
OpenEngSB Manual
Version 2.0.0

ii

Table of Contents

I. Introduction .. 1

1. How to read the Manual ... 2

2. What is the Open Engineering Service Bus .. 3

3. When to use the OpenEngSB .. 4

3.1. The OpenEngSB as Base Environment ... 4

3.2. Reusing integration Components and Workflows ... 4

3.3. Management Environment ... 4

3.4. Simple Development and Distribution Management ... 4

3.5. Simple Plug-Ins and Extensions ... 4

II. OpenEngSB Framework .. 5

4. Quickstart .. 6

4.1. Writing new projects using the OpenEngSB .. 6

4.2. Writing Domains for the OpenEngSB ... 6

4.3. Writing Connectors for the OpenEngSB ... 6

5. Architecture of the OpenEngSB .. 8

5.1. OpenEngSB Enterprise Service Bus (ESB) ... 8

5.2. OpenEngSB Infrastructure ... 9

5.3. OpenEngSB Components ... 9

5.4. OpenEngSB Tool Domains .. 9

5.5. Client Tools (Service Consumer) .. 9

5.6. Domain Tools (Service Provider) ... 9

5.7. Domain- and Client Tool Connectors .. 10

6. Semantics in the OpenEngSB ... 11

6.1. Domain Models ... 11

6.2. Load Domain Models .. 11

6.3. Model Transformation ... 11

7. Context Management .. 12

7.1. Wiring services ... 12

8. Persistence in the OpenEngSB .. 14

8.1. Core Persistence .. 14

8.2. Configuration Persistence ... 14

9. Security in the OpenEngSB .. 16

9.1. Usermanagement ... 16

9.2. Access control ... 16

9.3. Authentication ... 17

10. Workflows ... 18

10.1. Workflow service .. 18

10.2. Rulemanager .. 18

10.3. Processes ... 18

11. Taskbox ... 19

11.1. Core Functionality ... 19

11.2. UI Functionality .. 19

12. Remoting ... 20

12.1. Filters .. 20

12.2. Configure a filterchain ... 22

OpenEngSB Manual

iii

12.3. Develop custom filters ... 22

12.4. Develop an incoming port .. 23

12.5. Develop an Outgoing port .. 23

13. External Domains and Connectors ... 25

13.1. Proxying .. 25

14. Deployer services ... 26

14.1. Connector configuration ... 26

14.2. Context configuration ... 27

15. Client Projects and Embedding The OpenEngSB .. 28

15.1. Using the same dependencies as the OPENENGSB .. 28

16. OpenEngSB Platform .. 29

17. HowTo - Setup OpenEngSB for development (First steps) .. 30

17.1. Goal .. 30

17.2. Time to Complete .. 30

17.3. Prerequisites .. 30

17.4. Java Development Kit 6 ... 30

17.5. Getting OpenEngSB ... 30

17.6. Installing OpenEngSB .. 30

17.7. Setup required domains .. 31

17.8. First Steps ... 32

17.9. Shutdown OpenEngSB ... 32

18. HowTo - First steps with the OpenEngSB (Send mails via the OpenEngSB) 33

18.1. Goal .. 33

18.2. Time to Complete .. 33

18.3. Prerequisites .. 33

18.4. Creating E-Mail Services ... 33

18.5. Executing Service Actions Directly ... 34

18.6. Executing Service Actions via Domains .. 35

18.7. Next Steps ... 36

19. HowTo - Events with the OpenEngSB (Using the logging service) 37

19.1. Goal .. 37

19.2. Time to Complete .. 37

19.3. Prerequisites .. 37

19.4. Create required connectors ... 37

19.5. Configure .. 37

19.6. Creating a rule ... 38

19.7. Throw Event ... 39

19.8. Next Steps ... 40

20. HowTo - Create a Client-Project for the OpenEngSB .. 41

20.1. Goal .. 41

20.2. Time to Complete .. 41

20.3. Step 1 - Needed tools .. 41

20.4. Step 2 - Using the archetype .. 41

20.5. Step 3 - The result ... 42

20.6. Step 4 - Install features .. 42

20.7. Step 5 - Start the Client-Project .. 43

20.8. Step 6 - Shutdown ... 43

OpenEngSB Manual

iv

21. HowTo - Interact with the OPENENGSB Remotely ... 44

21.1. Using JMS proxying .. 44

21.2. Using WS Proxing ... 48

21.3. Internal Specialities .. 48

22. HowTo - Combine multiple connectors .. 49

22.1. Composite strategies .. 49

22.2. Create a composite connector ... 49

23. How to define a domain model ... 50

23.1. Goal .. 50

23.2. Time to complete ... 50

