably not a great idea.

4.5. Creating objects

Golo doesn’t have an instantiation operator like newin Java. Instead, creating an object and calling its
constructor isdone asif it was just another function.

Asan example, we may alocate aj ava. uti | . Li nkedLi st asfollows:
nodul e sanpl e
i mport java.util

function aList = {
return LinkedLi st ()

}
Another example would beusing aj ava. | ang. St ri ngBui | der.

function str_build = {
return java.lang. StringBuilder("h"):

17

Javainteroperability

append("e"):
append("1"):
append("1"):
append("o0"):
toString()

}

As one would expect, the st r _bui I d function above givesthe " hel | 0" string.

4.6. Static fields

Golo treats public static fields as function, so one could get the maximum value for an | nt eger as
follows:

nodul e sanpl es. MaxI nt

[ocal function max_int = {
return java.l ang. | nteger. MAX_VALUE()

}

function main = |args| {
println(max_int())

}

Given than most static fields are used as constants in Java, Golo does not provide support
@ to change their values. This may change in the future if compelling general-interest use-
cases emerge.

4.7. Instance fields

Instance fields can be accessed as functions, both for reading and writing. Suppose that we have a
Java class that looks as follows:

public class Foo {
public String bar;
}

We can access the bar field asfollows:
l et foo = Foo()

Wite
foo: bar("baz")

Read, prints "baz"
println(foo: bar())

An interesting behavior when writing fields is that the " methods" return the object, which means that
you can chain invocations.

Suppose that we have a Java class as follows:

public class Foo {
public String bar;
public String baz;

18

Javainteroperability

}

We can set all fields by chaining invocations asin:

let foo = Foo(): bar(1): baz(2)

It should be noted that Golo won'’t bypass the regular Java visibility access rules on fields.

’qj What happensif thereisboth afield and a method with the same names?

Back to the previous example, suppose that we have both afield and a method with the
same name, asin:

public class Foo {
public String bar;

public String bar() {
return bar;

}
}

Golo resolves methods first, fields last. Hence, the following Golo code will resolve the
bar () method, not the bar field:

l et foo = Foo()

Wite the field
foo: bar("baz")

Calls the bar() nethod
println(foo: bar())

4.8. Inner classes and enumerations

We will illustrate both how to deal with public static inner classes and enumerations at once.
The rulesto deal with them in Golo are as follows.

1. Inner classes areidentified by their real name in the JVM, with nested classes being separated by a
$ sign. Hence, Thr ead. St at e in Javaiswritten Thr ead$st at e in Golo.

2. Enumerations are just normal objects. They expose each entry as a static field, and each entry isan
instance of the enumeration class.

Let us consider the following example:
nodul e sanpl e. EnunsThr eadSt at e
i mport java.l ang. Thread$St at e
function main = |args| {
Call the enumentry like a function

| et new = Thr ead$St at e. NEW)
println("name=" + new. name() + ", ordinal=" + new ordinal())

19

Javainteroperability

Wal k through all enumentries
foreach el enent in Thread$State. val ues() {
println("name=" + elenment: name() + ", ordinal=" + elenent: ordinal())

}
}

Running it yields the following console output:

$ golo golo --files sanpl es/ enuns-t hread-state. golo
nanme=NEW or di nal =0

nanme=NEW or di nal =0

nanme=RUNNABLE, ordi nal =1

nane=BLOCKED, ordi nal =2

nane=WAI TI NG ordi nal =3

nanme=TlI MED WAI TI NG or di nal =4

nane=TERM NATED, ordi nal =5
$

4.9. Clashes with Golo operators and
escaping

Because Golo provides afew named operators such asi s, and or not , they are recognized as operator
tokens.

However, you may find yourself in a situation where you need to invoke a Java method whose name
isa Golo operator, such as:

Function cal

is()

Met hod cal
sonmeGbj ect: foo(): is(): not(): bar()

Thisresultsin aparsing error, asi s and not will be matched as operators instead of method
identifiers.

The solution isto use escaping, by prefixing identifiers with a backtick, asin:

Functi on cal

is()

Met hod cal
soneChject: foo(): "is(): "not(): bar()

4.10. Golo class loader

Golo provides aclass loader for directly loading and compiling Golo modules. Y ou may useit as
follows:

import fr.insalyon.citi.golo.conpiler.GoloC assLoader
public class Foo {

public static void main(String... args) throws Throwabl e {

20

Javainteroperability

ol oC assLoader cl assLoader = new CGol od assLoader () ;
Cl ass<?> nodul eCl ass = cl assLoader. | oad("foo. gol 0", new Fil el nput Stream("/path/to/fo
Met hod bar = nodul e ass. get Met hod("bar", Object. cl ass);
bar.i nvoke(null, "golo gol 0o");
}
}

This would work with a Golo module defined asin:

nodul e foo. Bar
function bar = |wat| -> println(wat)

Indeed, a Golo module is viewable as a Java class where each function is a static method.

load two Golo source files with the same nodul e name declaration. Thisis because it will

@ Gol oCl assLoader israther dumb at this stage, and you will get an exception if you try to
attempt to redefine an already defined class.

Later in the glorious and glamorous future, Golo will have objects and not just functions.
® Be patient, it's coming in!

21

Chapter 5. Control flow

Control flow in Golo isimperative and has the usual constructions found in upstream languages.

5.1. Conditional branching

Golo supports the traditional i f / el se constructions, asin:

if gololsGeat() {
println("Golo Colo")

}

if (someCondition) {
doThi s()

} else if someQ her Condition {
doThat ()

} else {
doThat Thi ng()

}

The condition of ani f statement does not need parenthesis. Y ou may add some to clarify amore
elaborated expression, though.

5.2. «se Dranching

Golo offersaversatile case construction for conditional branching. It may be used in place of
multiple nested i f / el se statements, asin:

function what = |obj| {
case {

when obj oftype String.class {
return "String"

}

when obj oftype Integer.class {
return "I nteger"

}

ot herwi se {
return "alien"

}
}
}

A case statement requires at least 1 when clause and a mandatory ot her wi se clause. Each clauseis
being associated with ablock. It is semantically equivalent to the correspondingi f / el se chain:

function what = |obj| {

if obj oftype String.class {
return "String"

} else if obj oftype Integer.class {
return "I nteger"

} else {
return "alien"

}

}

22

Control flow

when clauses are being evaluated in the declaration order, and only the first satisfied oneis
@ being executed.

5.3. = Statements

The mat ch statement is a convenient shortcut for cases where acase statement would be used to
match avalue, and give back aresult. While it may resemble pattern matching operators in some
other languagesit is not fully equivalent, as Golo does not support destructuring.

mat ch isagreat addition to the Golo programmer:
let item= "foo@ar.cont
let what it could be = -> match {
when item contains("@) then "an emmil ?"
when item startsWth("+33") then "a French phone nunber ?"

when item startsWth("http://") then "a website URL?"
ot herwi se "I have no clue, mate!"

}

prints "an email ?"
println(what it could be(iten))

The values to be returned are specified after at hen keyword that follows a boolean expression to be
evaluated.

Like case statements, amat ch construct needs at least one when clause and one ot her wi se clause.

5.4. wi. lOOPS

While loops in Golo are straightforward:

function times = | n| {
var times =0
while (times < n) { tinmes =tinmes + 1 }
return tinmes

}

The parenthesisin the whi | e condition may be omitted like it isthe casefori f statements.

5.5. i« lOOpPS

Thisisthe most versatile loop construction, as it features:

1. avariable declaration and initialization (a Golo variable is always initialized anyway), and
2. aloop progress condition, and

3. aloop progress statement.

The following function shows af or loop:

23

Control flow

function fact = |value, n| {
var result =1
for (var i =0, i <n, i =i + 1) {
result = result * val ue
}

return result

}

Asyou can seeg, it isvery much like af or loop in Java, except that:
» thefor loop elementsare separated by ' ,' instead of ' ;' , and
* there cannot be multiple variablesin the loop, and

* there cannot be multiple loop progress statements.

Again, this choice is dictated by the pursue of ssimplicity.

5.6. f oreach IOOpS

Golo provides a"for each” style of iteration over iterable elements. Any object that is an instance of
java.lang. | terabl e canbeusedinforeach loops, asin:
function concat _to string = |iterable| {

var result = ""

foreach itemin iterable {
result = result + item

}

return result

}

In thisexample, i t emis avariable within the f or each 100p scope, and i t er abl e isan object that is
expected to be iterable.

Y ou may use parenthesis around af or each expression, sof oreach (foo in bar) isequivaent to
foreach foo in bar.

@ Although Java arrays (Obj ect []) are not real objects, they can be used with f or each
loops. Golo providesai t er at or () method for them.

57 br eak and conti nue

Although not strictly necessary, the br eak and cont i nue statements can be useful to simplify some
loops in imperative languages.

Like in Java and many other languages:
* break exitsthe current inner-most loop, and
* conti nue skipsto the next iteration of the current inner-most loop.

Consider the following contrived example:

24

Control flow

nodul e t est

function main = |args| {
var i =0
while true {
i =i +1
if i <40 {
conti nue
} else {
print(i + " ")
}
if i == 50 {
br eak

}

}
println("bye")
}

It prints the following outpult:

40 41 42 43 44 45 46 47 48 49 50 bye

Golo does not support br eak statementsto labels like Java does. In fact, thisisagot o statement in
disguise.

5.8. Why no value from most control flow
constructions?

Some programming languages return values from selected control flow constructions, with the
returned value being the evaluation of the last statement in a block. This can be handy in some
situations such as the following code snippet in Scala:

printin(if (4 %2 == 0) "even" else "odd")

The Golo original author recognizes and appreciates the expressiveness of such construct. However,
he often finds it harder to spot the returned values with such constructs, and he thought that trading a
few keystrokes for explicitness was better than shorter construct based in implicitness.