23.3. Prerequisites .. 50

23.4. Step 1 - Plan the structure of the model .. 50

23.5. Step 2 - Write the model .. 50

23.6. Step 3 - Add the model to a domain ... 51

23.7. Step 4 - Use the model .. 51

24. HowTo - Integrate services with OpenEngSB ... 52

24.1. Goal .. 52

24.2. Time to Complete .. 52

24.3. Prerequisites .. 52

24.4. Setting up OpenEngSB .. 53

24.5. Step 1 - Source repository .. 54

24.6. Step 2 - Building the source code ... 54

24.7. Step 3 - Testing binaries .. 57

24.8. Step 4 - Notification Process .. 59

24.9. Further Reading ... 61

25. HowTo - Change EDB database back end .. 62

25.1. Goal .. 62

25.2. Time to Complete .. 62

25.3. Use JPA compatible database ... 62

25.4. Use non JPA compatible database ... 63

25.5. Appendix: Use no OSGi compatible database .. 63

26. HowTo - Test Remote Messaging using Hermes JMS ... 64

26.1. Preparation .. 64

26.2. Send and Receive Messages ... 68

III. Included Domains and Connectors .. 70

27. Appointment Domain .. 71

27.1. Description .. 71

27.2. Functional Interface ... 71

27.3. Event Interface .. 71

28. Build Domain ... 72

28.1. Description .. 72

28.2. Functional Interface ... 72

28.3. Event Interface .. 72

29. Contact Domain ... 73

29.1. Description .. 73

29.2. Functional Interface ... 73

29.3. Event Interface .. 73

OpenEngSB Manual

v

30. Deploy Domain .. 75

30.1. Description .. 75

30.2. Functional Interface ... 75

30.3. Event Interface .. 75

31. Issue Domain ... 76

31.1. Description .. 76

31.2. Functional Interface ... 76

31.3. Event Interface .. 77

32. Notification Domain ... 78

32.1. Description .. 78

32.2. Functional Interface ... 78

32.3. Event Interface .. 78

33. Report Domain ... 79

33.1. Description .. 79

33.2. Functional Interface ... 79

33.3. Event Interface .. 80

34. SCM Domain ... 81

34.1. Description .. 81

34.2. Functional Interface ... 81

34.3. Event Interface .. 82

35. Test Domain .. 84

35.1. Description .. 84

35.2. Functional Interface ... 84

35.3. Event Interface .. 84

36. Email Connector ... 85

36.1. Configuration ... 85

37. gcalendar Connector ... 86

37.1. Configuration ... 86

38. gcontacts Connector .. 87

38.1. Configuration ... 87

39. Git Connector ... 88

39.1. Configuration ... 88

40. github Connector .. 89

40.1. Configuration ... 89

41. Maven Connector ... 90

41.1. Configuration ... 90

42. Plaintext Report Connector ... 91

42.1. Configuration ... 91

43. Prom Report Connector .. 92

43.1. Configuration ... 92

44. trac Connector .. 93

44.1. Configuration ... 93

IV. Administration Console .. 94

45. OpenEngSB console commands .. 95

45.1. Start the console .. 95

45.2. Available commands .. 95

V. Administration User Interface .. 96

OpenEngSB Manual

vi

46. Testclient ... 97

46.1. Managing global variables .. 97

46.2. Managing imports .. 97

47. Wiring ... 98

47.1. Wire a global variable with a service .. 98

47.2. What wiring does in the background ... 99

VI. OpenEngSB Contributor Detail Informations ... 100

48. Prepare and use Non-OSGi Artifacts .. 101

48.1. Create Wrapped Artifacts ... 101

48.2. Tips and Tricks .. 102

49. OpenEngSBModels ... 103

49.1. Motivation ... 103

49.2. Structure of a model .. 103

49.3. Supported field types ... 103

49.4. Model Ids .. 104

50. Engineering Database - EDB ... 105

50.1. Motivation ... 105

50.2. Structure .. 105

50.3. Usage .. 105

50.4. Conflict Detection .. 106

51. Engineering Knowledge Base - EKB ... 107

51.1. Motivation ... 107

51.2. Query Service .. 107

52. How To Create an Internal Connector .. 108

52.1. Prerequisites .. 108

52.2. Creating a new connector project .. 108

52.3. Project Structure .. 109

52.4. Integrating the Connector into the OpenEngSB environment 110

53. How To Create an Internal Domain ... 111

53.1. Prerequisites .. 111

53.2. Creating a new domain project ... 111

53.3. Components ... 113

53.4. Connectors ... 114

54. HowTo - Extend OpenEngSB Console ... 115

54.1. Goal .. 115

54.2. Time to Complete .. 115

54.3. Prerequisites .. 115

54.4. Start the console .. 115

54.5. Adding new commands .. 115

55. HowTo - Create a connector for an already existing domain for the OpenEngSB 117

55.1. Goal .. 117

55.2. Time to Complete .. 117

55.3. Prerequisites .. 117

55.4. Step 1 - Use the archetype .. 117

55.5. Step 2 - Add the dependencies .. 118

55.6. Step 3 - Configure the connector .. 118

55.7. Step 4 - Implement the connector ... 119

OpenEngSB Manual

vii

55.8. Step 5 - Blueprint Setup and Internationalization .. 123

55.9. Step 6 - Start the OpenEngSB with your Connector .. 124

55.10. Step 7 - Test the new connector .. 124

56. How to add new field support for domain models ... 125

56.1. Goal .. 125

56.2. Time to complete ... 125

56.3. Prerequisites .. 125

56.4. Subtask 1 - Add model support ... 125

56.5. Subtask 2 - Add EDB support .. 126

1

Part I. Introduction
This parts provides general information to the project, the document, changelog and similar data which fits neither

in the framework description nor in the contributor section.

The target audience of this part are developers, contributors and managers.

2

Chapter 1. How to read the Manual

Like any open source project we have the problem that writing documentation is a pain and nobody

is paid for doing it. In combination with the rapidly changing OpenEngSB source base this will lead

to a huge mess within shortest time. To avoid this problem we've introduced regular documentation

reviews and, more importantly, the following rules which apply both for writing the document and

for reading it.

• The manual is written as short and precise as possible (less text means lesser to read and even lesser

to review)

• The manual does not describe how to use an interface but only coarse grained concepts in the

OpenEngSB. Since the OpenEngSB is not an end user application, but rather a framework for

developers we expect that Javadoc is no problem for them. Writing Javadoc and keep it up to date

is still hard for developers, but much easier than maintaining an external document. Therefore, all

concepts are explained and linked directly to the very well documented interfaces in the OpenEngSB

on Github. To fully understand and use them you'll have to read this manual parallel to the interface

documentation in the source code.

3

Chapter 2. What is the Open Engineering Service
Bus

In engineering environments a lot of different tools are used. Most of these operate on the same domain,

but often interoperability is the limiting factor. For each new project and team member tool integration

has to be repeated again. In general, this ends up with numerous point-to-point connectors between

tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It

simplifies design and implementation of workflows in an engineering team. The engineering team itself

(or a process administrator) is able to design workflows between different tools. The entire description

process happens on the layer of generic domains instead of specific tool properties. This provides an

out of the box solution which allows typical engineering teams to optimize their processes and make

their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of

individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard all integrated tools and

workflows. This offers new ways in notifying managers at the right moment and furthermore allows

a very general, distanced and objective view on a project.