Therefore, most Golo control flow constructions do not return values, and programmers are instead
required to extract a variable or provide an explicit r et ur n statement.

25

Chapter 6. Exceptions

Exception handling in Golo is simple. There is no distinction between checked and unchecked
exceptions.

6.1. Raising exceptions

Golo provides 2 predefined functions for raising exceptions:
* raise(nessage) throwsaj ava. | ang. Runti meExcept i on with amessage given as astring, and

* rai se(nessage, cause) doesthe same and specifies a cause which must be an instance of
j ava. |l ang. Thr owabl e.

Throwing an exception is thus as easy as.

i f sonet hi ngl sWong() {
rai se("Wops!")

}

6.2. Raising specialized exceptions

Of course not every exception shall be an instance of j ava. | ang. Runt i meExcept i on. When amore
specialized typeis required, you may simply instantiate a Java exception and throw it using thet hr ow
keyword asin the following example:

nodul e gol ot est. executi on. Excepti ons
i mport java.l ang. Runti meExcepti on

function runtineException = {
t hr ow Runti neExcepti on("w00t")

}

6.3. Exception handling

Exception handling usesthe familiartry / catch,try / catch / finallyandtry / finally
constructions. Their semantics are the same as found in other languages such as Java, especially
regarding the handling of fi nal I y blocks.

The following snippets show each exception handling form.

Good old try / catch

try {
sonet hi ng()

} catch (e) {
e: printStackTrace()

}

Atry / finally
try {

26

Exceptions

doSonet hi ng()
} finally {
cl eanup()

}

Full try / catch / finally construct
try {
doSonet hi ng()
} catch (e) {
e: printStackTrace()
case {
when e oftype | OException. cl ass {
println("Ch, an 1/O exception that | was expecting!")
}
when e oftype SecurityException.class {
println("Dam, | didn't expect a security problem..")
t hrow e
}
ot herw se {
t hrow e

}

}
} finally {

cl eanup()

}

Because Golo is aweakly typed dynamic language, you need to check for the exception

o type with the of t ype operator. In astatically typed language like Java, you would instead
have several cat ch clauses with the exception reference given a specific type. We suggest
that you take advantage of the case branching statement.

27

Chapter 7. Closures

Golo supports closur es, which means that functions can be treated as first-class citizen.

7.1. Defining and using a closure

Defining a closure is straightforward as it derives from the way a function can be defined:

l et adder = |a, b| {
return a + b

}

At runtime, aclosure is an instance of j ava. | ang. i nvoke. Met hodHandl e. This means that you can
do al the operations that method handles support, such as invoking them or inserting arguments as
illustrated in the following example:

l et adder = |a, b| {
return a + b
}
println(adder: invokeWthArgunments(1, 2))

| et addToTen = adder: bi ndTo(10)
println(addToTen: invokeW thArgunents(2))

As one would expect, this prints 3 and 12.

7.2. Compact closures

Golo supports a compact form of closures for the cases where their body consists of asingle
expression. The example above can be simplified as:

let adder = |a, b] ->a + b

Y ou may also use this compact form when defining regular functions, asin:
nodul e Foo

| ocal function sayHello = |who| -> "Hello " + who + "!"

Prints "Hello Julien!"

function main = |args| {

println(sayHel |l o("Julien"))
}

7.3. Calling closures

While you may take advantage of closures being method handles and call them using
i nvokeW t hAr gument s, there is a (much) better way.

When you have areference to a closure, you may ssmply call it as aregular function. The previous
adder example can be equivaently rewritten as:

let adder = |a, b] ->a + b

28

Closures

println(adder (1, 2))

| et addToTen = adder: bi ndTo(10)
println(addToTen(2))

7.4. Limitations

Closures have access to the lexical scope of their defining environment. Consider this example:

function plus_3 = {
let foo = 3
return | x] -> x + foo

}

The pl us_3 function returns a closure that has access to the f oo reference, just as you would expect.
Thef oo reference is said to have been captured and made available in the closure.

It isimportant to note that captured references are constants within the closure. Consider the
following example:

var a = 1

let f = {

a=2 # Conpil ation error!
}

The compilation fails because although a is declared using var initsoriginal scope, it isactually
passed as an argument to the f closure. Because function parameters are implicitly constant
references, this results in a compilation error.

That being said, a closure has a reference on the same object as its defining environment, so a mutable
object is a sensible way to pass data back from a closure as a side-effect, asin:

let list = java.util.LinkedList()
let punmp_it = {
list: add("l heard you say")
[ist: add("Hey!")
[ist: add("Hey!")
}
punp_i t ()
println(list)

which prints[1 heard you say, Hey!, Hey!].

7.5. Closures to single-method interfaces

The Java SE APIs have plenty of interfaces with a single method:
java.util.concurrent. Cal |l abl e,java. | ang. Runnabl e, j avax. swi ng. Acti onLi st ener, €tC

The predefined function asl nt er f acel nst ance can be used to convert a method handle or Golo
closure to an instance of a specific interface.

Hereis how one could pass an action listener to aj avax. swi ng. JBut t on:

| et button = JButton("dick ne!")
l et handler = |event| -> println("dicked!'")
button: addActi onLi stener (aslnterfacel nstance(ActionLi stener.class, handl er))

29

Closures

Becausetheasl! nt er f acel nst ance call consumes some readability budget, you may refactor it with
alocal function asin:

local function listener = | handler| -> aslnterfacel nstance(ActionListener.class, handl er

#(...)
et button = JButton("Cick ne!")
button: addActionListener(listener(|event| -> println("dicked! ")))

Here is another example that usesthej ava. uti | . concurrent APISto obtain an executor, passit a
task, fetch the result with a Fut ur e object then shut it down:

function give_ne_hey = {
| et executor = Executors.newSi ngl eThreadExecut or ()
let future = executor: subnit(aslnterfacel nstance(Callable.class, -> "hey!"))
let result = future: get()
execut or: shut down()
return result

}

7.6. Direct closure passing works

When a function or method parameter of a Java APl expects a single method interface type, you can
pass a closure directly, asin:

#(...)
let button = JButton("Cick ne!l")
button: addActionLi stener(|event| -> println("dicked!"))

Note that this causes the creation of a method handle proxy object for each function or method
invocation. For performance-sensitive contexts, we suggest that you use either asl nt er f acel nst ance
or thet o conversion method described hereafter.

7.7. Conversion to single-method
Interfaces

Instead of using asl nt er f acel nst ance, you may use a class augmentation which is described later
in this documentation. In short, it allows you to call at o method on instances of Met hodHandl e,
which inturn callsasl nt er f acel nst ance. Back to the previous examples, the next 2 lines are
equivalent:

Calling aslnterfacel nstance
future = executor: subnit(aslnterfacelnstance(Callable.class, -> "hey!"))

Using a class augnentation
future = executor: submt((-> "hey!"): to(Call able.class))

7.8. Getting a reference to a closure / Golo
function

Y ou may also take advantage of the predefined f un function to obtain areferenceto aclosure, asin:

30

Closures

i mport gol ot est. Cl osures
| ocal function local _fun = |x| ->x + 1
function call _local _fun = {

local _fun, with a paraneter
var f = fun("local _fun", golotest.d osures. nodul e, 1)

...0or just like this if there is only 1 |ocal_fun definition
f = fun("local _fun", gol otest.C osures. nodul e)

return f (1)
}

Last but not least, we have an even shorter notation if function are not overridden:
i mport gol ot est. Cl osures

| ocal function local _fun = |x| ->x + 1

function call _local _fun = {

In the current nodul e
var f = ~fun

...or with a full nodul e nane
f = ~gol otest. C osures::fun

return f (1)

7.9. Binding and composing

Because closure references are just instances of j ava. | ang. i nvoke. Met hodHandl e, you can bind its
first argument using the bi ndTo(val ue) method. If you need to bind an argument at another position
than O, you may take advantage of the bi ndAt (position, val ue) augmentation:

let diff =]a, b] ->a- b
et mnusl0 = diff: bindAt(1, 10)

10
println(m nus10(20))

Y ou may compose function using the andThen augmentation method:
let f = (|x] ->x + 1): andThen(|x| -> x - 10): andThen(|x| -> x * 100)

-500
println(f(4))

31

Closures

7.10. Calling functions that return
functions

Given that functions are first-class objects in Golo, you may define functions (or closures) that return
functions, asin:

let f =|x| ->]yl ->|z] ->->x+y +z

Y ou could use intermediate references to use thef function above:

let f1 = (1)
let f2 = f1(2)
let f3 = f2(3)
Prints '®6'

println(f3())

Golo supports anicer syntax if you don’t need intermediate references:

Prints '6'
printin(f(1)(2)(3)())

This syntax only works following a function or method invocation, not on expressions.
@ This means that:

foo: bar()("baz")
isvalid, while:

(foo: bar())("baz")

isnot. Let ussay that "It isnot abug, it is afeature".

32

Chapter 8. Predefined functions

Every Golo module definition comes with gol ol ang. Pr edef i ned as adefault import. It provides
useful functions.

8.1. Console output

print andprintl n do just what you would expect.

print (" Hey")
println()

println("Hey")

8.2. Console input

readl n() orreadl n(strMessage) readsasingleline of text from the console. It always returns a
string.

r eadPasswor d() Or r eadPasswor d(st r Passwor d) reads a password from the console with
echoing disabled. It always returns a string. There are also secur eReadPasswor d() and
secur eReadPasswor d(st r Passwor d) variantsthat return achar[] array.

| et nane = readl n("what's your nane? ")

| et value = readl n()
|l et pwd = readpwd("type your password:")

8.3. Exceptions

rai se can be used to throw aj ava. | ang. Runt i neExcept i on. It comesin two forms. one with a
message as a string, and one with a message and a cause.

try {

rai se(" Sonmrehow sonething is wong")
} catch (e) {

rai se(" Somet hi ng was wrong, and here is the cause", e)

}

8.4. Preconditions

Preconditions are useful, especially in a dynamically-typed language.

requi r e can check for a boolean expression along with an error message. In case of error, it throws an
Asserti onError.

function foo = |a|] {
require(a oftype String.class, "a nust be a String")

33

Predefined functions

}

You may also user equi reNot Nul | that... well... checksthat its argument isnot nul | :

function foo = |a|] {
requi reNot Nul | (a)

!