Although this concept is very powerful it cannot solve every problem. The OpenEngSB is not designed

as a general graphical layer over an Enterprise Service Bus (ESB) which allows you to design ALL of

your processes out of the box. As long as you work in the designed domains of the OpenEngSB you

have a lot of graphical support and other tools available making your work extremely easy. But when

leaving the common engineering domains you also leave the core scope of the service bus. OpenEngSB

still allows you to connect your own integration projects, use services and react on events, but you have

to keep in mind that you're working outside the OpenEngSB and "falling back" to classical Enterprise

Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools

already used for your development process, it will integrate them. Our service bus is used to connect

the different tools and design a workflow between them, but not to replace them with yet another

application. For example, software engineers like us love their tools and will fight desperately if you

try to take them away. We like the wheels as they are, but we do not like the way they are put together

at the moment.

4

Chapter 3. When to use the OpenEngSB

The OpenEngSB project has several direct purposes which should be explained within this chapter to

make clear in which situations the OpenEngSB can be useful for you.

3.1. The OpenEngSB as Base Environment

OSGi is a very popular integration environment. Instead of delivering one big product the products get

separated into minor parts and deployed within a general environment. The problem with this concept

is to get old, well known concepts up and running in the new environment. In addition tools such as

PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as

Karaf allow a richer and easier development. Nevertheless, setting up such a system for development

means a lot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

3.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start

from the ground and develop a complete, own environment, only using existing connectors. Using the

OpenEngSB not only connectors but an entire integrated process, workflow and event environment

waits for you. In addition connectors to different tools can not only be adapted to the specific needs,

but also simply replaced by other connectors, using the Domain concept.

3.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this

environment can be added to your project standalone (similar to e.g. Tomcat management console)

you also have the possibility to completely integrate the OpenEngSB management environment into

your Apache Wicket application.

3.4. Simple Development and Distribution Management

While typical ESB have to be installed separately from your application the OpenEngSB is delivered

with your application. Develop your application in the OpenEngSB environment and scripts to embed

your application into the OpenEngSB are provided. In addition easy blending allows to adapt the

OpenEngSB visually to your needs and cooperate design.

3.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven

archetypes Plug-Ins can be created, uploaded and provided to all other OpenEngSB installations or

applications using the OpenEngSB.

5

Part II. OpenEngSB Framework
This part gives an introduction into the OpenEngSB project and explains its base usage environment and the

concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers

installation, configuration and usage of the administration interface to implement a tool environment according

to your needs.

The target audience of this part are developers and contributors.

6

Chapter 4. Quickstart

As a developer you have basically two ways in which you can use the OpenEngSB. One option is to

use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to

write Plug-Ins (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

4.1. Writing new projects using the OpenEngSB

TBW(Jira-ISSUE)

4.2. Writing Domains for the OpenEngSB

To create a new Domain run mvn openengsb:genDomain (or use ../etc/scripts/gen-domain.sh)

in the domain folder. You will be asked for the name of your domain. Enter the domain name starting

with a lower case letter. For the other questions valid defaults are given.

The new domain project will be added as a submodule. You eventually want to run mvn

openengsb:eclipse and import the new project in eclipse.

Add the methods your domain supplies to the domain interface. If your domain raises any events add

methods like

void raiseEvent(YourEvent event);

(your event class subtype of Event as single parameter) to the events interface.

4.3. Writing Connectors for the OpenEngSB

To create a new Connector run mvn openengsb:genConnector (or use ../etc/scripts/gen-

connector.sh) in the connector folder. You will be asked for the name of the domain you want to

implement. Enter the domain name starting with a lower case letter. You may adapt the name of the

implemented domain interface if you it does not match the naming convention. Supply the name of

the connector staring with a lower case letter.