8.5. Arrays (deprecated)

Golo provides functions to deal with Java arrays (Qbj ect[]).

* the Array function takes a variable number of arguments and returns a Java array from them,
» theaget function takesan array and an index to return the element at that position,

» theaset function takesan array, an index and a value to set the element at that position,
 theal engt h function returns the length of an array,

e theatoLi st function callsthej ava. util. Arrays. asLi st (val ues. ..) method.

let a = Array(1, 2, 3)

require(al ength(a) == 3, "a nust be of length 3")
require(aget(a, 0) == 1, "the first elenent shall be 1")

aset(a, 0, 666)

require(aget(a, 0) == 666, "the new first elenment shall be 666")

They will be removed at some point before the release of version 0, so please use the

Those functions were introduced for the needs of the early developments of Golo.
corresponding array object methods instead: get , set, | ength, ...

8.6. Ranges

Ther ange function yields an iterable range over either | nt eger or Long bounds:

Prints 1 2 (...) 100

foreach i in range(1l, 101) {
print(i + " ")

}

let r = range(0, 6): increnmentBy(2)
println("Start: " + r: from())
println("End: " + r: to())

foreach i inr {
println(i)
}
println("lIncrement: " + r: increment())

The lower bound isinclusive, the upper bound is exclusive.

34

Predefined functions

8.7. Closures

Given aclosure reference or a method handle, one can convert it to an instance of an interface with a
single method declaration, asin:

local function listener = | handler| -> aslnterfacel nstance(ActionLi stener.class, handl er

#(...)
let button = JButton("Cick ne!")
button: addActionLi stener(listener(|event| -> println("dicked! ")))

It is possible to test if an object isaclosure or not with thei sd osur e function. Thisis useful to
support values and delayed evaluation, asin:

if isCosure(value) {
map: put (key, val ue())
} else {
map: put (key, val ue)
}
Y ou can get areference to a closure using the predefined f un function:
i mport gol otest. C osures
local function local _fun = |[x] ->x + 1
function call _local _fun = {

let f = fun("local _fun", golotest.C osures. nodul e)
return f(1)

}

Because functions may be overloaded, there is a form that accepts an extra parameter for specifying
the number of parameters:

i mport gol otest. C osures
local function local _fun = |[x] ->x + 1
function call _local _fun = {

let f = fun("local _fun", golotest.C osures. nodul e, 1)
return f(1)

}

8.8. File I/O

Sometimesit is very desirable to read the content of atext file. Thefi |l eToText function does just
that:

let text = fileToText("/sone/file.txt", "UTF-8")

Thefirst parameter iseither aj ava. | ang. String,ajava.io.Fileorajava.nio.file.Path.
The second parameter represents the encoding charset, either asaj ava. | ang. String or a
java. ni o. charset. Charset.

We can write some text to afile, too:

35

Predefined functions

textToFile("Hello, world!", "/fool/bar.txt")
Thet ext ToFi | e function overwrites existing files, and creates new ones if needed.

These functions are provided for convenience, so if you need more fine-grained control over reading
and writing text then we suggest that you look into thej ava. ni o. fi | e package.

In addition, if you need to verify that afile exists, you can usethefi | eExi st s function.

if fileExists("/fool/bar.txt") {
println("file found!'")
}

Asin the other File I/O methods, the parameter is either aj ava. | ang. String,ajava.io.Fileora
java.nio.file.Path. Thefil eExi sts functionwill return trueif the file exists, false if it doesn’t.

If you need the current path of execution, you can usethe cur rent Di r function.

println(currentDir())

8.9. Array types

Golo does not provide aliteral syntax for array types, such as j ect[] . cl ass in Java.
Instead, we provide 3 helper functions.

* i sArray(object):returnsaboolean if obj ect isan array.

* obj ect ArrayType(): returnsObj ect[]. cl ass.

* arrayTypeOf (type): giventype asaj ava. | ang. O ass, returnsan array of typet ype[] .

8.10. Misc.

mapEnt ry givesinstances of j ava. uti | . Abstract Map. Si npl eEnt ry, and is used as follows:
let e = mapEntry("foo", "bar")

prints "foo => bar"
println(e: getKey() + " =>" + e: getValue())

36

Chapter 9. Class augmentations

Many dynamic languages support the ability to extend existing classes by adding new methods to
them. Y ou may think of categoriesin Objective-C and Groovy, or open classesin Ruby.

Thisis generaly implemented by providing meta-classes. When some piece of code adds a method
f oo t0, say, Soned ass, then all instances of Soned ass get that new f oo method. While very
convenient, such an open system may lead to well-known conflicts between the added methods.

Golo provides amore limited but explicit way to add methods to existing classes in the form of class
augmentations.

9.1. Wrapping a string with a function

Let us motivate the value of augmentations by starting with the following example. Suppose that we
would like afunction to wrap a string with aleft and right string. We could do that in Golo as follows:

function wap = |left, str, right| -> left + str + right
#(...)
let str = wap("(", "foo", ")")

println(str) # prints "(abc)"

Defining functions for such tasks makes perfect sense, but what if we could just add the wr ap method
to all instances of j ava. | ang. Stri ng instead?

9.2. Augmenting classes

Defining an augmentation is a matter of adding aaugment block in a module:
nodul e f oo

augnent java.lang. String {

function wap = |[this, left, right| -> left + this + right
}
function wapped = -> "abc": wrap("(", ")")
More specifically:

1. aaugnent definition is made on afully-qualified class name, and

2. an augmentation function takes the receiver object asits first argument, followed by optional
arguments, and

3. there can be as many augmentation functions as you want, and
4. there can be as many augmentations as you want.

It isagood convention to name the receiver t hi s, but you are free to call it differently.

37

Class augmentations

Also, augmentation functions can take variable-arity arguments, asin:
augnent java.lang. String {

function concatWth = |this, args...| {
var result = this
foreach(arg in args) {
result = result + arg

}

return result

}
}

#(...)

function varargs = -> "a": concatWth("b", "c", "d")

It should be noted that augmentations work with class hierarchies too. The following example adds
an augmentation toj ava. uti | . Col | ecti on, which also adds it to concrete subclasses such as
java.util.LinkedList:

augnment java.util.Collection {
function plop = |this| -> "plop!"

}
#(...)

function plop_in_a list = -> java.util.LinkedList(): plop()

9.3. Augmentation scopes, reusable
augmentations

By default, an augmentation is only visible from its defining module.

Augmentations are clear and explicit asthey only affect the instances from which you have
decided to make them visible.

It is advised to place reusable augmentations in separate module definitions. Then, a module that
needs such augmentations can make them available through imports.

Suppose that you want to define augmentations for dealing with URLs from strings. Y ou could define
astring-url-augnentati ons. gol o module source as follows:

nodul e ny. StringUr | Augnent ati ons
i mport java. net
augnent java.lang. String {
function toURL = [this| -> URL(this)

function httpGet = |this| {
Open the URL, get a connection, grab the body as a string, etc
#(...)

}

#(...)

38

Class augmentations

}

Then, amodule willing to take advantage of those augmentations can simply import their defining
module:

nodul e ny. App

i mport ny. StringU | Augnent ati ons

functi on googPageBody = -> "http://ww. googl e.con’": httpGet ()

Because importing amodule imports all of its augmentation definitions, we suggest that

o As amatter of style, we suggest that your module names end with Augrent at i ons.
you modularize them with fine taste (for what it means).

9.4. Standard augmentations

Golo comes with a set of pre-defined augmentations over collections, strings, closures and more.

These augmentation do not require a special import, and they are defined in the
gol ol ang. St andar dAugnent at i ons module.

Hereis an example:
let odd = [1, 2, 3, 4, 5]: filter(|n| -> (n %2) == 0)

let m= map[]
println(m getOEl se("foo", -> "bar"))

The full set of standard augmentations is documented in the generated golodoc (hint: look for doc/
gol odoc in the Golo distribution).

39

Chapter 10. Structs

Golo alows the definition of simple structures using the st r uct keyword. They resemble structuresin
procedural languages such as C st ruct or Pascal records. They are useful to store data when the set
of named entriesis fixed.

10.1. Definition

Structures are defined at the module-level

nodul e sanpl e
struct Person = { nane, age, emmil }
function main = |args| {
let pl = Person("M Bean", 54, "bean@nmail .cont')
println(pl: name())
et p2 = Person(): name("John"): age(32): emmil ("john@-root.cont')

println(p2: age())
}

When declaring a structure, it also defines two factory functions: one with no arguments, and one
with all argumentsin their order of declaration in the st ruct statement. When not initialized, member
valuesarenul | .

Each member yields a getter and a setter method: given amember a, the getter is method a() while
the setter is method a(newval ue) . It should be noted that setter methods return the structure instance
which makes it possible to chain calls asillustrated in the previous example while building p2.

10.2. JVM existence

Each st ruct iscompiled to a self-contained JVM class.
Given:

nodul e sanpl e

struct Point = { x, y }

aclasssanpl e. t ypes. Poi nt iSbeing generated.

It isimportant to note that:

1. each struct classisfinal,

2. each st ruct classinheritsfrom gol ol ang. Gol oSt r uct ,

3. proper definitions of t oSt ri ng() , hashCode() and equal s() are being provided.

10.3. toString() behaVIOr

ThetoString() method is being overridden to provide a meaningful description of a structure
content.

40

Structs

Given the following program:

nodul e test
struct Point = { x, y }
function main = |args| {

println(Point(1, 2))
}

running it prints the following consol e output:

struct Point{x=1, y=2}

10.4. Immutable structs

Structure instances are mutable by default. Golo generates a factory function with the | nmut abl e
prefix to directly build immutable instances:

nodul e t est
struct Point = { x, y }
function main = |args| {

et p = I mutabl ePoint (1, 2)
println(p)

try {
Fails! (p is inmutable)

p: x(100)
} catch (expected) {
printl n(expected: getMessage())

}
}

10.5. Copying

Instances of a structure provide copying methods:
* copy() returnsashallow copy of the structure instance, and
* frozenCopy() returnsaread-only shallow copy.

Trying to invoke any setter methods on an instance obtained through f r ozenCopy() raisesa
java.lang. |11 egal StateExcepti on.

@ Theresult of calling copy() on afrozen instance isa mutable copy, not afrozen copy.

106 equal s() and hashCode() SemantICS

Golo structures honor the contract of Java objects regarding equality and hash codes.

41

Structs

By default, equal s() and hashCode() aretheonesof j ava. | ang. Qoj ect . Indeed, structure
members can be changed, so they cannot be used to compute stable values.

Nevertheless, structure instances returned by f r ozenCopy() have stable members, and members are
being used.

Consider the following program:
nodul e test

struct Point = { x, y }

function main = |args| {
let pl = Point(1, 2)
let p2 = Point(1, 2)
let p3 = pl: frozenCopy()

let p4 pl: frozenCopy()

printin("pl == p2 " + (pl == p2))
printin("pl == p3 " + (pl == p3))
printin("p3 == p4 " + (p3 == p4))

println("#pl " + pl: hashCode())
println("#p2 " + p2: hashCode())
println("#p3 " + p3: hashCode())
println("#p4 " + p4: hashCode())

}
the console output is the following:

pl == p2 false
pl == p3 false
p3 == p4 true

#pl 1555845260
#p2 104739310

#p3 994

#p4 994

It is recommended that you use | mut abl e<name of struct>(...) OrfrozenCopy()
o when you can, especially when storing values into collections.

10.7. Helper methods

A number of helper methods are being generated:

menber s() returns atuple of the member names,

val ues() returnsatuple with the current member values,

i sFrozen() returns aboolean to check for frozen structure instances,

* iterator() providesan iterator over a structure where each element isatuple [nenber, val ue],

get (nane) returnsthe value of amember by its name,

42

Structs

* set(nane, val ue) updatesthe value of amember by its name, and returns the same structure.

10.8. Private members

By default, all membersin astruct can be accessed. It is possible to make some elements private by
prefixing them with _, asin:

struct Foo = { a, _b, c}

#(...)
let foo = Foo(1, 2, 3)

In this case, _b isaprivate struct member. Thismeansthat f oo: _b() andfoo: _b(666) arevalid
callsonly if made from:

« afunction from the declaring module, or

 an augmentation defined in the declaring module.

Any call to, say, foo: _b() from another module will yield a NoSuchMet hodEr r or exception.
Private struct members also have the following impact:

* they do not appear in menber s() and val ues() calls, and

* they are not iterated throughi t er at or () -provided iterators, and

* they are being used like other membersin equal s() and hashCode(), and

* they do not appear int oSt ri ng() representations.

10.9. Augmenting structs

Structs provide a simple data model, especially with private members for encapsulation.
Augmenting structs is encouraged, asin:

nmodul e Pl op

struct Point = { id, x, y }

augrment Pl op. types. Poi nt {

function str = |this| -> "{id=" + this: _id() + ",x=" + this: x() + ",y=" + this: y()

}

When an augmentation on a struct is defined within the same module, then you can omit the full type
name of the struct:

nodul e Pl op

struct Point = { _id, x, y }

43

Structs

augment Poi nt {

function str = |this|] -> "{id=" + this: _id() + ",x=" + this: x() + ",y=" + this: y()
}

Again, it isimportant to note that augmentations can only access private struct members when they
originate from the same module.

Don’t do thisat home
Of course doing the following is a bad idea, with the concise augmentation taking over the

fully-qualified one:

nodul e Foo

struct Value = { v }
augnment Foo. types. Val ue {

function a = [this|] -> "a"

}

This will discard the previous augnentation..
augrment Val ue {

function b = [this|] -> "a"

}

function check = {
let v = Val ue(666)

Ok
v: b()

Fails, the concise augnentation overrides the fully-qualifed one
v: a()

}

Chapter 11. Dynamic objects

Dynamic objects can have values and methods being added and removed dynamically at runtime. Y ou
can think of it as an enhancement over using hash maps and putting closures in them.

11.1. Creating dynamic objects

Creating a dynamic object is as simple as calling the Dynani cbj ect function:

| et foo = Dynami cCObj ect ()
Dynamic objects have the following reser ved methods, that is, methods that you cannot override:

» define(name, val ue) alowsto define an object property, which can be either avalue or a
closure, and

» get (nane) givesthevalue or closure for a property name, or nul | if thereis none, and

» undefi ne(name) removes a property from the object, and

* m xi n(dynobj) mixesin al the properties of the dynamic object dynobj , and

* copy() givesacopy of adynamic object, and

» freeze() locksan object, and calling def i ne will raisean | 1| egal St at eExcept i on, and
* isFrozen() checkswhether adynamic object isfrozen or not, and

* properties() givesthe set of entriesin the dynamic object, and

* hasMet hod(name) checksif amethod is defined or not in the dynamic object, and

* invoker (nane, type) whichismostly used by the Golo runtime internals, and

fal | back(handl er) definesafallback behavior for property invocation.

11.2. Defining values

Defining values aso defines getter and setter methods, asillustrated by the next example:

| et person = Dynam cCbject():
defi ne("name", "M Bean"):
define("email", "nrbean@nuail.cont)

prints "M Bean"
printl n(person: nane())

prints "M Beanz"
person: name("M Beanz")
println(person: nanme())

45

Dynamic objects

Calling a setter method for a non-existent property definesit, hence the previous example can be
rewritten as:

| et person = Dynami cObject(): nanme("MBean"): email (" nrbean@nmail .cont')

prints "M Bean"
println(person: nane())

prints "M Beanz"

person: nane("M Beanz")
println(person: name())

11.3. Defining methods

Dynamic object methods are ssmply defined as closures. They must take the dynamic object object as
their first argument, and we suggest that you call it t hi s. Y ou can then define as many parameters as
you want.

Here is an example where we define at oSt ri ng-style of method:
| ocal function nrbean = -> Dynam cOhj ect ():

name("M Bean"):

emai | ("nrbean@nail . cont'):

define("toString", |this| -> this: name() + " <" + this: emil () + ">")
function main = |args| {

| et bean = nrbean()
println(bean: toString())

bean: email ("nrbean@ut | ook. cont')
println(bean: toString())

}

Y ou cannot overload methods, that is, providing methods with the same name but different
signatures.

It is strongly recommended that you use def i ne to create and update methods. Consider
the following example:

| et obj = Dynami cCbject():
pl op(|this| -> "Plop!")

Any call such asobj: plop() properly callspl op() . Because the dynamic object isfresh
and new, thefirst call to pl op creates a property since it is currently missing.

That being said, the following would fail:
obj: plop(|this|] -> "Plop it up!")

Indeed, when the value of a dynamic object property isafunction, it is understood to be
amethod, hence calling p! op like it would be a setter method fails because there already
exists a property that isafunction, and it has a different signature. It needs to be updated as
in:

46

Dynamic objects

obj: define('plop', |[this|] -> "Plop it up!")

Asaruleof thumb, prefer named settersfor values and def i ne for methods. It is
acceptable to have named definitions for methodsif and only if a call happens after
the object creation and before any call to i xi n (remember that it injects properties
from other objects, including methods).

11.4. Querying the properties

The properties() method returns aset of entries, asinstancesof j ava. util . Map. Entry. You can
thus write code such as:

function dunp = |obj| {
foreach prop in obj: properties() {
println(prop: getKey() + " -> " + prop: getValue())
}
}

Because dynamic object entries mix both values and method handles, do not forget that the predefined
i sC osure(obj) function can be useful to distinguish them.

11.5. Defining a fallback behavior

Thef al | back(handl er) method let’s the user define a method that is invoked whenever the initial
method dispatch fails. Here is an example of how to define a fallback.

. Calling a setter method for a non-existent property definesit, thus the fallback is not
ﬂ applicable for setters.

| et dynob = Dynami cbject():
fall back(|this, nethod, args...| {
return "Dispatch failed for nethod: " + nethod + ", with args: " + args: asList(): j

)

printl n(dynob: casperGetter())
println(dynob: casper Met hod("foo", "bar"))

Di spatch failed for nethod: casperGetter, with args:
Di spatch failed for nethod: casperMethod, with args: foo bar

47

Chapter 12. Adapters

Thereis aready much you can do whilein Golo land using functions, closures, structs, augmentations
and dynamic objects.

Y et, the VM isawider ecosystem and you will soon be tempted to integrate existing Java libraries
into your code. Calling Javalibraries from Golo is quite easy, but what happens when you need to
subclass classes or provide objects that implement specific interfaces?

Asyou can easily guess, thisis al what adapters are about: they allow the definition of objects at
runtime that can extend and inherit Java types.

12.1. A simple example

Let us get started with a simple example of aweb application based on the nice Spark micro-
framework [http://www.sparkjava.com/].

Spark requires route handlers to extend an abstract base class called spar k. Rout e. The following
code snippet does just that:

nodul e spar ky

i mport spark
i mport spark. Spar k

function main = |args| {
l et conf = map] # O
["extends", "spark.Route"], # @
["inmpl enents”, map[# ©
["handl e", |[this, request, response| { # ©
return "Golo, world!"

}H
11
]
|l et fabric = AdapterFabric() # ©

| et routeMaker = fabric: maker(conf) # @
| et route = routeMaker: new nstance("/hello") # O
get(route) # ©

}

© Anadapter configuration is provided by a map object.

@ Theext ends key allows specifying the name of the parent class (j ava. | ang. Qbj ect by
default).

© Thei npl enent s provides a map of method implementations.

@ Theimplementation is given by a closure whose signature matches the parent class definition,
and where the first argument is the receiver object that is going to be the adapter instance.

@ An adapter fabric provides context for creating adapters. It manages its own class |oader.

@ An adapter maker creates instances based on a configuration.

@ Thenew nstance() method callsthe right constructor based on the parent class constructors
and provided argument types.

® Thespark. Spark. get () staticis method is happy aswe feed it a subclass of spar k. Rout e.

48

http://www.sparkjava.com/
http://www.sparkjava.com/
http://www.sparkjava.com/

Adapters

Adapter objects implement the gol ol ang. Gol oAdapt er marker interface, so you can do
) type checksonthem ain: (f oo of t ype gol ol ang. Gol oAdapt er. cl ass) .

12.2. Implementing interfaces

Thisisaseasy asproviding aj ava. | ang. | t er abl e as part of the configuration:

let result = array[1, 2, 3]
| et conf = map|

["interfaces", ["java.io.Serializable", "java.lang. Runnable"]],
["inmpl enents", map[
["run", |this] {
for (var i =0, i <result: length(), i =i + 1) {

result: set(i, result: get(i) + 10)
}
}H
11
]

| et runner = AdapterFabric(): maker(conf): new nstance()
runner: run() # @

© Asyou may guess, thischangestheresul t array valuesto[11, 12, 13].

12.3. Overrides

Implementations are great, but what happens if you need to call the parent class implementation of a
method? In Java, you would use asuper reference, but Golo does not provide that.

Instead, you can override methods, and have the parent class implementation given to you as a method
handle parameter:

[et conf = map[
["overrides", map|
["toString", |super, this| -> ">>> " + super(this)]

1]

]
println(AdapterFabric(): maker(conf): newl nstance(): toString()) # ©

© Thisprints something like: >>> $Gol o$Adapt er $0@ 2f c7ceb.

E Y ou can mix both implementations and overridesin an adapter configuration.
[foe

12.4. Star implementations and overrides

You can pass* as aname for implementations or overrides. In such cases, the provided closure
become the dispatch targets for al methods that do not have an implementation or override. Note that
providing both a star implementation and a star override is an error.

L et us see a concrete example:

49

Adapters

| et carbonCopy = list[] # ©
l et conf = map|
["extends", "java.util.ArrayList"],
["overrides", map|
["*", | super, nane, args| { # ®
i f nane == "add" {

if args: length() == 2 {
car bonCopy: add(args: get(1l)) # ©

} else {
carbonCopy: add(args: get(1l), args: get(2)) # @
}
}
return super: spread(args) # @

}
1]
1]

let list = AdapterFabric(): maker(conf): new nstance()
list: add("bar")

list: add(0, "foo")

list: add("baz") # @

© We create an empty list, more on that later.

@ A dtar override takes 3 parameters. the parent class implementation, the method name and the
arguments into an array (the element at index O isthe receiver).

©® Wecopy into car bonCopy.

Same here, but we dispatch to a different method

©@ Wejust call the parent classimplementation of whatever method it is. Note that spr ead allows
to dispatch a closure call with an array of arguments.

@ Atthispoint car bonCopy contains["foo", "bar", "baz"] (and sodoesli st, t00).

e

The case of star implementation is similar, except that the closure takes only 2 parameters: | nane,
args| .

12.5. Misc.

The Adapt er Fabr i ¢ constructor can also take a class |oader as a parameter. When none is provided,
the current thread context class loader is being used as a parent for an Adapt er Fabr i c-interna
classloader. There is also a static method wi t hPar ent Cl asslLoader (¢l assl oader) to obtain afabric
whose class |oader is based on a provided parent.

Asit is often the case for dynamic languages on the JVM, overloaded methods with the same

name but different methods are painful. In such cases, we suggest that you take advantage of star-
implementations or star-overrides asillustrated above on aArr ayLi st subclass where the 2 add(obj)
and add(i ndex, obj) methods are being intercepted.

Finally we do not encourage you to use adapters as part of Golo code outside of providing bridges to
third-party APIs.

50

Chapter 13. Decorators

Golo feature Python-like decorators.

13.1. Presentation

Decorators are similar in syntax and purpose to Java annotations. However, the concepts behind them
are very different. Indeed, whereas Java annotations are compiler or VM directives, decorators are
actually plain functions, more precisely higher order functions.

@ Higher order functions (HOF) are functions that process functions, i.e. that take a function
as parameter, and may return a new function.

A decorator isthus a function that take the function to decorate as parameter, and return a new
function, generally awrapper that do some stuffs before or after calling the original function.

The name can remind the well known GoF pattern [http://en.wikipedia.org/wiki/Decorator_pattern],
with good reason. This pattern describe a design that alow an object to be augmented by

wrapping it in an other object with the same interface, delegating operations to the wrapped

object. Thisis exactly what a decorator does here, the interface being "function" (more precisely a

j ava. l ang. i nvoke. Met hodHandl e).

13.2. Principles and syntax

Asin Python, and similarly to Java annotations, a decorator is used with a @prefix before the function
definition. As an example, the decorator deco1 only printsits name before returning the result
unchanged

function decol = |fun| {
return |args...| {
return "decol + " + fun: invokeWthArgunents(args)

}
}

It can be used as:

@lecol
function foo = |a|] {
return "foo: " + a

}

Here, calling printl n(foo(1)) will printdecol + foo: 1.

To be the most generic, the function created by a decorator should be a variable arity function, and
thus call the decorated function with i nvokeW t hAr gunent s, such that it can be applied to any
function, regardless of its arity, asin the previous example.

Indeed, suppose you what to a decorator dec (that does nothing) used like:
@ec

51

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

Decorators

function add = |a,b|] ->a + b

Such a decorator can be implemented as:

function dec = |func| -> |a, b|] -> func(a, b)

But in that case, it will be applicable to two parameters functions only. On the other hand, you cannot
do:

function dec = |func| -> |args...| -> func(args)

Indeed, thiswill throw an exception because f unc isnot avariable arity function (just areference on
add function) and thus cannot take an array as parameter. In this case, the decorator have to invoke the
original function like this:

function dec = |func| -> |args...| -> func(args: get(0), args: get(1l))
which is equivalent to the first form, but is not generic. The more generic decorator is thus:
function dec = |func| -> |args...| -> func: invokeW thArguments(args)

which can deal with any function.

Asillustrated, the decorator isjust awrapper (closure) around the decorated function. The @syntax is
just syntactic sugar. Indeed, it can also be used as such:

function bar = |a] -> "bar: " + a

function main = |args| {
println(decol(”bar) (1))

| et decobar = decol(”"bar)
println(decobar (1))

println(decol(|al] -> "bar: "+a)(1))
}

printsall decol + bar: 1.

Decorators can also be stacked. For instance:

function deco2 = |fun| {
return |args...| {
return "deco2 + " + fun: invokeWthArgunents(args)

}
}

@leco?2

@lecol
function baz = |a] -> "baz: " + a

println(baz(1)) will print deco2 + decol + baz: 1
This result can also be achieved by composing decorators, asin:
| et deco3 = ~decol: andThen(”~deco?2)

@leco3
function spam= |a] -> "spam " + a

52

Decorators

Again, println(span(1)) will print deco2 + decol + spam 1

Moreover, since decorator are just higher order functions, they can be closure on afirst argument, i.e.
parametrized decorators, as illustrated in the following listing:

nodul e tests. LogDeco
function log = |nmsg| -> |fun|] -> |args...| {

println(nsg)
return fun: invokeW thArgunent s(args)

}

@og("calling foo")

function foo = |a|] {
println("foo got a " + a)

}

@og("l"'ama bar")

function bar = |a] -> 2*a

function main = |args| {
foo("bar")
println(bar(21))

}

will print

calling foo
foo got a bar
|'am a bar

42

Here, | og create a closure on the message, and return the decorator function. Thus, | og("hel | 0") is
afunction that take afunction as parameter, and return a new function printing the message (hel | o)
before delegating to the inner function.

Again, since all of thisare just functions, you can create shortcuts:
l et sayHello = |l og("Hello")

@ayHel |l o
function baz = -> "Goodbye"

A call toprintin(baz()) will print

Hel | o
CGoodbye

The only requirement is that the effective decorator (the expression following the @ is eventualy a
HOF returning a closure on the decorated function. As an example, it can be as elaborated as:

function log = | nsgBefore| -> | msgAfter| -> |func| -> |args...| {
printl n(megBef or e)
let res = func: invokeWthArgunments(args)
println(nmsgAfter)
return res

}

53

Decorators

@og("enter foo")("exit foo")

function foo = |a|] {
println("foo: " + a)
}
whereacall f oo("bar") will print
enter foo
foo: bar
exit foo
and with
function logEnterExit = |[nane| -> log("# enter " + nane)("# exit " + nane)

@ ogEnt er Exi t ("bar")
function bar = { println("doing sonmething...") }

caling bar () will print
enter bar

doi ng sonet hi ng. .
exit bar

or even, without decorator syntax:

function main = |args| {
| et strange_use = | og("hello")("goodbye") ({printin(":p")})
st range_use()

| og("anot her") ("use")(|al{println(a)})("strange")
}

Let’s now illustrate with some use cases and examples, with a presentation of some decorators of the
standard module gol ol ang. Decor at or s [./golodoc/gololang/Decorators).

13.3. Use cases and examples

Use cases are at least the same as aspect oriented programming [http://en.wikipedia.org/wiki/Aspect-
oriented_programming] (AOP) and the decorator design pattern [http://en.wikipedia.org/wiki/
Decorator_pattern], but your imagination is your limit. Some are presented here for illustration.

13.3.1. Logging

Logging isaclassical example use case of AOP. See the Principles and syntax Section 13.2,
“Principles and syntax” section for an example.

13.3.2. Pre/post conditions checking

Decorators can be used to check pre-conditions, that is conditions that must hold for arguments, and
post-conditions, that is conditions that must hold for returned values, of afunction.

Indeed, a decorated can execute code before delegating to the decorated function, of after the
delegation.

54

./golodoc/gololang/Decorators
./golodoc/gololang/Decorators
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern

Decorators

The module gol ol ang. Decor at or s [./golodoc/gololang/Decorators] provide two decorators and
several utility functionsto check pre and post conditions.

checkResul t isaparametrized decorator taking a checker as parameter. It checks that the result of the
decorated function isvalid.

checkAr gurment s isavariable arity function, taking as much checkers as the decorated function
arguments. It checks that the arguments of the decorated function are valid according to the
corresponding checker (1st argument checked by 1st checker, and so on).

A checker isafunction that raises an exception if its argument is not valid (e.g. using r equi r e) or
returns it unchanged, allowing checkers to be chained using the andThen method.

As an example, one can check that the arguments and result of a function are integers with:

function islnteger = |v]| {
require(v oftype Integer.class, v + "is not an Integer")
return v

}

@heckResul t (i sl nt eger)
@heckAr gunent s(i sl nteger, islnteger)
function add = |a, b|] ->a + b

or that the argument is a positive integer:

function isPositive = |v| {
require(v >0, v + "is not > 0")
return v

}

@heckAr gunent s(i sl nteger: andThen(i sPositive))
function inv = |v|] -> 1.0/ v

Of course, again, you can take shortcuts:
let isPositivelnt = islnteger: andThen(isPositive)
@heckResul t (i sPositivel nt)

@heckAr gunent s(i sPosi tivelnt)
function double = |v] -> 2 * v

or even

| et myCheck = checkArgunents(islnteger: andThen(isPositive))

@ry Check
function inv = |v| -> 1.0/ v
@ry Check
function nul = |v| -> 10 * v

Severa factory functions are available in gol ol ang. Decor at or s [./golodoc/gololang/Decorators] to
ease the creation of checkers:

» any isavoid checker that does nothing. It can used when you need to check only some arguments
of an-ary function.

55

./golodoc/gololang/Decorators
./golodoc/gololang/Decorators
./golodoc/gololang/Decorators
./golodoc/gololang/Decorators

Decorators

» asChecker isafactory that takes a boolean function and an error message and returns the
corresponding checker. For instance:

| et isPositive = asChecker(|v] ->v >0, "is not positive")
* i sO Type isafactory function that returns a function checking types, e.g.
let islnteger = isO Type(lnteger. cl ass)

The full set of standard checkersis documented in the generated golodoc (hint: ook for doc/ gol odoc
in the Golo distribution).

13.3.3. Locking

As seen, decorator can be used to wrap afunction call between checking operation, but also between a
lock/unlock in a concurrent context:

i mport java.util.concurrent.| ocks

function withLock = |lock| -> |fun| -> |args...| {
| ock: | ock()
try {
return fun: invokeW thArgunent s(args)
} finally {
| ock: unl ock()
}
}

I et myLock = ReentrantLock()

@ t hLock(nyLock)
function foo = |a, b| {
return a + b

}

13.3.4. Memoization

Memoization is the optimization technique that stores the results of a expensive computation to return
them directly on subsequent calls. It is quite easy, using decorators, to transform afunction into a
memoized one. The decorator creates a closure on a hashmap, and check the existence of the results
before delegating to the decorated function, and storing the result in the hashmap if needed.

Such a decorator is provided in the gol ol ang. Decor at or s [./golodoc/gololang/Decorators| module,
presented here as an example:

function nenoi zer = {
var cache = map|[]
return |fun| {
return |args...| {
| et key = [fun: hashCode(), Tuple(args)]
if (not cache: containskey(key)) {
cache: add(key, fun: invokeWthArgunents(args))
}

return cache: get (key)

}

56

./golodoc/gololang/Decorators
./golodoc/gololang/Decorators

Decorators

}
}

The cache key is the decorated function and its call arguments, thus the decorator can be used
for every module functions. It must however be put in amodule-level state, since in the current
implementation, the decoration isinvoked at each call. For instance:

et meno = nmenoi zer ()

@reno
function fib = |n| {
if n<=1{
return n
} else {
return fib(n - 1) + fib(n - 2)
}
}

@reno
function fact = | n| {
if n==20 {
return 1
} else {
return n * fact(n - 1)

}
}

13.3.5. Generic context

Decorators can be used to define a generic wrapper around a function, that extends the previous
example (and can be used to implement most of them). This functionality is provided by the

gol ol ang. Decor at or s. wi t hCont ext [./golodoc/gololang/Decorators#withContext_context]
standard decorator. This decorator take a context, such as the one returned by

gol ol ang. Decor at or s. def aul t Cont ext [./golodoc/gololang/DecoratorstdefaultContext_] function.

A context is an object with 4 defined methods:

* entry, that takes and returns the function arguments. This method can be used to check arguments
or apply transformation to them;

e exit, that takes and returns the result of the function. This method can be used to check conditions
or transform the result;

* cat cher, that deal with exceptions that occurs during function execution. It takes the exception as
parameter;

e finallizer,thatiscaledinafinally clause after function execution.

The context returned by gol ol ang. Decor at or s. def aul t Cont ext isavoid one, that isent ry and
exi t return their parameters unchanged, cat cher rethrow the exception and fi nal | i zer does
nothing.

The workflow of this decorator is as follow:

1. the context ent ry method is called on the function arguments,

57

./golodoc/gololang/Decorators#withContext_context
./golodoc/gololang/Decorators#withContext_context
./golodoc/gololang/Decorators#defaultContext_
./golodoc/gololang/Decorators#defaultContext_

Decorators

2. the decorated function is called with arguments returned by ent ry;
a. if an exceptionisraised, cat cher iscalled with it as parameter;
b. elsetheresult is passed to exi t and the returned value is returned

3. thefinal Ii zer method is called.

Any of theses methods can modify the context internal state.

Hereis an usage example:

nodul e sanpl es. Cont ext Decor at or
i mport gol ol ang. Decor at or s

| et myContext = defaultContext():

count (0):

define("entry", |this, args| {
this: count(this: count() + 1)
println("hello:" + this: count())
return args

1)

define("exit", |this, result| {
require(result >= 3, "wong val ue")
println("goobye")
return result

1)
define("catcher", |this, e| {
println("Caught " + e)
t hrow e
1)
define("finallizer", |this| {println("do sone cl eanup")})

@i t hCont ext (myCont ext)

function foo = |a, b| {
println("Hard conputation")
return a + b

}
function main = |args| {
println(foo(1,2))
println("===="
println(w thContext(nyContext)(|al -> 2*a)(3))
println("===="
try {

println(foo(1, 1))
} catch (e) { }
}

which prints

hel |l 0: 1

Hard conput ati on
goohye

do sone cl eanup
3

58

Decorators

hel | o: 2
goobye
do some cl eanup

hel | o: 3

Hard conput ati on

Caught java.l ang. AssertionError: w ong val ue
do some cl eanup

Since the context is here shared between decorations, the count attribute is incremented by each call
to every decorated function, thus the output.

This generic decorator can be used to easily implement condition checking, logging, locking, and so
on. It can be more interesting if you want to provide several functionalities, instead of stacking more
specific decorators, since stacking, or decorator composition, adds indirection levels and deepen the
call stack.

59

Chapter 14. Dynamic code evaluation

Golo provides facilities for dynamically evaluating code from strings in the form of the
gol ol ang. Eval uat i onEnvi ronnent class. It provides an API that is useful both when used from
Golo code, or when used from a polyglot JVM application that embeds Golo.

14.1. Loading a module

The code of a complete module can be evaluated by the asMdul e method:

| et env = gol ol ang. Eval uati onEnvi r onnent ()
| et code =

nmodul e f oo

-> na!n
-> nb!n

function a
function b

|l et nod = env: asMdul e(code)
let a = fun("a", nod)
let b = fun("b", nbd)

println(a())
println(b())

It isimportant to note that an Eval uat i onEnvi r onnent instance has a Gol od assl oader , and that
attempting to evaluate module code with the same nodul e declaration will cause an error. Indeed, a
class loader cannot load classes with the same name twice.

14.2. Anonymous modules

The anonymousMdul e method is similar to asModul e, except that the code to evaluate is free of
modul e declaration:

I et env = gol ol ang. Eval uati onEnvi r onnent ()

|l et code =
function a = -> "al"
= _> llb! n

function b

l et mod = env: anonynmousModul e(code)
let a = fun("a", nod)

let b = fun("b", nod)

println(a())

println(b())

The modules that get evaluated through anonymousModul e have unique names, hence this method is
suitable in cases where the same code is to be re-evaluated several times.

14.3. Functions

The asFunct i on and def methods evaluate function code. Here is how asFunct i on can be used:

60

Dynamic code evaluation

| et env = gol ol ang. Eval uati onEnvi r onnent ()
let code = "return (a + b) * 2"

let f = env: asFunction(code, "a", "b")
println(f(10, 20))

It evaluates straight code as the body of a function. Note that i mpor t s can be used to specify i mpor t
statements to be available while evaluation the code:

env:
i mports("java.util.LinkedList", "java.util.HashMap"):
asFunction("""let | = LinkedList()

et m= HashMap()""")

The def method is similar, except that it has the parameters definition in the code to evaluate:
I et env = gol ol ang. Eval uati onEnvi r onnent ()
let code = "|a, b|] -> (a + b) * 2"

let f = env: def(code)
println(f(10, 20))

14.4. Running code

Thefirst form of r un method works as follows;

I et env = gol ol ang. Eval uati onEnvi r onnent ()

let code = """println(">>> run")

foreach i in range(0, 3) {
println("woO0t")

}

return 666"""

println(env: run(code)) # => "w0O0t"x3 and "666"

The second form allows passing parameter valuesin a map:

| et env = gol ol ang. Eval uati onEnvi r onnent ()
et code = """println(">>> run_map")
println(a)

println(b)

l et values = java.util.TreeMap(): add("a", 1): add("b", 2)
env: run(code, val ues)

It isimportant not to abuse r un, as each invocation triggers the generation of a one-shot class. If the
same code is to be run several times, we suggest that you take advantage of either def or asFunct i on.

61

Chapter 15. Concurrency with workers

Concurrency is hard. Fortunately for usthej ava. uti | . concurrent packages bring useful
abstractions, data types and execution mechanismsto get concurrency " a little bit better" .

Golo doesn't provide a equivalent to the synchr oni zed keyword of Java. Thisis on-purpose: when
facing concurrency, we advise you to just use whatever isinj ava. util . concurrent.

That being said we provide a simple abstraction for concurrent executions in the form of workers.
They pretty much resemble JavaScript web workers or isolates in Dart, albeit they do not really
isolate the workers data space.

15.1. The big picture

A worker issimply a Golo function that can be executed concurrently. Y ou can pass messages to a
worker, and they are eventually received and handled by their target worker. In other words, workers
react to messages in an asynchronous fashion.

Communi cations between a worker and some client code happens through ports. A port issimply an
object that is responsible for dispatching a message to its worker.

Ports are obtained by spawning aworker function from aworker environment. Internally, aworker
environment manages aj ava. util . concurrent executor, which means that you do not have to deal
with thread management.

15.2. Worker environments

Worker environments are defined in the gol ol ang. concurrent . wor ker s. Wor ker Envi r onnent
class/ module.

Y ou can directly pass an instance of j ava. uti | . concurrent. Execut or Ser vi ce t0 its constructor, or
you may go through its builder object and call either of the following static methods:

* Wit hCachedThreadPool () usesacached thread pool,

wi t hFi xedThr eadPool (si ze) usesafixed number of threadsin apool,

wi t hFi xedThr eadPool () usesapool with 1 thread per processor core,
* withSingl eThr eadExecut or () usesasingle executor thread.

In most scenarios wi t hCachedThr eadPool () isasafe choice, but as usual, your mileage varies. If you
have many concurrent tasks to perform and they are not 10-bound, then wi t hFi xedThr eadPool () IS
probably a better option. Y ou should always measure, and remember that you can always pass a fine-
tuned executor to the Wor ker Envi r onrrent () constructor.

Worker environments also provide delegate methods to their internal executor. It isimportant to call
shut down() to close the workers environment and release the threads pool. Y ou can also call the
awai t Ter m nat i on, i sShut down andi sTer mi nat ed methods whose semantics are exactly those of
java. util.concurrent. Executor Servi ce.

62

Concurrency with workers

15.3. Spawning a worker and passing
messages

Worker functions take a single parameter which is the message to be received. To obtain a port, you
need to call the spawn(t ar get) function of aworker environment, asin:

| et env = Worker Envi ronnent . bui l der (): wi t hFi xedThr eadPool ()
| et port = env: spawn(|nessage| -> println(">>> " + nessage))

A port provides asend(nessage) method:
port: send("hello"): send("world")

Messages are being put in a queue, and eventually dispatched to the function that we spawned.

15.4. A complete and useless example

To better understand how workers can be used, hereis a (fairly useless) example:
nodul e Sanpl eW t hWor ker s
i mport java.l ang. Thr ead

i mport java.util.concurrent
i mport gol ol ang. concurrent . wor kers. Wr ker Envi r onnment

| ocal function pusher = | queue, nessage| -> queue: offer(message) # ©
| ocal function generator = |port, nmessage| { # @
foreach i in range(0, 100) {
port: send(nessage) # 8
}
}
function main = |args| {

env = Worker Envi ronment . bui | der (): wi t hFi xedThr eadPool ()
| et queue = ConcurrentLi nkedQueue()

pusherPort = env: spawn(”pusher: bi ndTo(queue))
| et generatorPort = env: spawn(”generator: bindTo(pusherPort))

I et finishPort = env: spawn(|any| -> env: shutdown()) # ©

foreach i in range(0, 10) {
generatorPort: send("[" + i + "]")

}
Thr ead. sl eep(2000_L)
finishPort: send("Diel") # ®

env: await Ter m nati on(2000)
println(queue: reduce("", |acc, next| -> acc + " " + next))

}

In this example, we spawn 3 workers:

63

Concurrency with workers

@ thefirst repeats a message 100 times,

© ...forwarding them to another one,

© ...that ultimately pushesthem to a concurrent queue.
@ A messageis sent to afinal worker,

@ ...that shutsthe workers environment down.

As an aside, the example illustrates that worker functions may take further dependencies as
arguments. The pusher function takes a queue target and gener at or needs a port.

Y ou can satisfy dependencies by pre-binding function arguments, all you need is to make sure that
each function passed to spawn only expects a single message as its argument, asin:

e Apusher: bindTo(queue), and
e Agenerator: bindTo(pusherPort), and

e env: spawn(|any| -> env: shutdown()) wheretheworker function is defined as a closure, and
implicitly capturesits env dependency from the surrounding context.

64

Chapter 16. Golo template engine

Golo comes with a built-in template engine that is reminiscent of Java Server Pages or Ruby ERB. It
compiles template text into Golo functions.

16.1. Example

Consider the following example.

let tenplate = """
<Y@par ans posts %
<! DOCTYPE ht mi >
<htm >
<head>
<title>Golo Chat</title>
</ head>
<body>
<form action="/" net hod="post">
<i nput type="text" name="nmsg">
<i nput type="subnmit" val ue="Send">
</ fornp
<di v>
<h3>Last posts</h3>
<% f oreach post in posts { %
<di v>
<% post %
</div>
<%} %
</div>
</ body>
</htm >

This multi-line string has a Golo template. It can be compiled into a function as follows:

| et tpl = gol ol ang. Tenpl at eEngi ne(): conpil e(tenpl at e)
println(tpl(soneDat aMbdel : posts()))

16.2. Directives

Asyou may have guess from the previous example:

» Golo code snippets are placed in <% % blocks, and

* expressions can output values using <% %, and

* <Y@nport foo.bar.Baz % causesfoo. bar. Baz to beimported, and

* <Ygparams foo, bar, baz % causesthetemplate function to have 3 parameters, i.e., itisaj|
foo, bar, baz| { ... } function.

When no <vgpar ams ... % exigts, the function is assumed to have a single par ans parameter.

65

Golo template engine

The template engine is a simple one and makes no verification either on the templates
or the resulting Golo source code. The conpi | e method may throw a Gol oConpi | at i on

exception though, and you can query the exception get Sour ceCode() and get Pr obl ens()
methods to obtain more details.

66

Chapter 17. Documenting Golo code

Of course you can document your code using comments (#), but who reads source code?

17.1. Documentation blocks

Golo provides a support for documentation blocks on modules, functions, augmentations and structs.
Blocks are delimited by - - - - and contain free-form Markdown text [http://daringfireball.net/projects/
markdown/syntax].

Hereisaquick example:

This is a *nice* nodul e that does a bunch of usel ess things.
See nore at [our website] (http://ww.typeunsafe.org).

nmodul e Hel |l o

Adds 2 el enents, which is quite surprising given the nane.

* *x° is the first argunent,
* "y’ is the second argunent.

The foll owi ng snipped prints ~3:

let result = adder(1, 2)
println(result)

| mpr essi ve!

function adder = |x, y| -> x + vy

17.2. Rendering documentation

Thegol o doc command can render documentation in ht m (the default) or mar kdown format:

$ gol o doc --output target/docunentation src/**/*.golo

In addition, gol o doc can aso produce ctagst ags file, to be used by editors such as Vim or emacs. In
this mode, the special output target - can be used to print the tags on standard output, which is needed
by some editors or extensions.

Please consult gol o hel p for more details.

17.3. Alignment

It is sometimes necessary to indent documentation blocks to match the surrounding code format.
Documentation blocks erase indentation based on the indentation level of the opening block:

67

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax

Documenting Golo code

The nost useful augnentation *ever*.

augnment java.lang. String {

Creates a URL froma string, as in: “let url = "http://foo.bar/plop": toURL() .

function toURL = |this| -> java.net.URL(this)
}

When generating documentation from the code above, the documentation block of thet oURL function
is unindented of 2 spaces.

68

Chapter 18. Misc. modules

Not everything fits into the main documentation. We encourage you to also look at the javadocs and
golodacs.

The next subsections provide summaries of misc. modules found as part of Golo.

18.1. Standard augmentations

(gol ol ang. St andar dAugnent at i ons)

This Golo module provides standard augmentations for various classes of the Java standard classes
and Golo types. It does not have to be imported explicitely.

Here are afew examples.

Java collections can be have functional methods:

printin(list[1, 2, 3, 4]: filter(|n] -> (n %2) == 0))
printin(list[1, 2, 3]: map(|n| -> n * 10))

Insert amap entry only if the key is not present, and get adefault value if an entry is missing:

map: putlfAbsent (key, -> expensiveOperation())
map: get O El se(key, "n/a")

Repeat an operation many times:

3: times(-> println("Hey!")
3: tinmes(|i| -> println(i))

Function references are method handles, and there are augmentations for them:

Conposition

let f = |x|] ->x +1
let g =|y|] ->y * 10
let h = f: andThen(qg)

Partial application

let adder = |x, y| -> x +y

| et add2 = adder: bindAt (1, 2) # binds 'y’
println(add2(1))

182 JSON Support (gololang.JSO\l)

Golo includes the JSON Simple [https.//code.google.com/p/json-simple/] library to provide JSON
support.

Whilej son- si npl e only supports encoding from lists and maps, this API brings support for sets,
arrays, Golo tuples, dynamic objects and structs.

Given asimple data structure, we can obtain a JSON representation:

69

https://code.google.com/p/json-simple/
https://code.google.com/p/json-simple/

Misc. modules

l et data = map|

["name”, "Sonebody"],
[n a.gell , 69] ,
["friends", list]

"M Bean", "John B", "Larry"

1]

]
| et asText = JSON. stringify(data)

Given some JSON as text, we can get back a data structure:

| et data = JSON. parse(text)
println(data: get("nane"))

The gol ol ang. JSON module also provides helpers for JSON serialization and deserialization with
both dynamic objects and structs.

18.3. Scala-like dynamic variable

(gol ol ang. Dynani cVari abl e)

Golo hasabynani cVari abl e type that mimics the eponymous class from the Scala standard library.

A dynamic variable has inheritable thread-local semantics. updates to its value are confined to the
current thread and its future child threads.

Given the following code:

| et dyn = Dynanmi cVari abl e(" Foo")
println(dyn: val ue())

let t1 = Thread({
dyn: w thVal ue(666, {
println(dyn: val ue())
})
})

let t2 = Thread({
dyn: wthVal ue(69, {
println(dyn: val ue())
})
})

tl: start()
t2: start()
tl: join()
t2: join()
println(dyn: val ue())

one gets an output similar to:

Foo
69

666
Foo

with the 69 and 666 Swapping order over runs.

70

Misc. modules

184 Observable referenCeS (gol ol ang. Gbser vabl e)

An observable value notifies observers of updates in a thread-safe manner. An observable can also be
constructed from another observable using the map and fi | t er combinators:

| et foo = Observabl e("Foo")

foo: onChange(|v| -> println("foo =" + v))
l et mapped = foo: map(|v|] ->v + "I")
mapped: onChange(|v| -> println("nmapped =" + v))

foo: set("69")

Thisyields the following output:

foo = 69
mapped = 69!

18.5. Asynchronous programming helpers

(gololang.Async)

This modul e offers asynchronous programming helpers, especially execution context agnostic
promises and futures. The provided APIs are orthogonal to the execution strategy: it is up to you
to execute code from the same thread, from a separate thread, or by pushing new tasksto a service
executor.

Hereisan example:

nodul e sanpl es. Concur r ency

i mport java.util.concurrent
i mport gol ol ang. Async

local function fib = |n| {
if n<=1{
return n
} else {
return fib(n - 1) + fib(n - 2)
}

}

function main = |args| {

| et executor = Executors.newri xedThr eadPool (2)

let results = [30, 34, 35, 38, 39, 40, 41, 42]:
map(| n| -> executor: enqueue(-> fib(n)):

map(|res| -> [n, res]))

reduce(results, "", |acc, next| -> acc + next: get(0) + " ->" + next: get(1l) + "\n"):
onSet (|s| -> println("Results:\n" + s)):
onFail (|e|] -> e: printStackTrace())

execut or: shut down()

executor: awaitTerm nation(120_L, Ti meUnit. SECONDS())

}

This exampl e takes advantages of an executor augmentation and composable promises and futures to
compute Fibonacci numbers.

71

Chapter 19. Common pitfalls

Discovering a new programming language is fun. Y et, we all make mistakes in the beginning, as we
idiomatically repeat habits from other languages.

Because Golo works closely with the Java programming language, it is likely that Java programmers
will make some of the following mistakes early on.

19-1- new

Golo does not have anew operator for allocating objects. Instead, one should just call a constructor as
afunction:

Cood
let foo = java. util.LinkedList()

Conpilation fails
et foo = new java.util.LinkedList()

19.2. Imports

Golo does not have star imports like in Java. Imports are only used at runtime as Golo triesto resolve
names of types, functions, and so on.

You must think of i nport statements as a notational shortcut, nothing else. Golo triesto resolve a
name as-is, then tries to complete with every import until a match is found.

i mport java.util
i mport java.util.concurrent. Atoniclnteger

#(...)

Direct resolution at runtinme
let foo = java.util.LinkedList()

Resolution with the 1st inport
| et foo = LinkedList()

Resolution with the 2nd i nport
|l et foo = Atoniclnteger(666)

19.3. Method invocations

Keep in mind that instance methods are invoked using the : operator, not with dots (.) like in many
languages.

Thisis acommon mistakel!

Calls toString() on foo
foo: toString()

Looks for a function toString() in nodule foo

72

Common pitfalls

foo.toString()

19.4. ... IS not a closure

One thing to keep in mind is that mat ch returns avalue, and that it is not a closure unless you want it
to.

let foo = match {
case plop then 1
case pl oped then 2
ot herw se -1

}

Ok
println(foo)

Bad! foo is an integer
println(foo("abc"))

73

	The Golo Programming Language
	Table of Contents
	
	Chapter 1. Basics
	1.1. Editor / IDE support
	1.2. Hello world
	1.3. Running "Hello world"
	1.4. Compiling Golo source code
	1.5. Running compiled Golo code
	1.6. Passing JVM-specific flags
	1.7. Bash autocompletion
	1.8. Zsh autocompletion
	1.9. Comments
	1.10. Variable and constant references
	1.11. Data literals
	1.12. Collection literals
	1.12.1. A note on tuples
	1.12.2. A note on maps

	1.13. Operators
	1.14. Calling a method
	1.15. Java / JVM arrays

	Chapter 2. Creating new project(s)
	2.1. Free-form project
	2.2. Maven-driven project
	2.3. Gradle-driven project

	Chapter 3. Functions
	3.1. Parameter-less functions
	3.2. Functions with parameters
	3.3. Variable-arity functions
	3.4. Functions from other modules and imports
	3.5. Local functions
	3.6. Module-level state

	Chapter 4. Java interoperability
	4.1. Main function Java compliance
	4.2. Calling static methods
	4.3. Calling instance methods
	4.4. null-safe instance method invocations
	4.5. Creating objects
	4.6. Static fields
	4.7. Instance fields
	4.8. Inner classes and enumerations
	4.9. Clashes with Golo operators and escaping
	4.10. Golo class loader

	Chapter 5. Control flow
	5.1. Conditional branching
	5.2. case branching
	5.3. match statements
	5.4. while loops
	5.5. for loops
	5.6. foreach loops
	5.7. break and continue
	5.8. Why no value from most control flow constructions?

	Chapter 6. Exceptions
	6.1. Raising exceptions
	6.2. Raising specialized exceptions
	6.3. Exception handling

	Chapter 7. Closures
	7.1. Defining and using a closure
	7.2. Compact closures
	7.3. Calling closures
	7.4. Limitations
	7.5. Closures to single-method interfaces
	7.6. Direct closure passing works
	7.7. Conversion to single-method interfaces
	7.8. Getting a reference to a closure / Golo function
	7.9. Binding and composing
	7.10. Calling functions that return functions

	Chapter 8. Predefined functions
	8.1. Console output
	8.2. Console input
	8.3. Exceptions
	8.4. Preconditions
	8.5. Arrays (deprecated)
	8.6. Ranges
	8.7. Closures
	8.8. File I/O
	8.9. Array types
	8.10. Misc.

	Chapter 9. Class augmentations
	9.1. Wrapping a string with a function
	9.2. Augmenting classes
	9.3. Augmentation scopes, reusable augmentations
	9.4. Standard augmentations

	Chapter 10. Structs
	10.1. Definition
	10.2. JVM existence
	10.3. toString() behavior
	10.4. Immutable structs
	10.5. Copying
	10.6. equals() and hashCode() semantics
	10.7. Helper methods
	10.8. Private members
	10.9. Augmenting structs

	Chapter 11. Dynamic objects
	11.1. Creating dynamic objects
	11.2. Defining values
	11.3. Defining methods
	11.4. Querying the properties
	11.5. Defining a fallback behavior

	Chapter 12. Adapters
	12.1. A simple example
	12.2. Implementing interfaces
	12.3. Overrides
	12.4. Star implementations and overrides
	12.5. Misc.

	Chapter 13. Decorators
	13.1. Presentation
	13.2. Principles and syntax
	13.3. Use cases and examples
	13.3.1. Logging
	13.3.2. Pre/post conditions checking
	13.3.3. Locking
	13.3.4. Memoization
	13.3.5. Generic context

	Chapter 14. Dynamic code evaluation
	14.1. Loading a module
	14.2. Anonymous modules
	14.3. Functions
	14.4. Running code

	Chapter 15. Concurrency with workers
	15.1. The big picture
	15.2. Worker environments
	15.3. Spawning a worker and passing messages
	15.4. A complete and useless example

	Chapter 16. Golo template engine
	16.1. Example
	16.2. Directives

	Chapter 17. Documenting Golo code
	17.1. Documentation blocks
	17.2. Rendering documentation
	17.3. Alignment

	Chapter 18. Misc. modules
	18.1. Standard augmentations (gololang.StandardAugmentations)
	18.2. JSON support (gololang.JSON)
	18.3. Scala-like dynamic variable (gololang.DynamicVariable)
	18.4. Observable references (gololang.Observable)
	18.5. Asynchronous programming helpers (gololang.Async)

	Chapter 19. Common pitfalls
	19.1. new
	19.2. Imports
	19.3. Method invocations
	19.4. match is not a closure