The new domain project will be added as a submodule. You eventually want to run mvn

openengsb:eclipse and import the new project in eclipse.

Implement the domain interface in the supplied class (unfortunately no method stubs are generated).

Unimplemented domain methods should always throw an exception rather than return

default value or do nothing. Therefore each domain method without body must throw

DomainMethodNotImplementedException to indicate that requested domain functionality is not

implemented.

@Override

public void foo() {

 throw new DomainMethodNotImplementedException();

}

http://issues.openengsb.org/jira/browse/OPENENGSB-2508

Quickstart

7

The ServiceFactory has to supply a ServiceDescriptor that contains all attributes needed to instantiate

the Connector. In the methods createServiceInstance and updateServiceInstance use the provided

attributes to create a new new instance or update your Connector. The methods updateValidation

and createValidation should do the same but try to validate the provided attributes first and return a

validation result.

The generated ServiceManager usually does not have to be changed.

8

Chapter 5. Architecture of the OpenEngSB

This chapter tries to give a short summary of the most important concepts in the OpenEngSB

architecture.

The following graphic shows the architecture of the OpenEngSB. In the center we use a bus system

to integrate different modules. In this case we do not use a classical Enterprise Service Bus (ESB),

but rather the OSGi service infrastructure via Apache Aries Blueprint-DM (Section 5.1, “OpenEngSB

Enterprise Service Bus (ESB)”). We are using Apache Karaf as the OSGi environment. Karaf is

used in this case, instead of a most basic OSGi environment, such as Apache Felix or Eclipse

Equinox , because it supports us with additional features as extended console support and the feature

definitions. This base infrastructure, including all modifications required for the OpenEngSB is

called the Section 5.2, “OpenEngSB Infrastructure”. Within the OpenEngSB Infrastructure so called

Section 5.3, “OpenEngSB Components” and Section 5.4, “OpenEngSB Tool Domains” are installed.

Both types are written in a JVM compatible language, including OSGi configuration files to run in

the OpenEngSB Infrastructure. They are explained later within this chapter. Different tools running

outside the OpenEngSB Infrastructure are called Section 5.5, “Client Tools (Service Consumer)” or

Section 5.6, “Domain Tools (Service Provider)”, depending on their usage scenario. To integrate and

use them within the OpenEngSB so called Section 5.7, “Domain- and Client Tool Connectors” are

used. All of these concepts are explained within the next sections.

Technical view of the OpenEngSB highlighting the

most important concepts of the integration system

5.1. OpenEngSB Enterprise Service Bus (ESB)

One of the principal concepts for the OpenEngSB development is (if possible) to use already existing

and proven solutions rather than inventing new ones. In this manner the OpenEngSB is an extension

to the ESB concept. Typical ESBs such as Apache Servicemix or other JBI or ESB implementations

always have the feeling to be huge and bloated. Complex integration patterns, messaging, huge

http://karaf.apache.org
http://felix.apache.org
http://www.eclipse.org
http://www.eclipse.org
http://servicemix.apache.org

Architecture of the OpenEngSB

9

configuration files and similar concepts/problems lead to this feeling. And those feelings are right.

They are bloated. The OpenEngsB tries a different approach. Using Karaf as its base framework the

environment is VERY lightweight. Depending on your use case you can use different configurations

and packages out of the box.

5.2. OpenEngSB Infrastructure

While Apache Karaf provides a rich environment and functionality we're not done with it. Via the

Apache Aries Blueprint-DM extension mechanism, AOP and the OSGi listener model the OpenEngSB

directly extends the environment to provide own commands for the console, fine grained security and

a full grown workflow model. These extensions are optional and not required if you want to use the

platform alone. Add or remove them as required for your use case.

5.3. OpenEngSB Components

These libraries are the OpenEngSB core. The core is responsible to provide the OpenEngSB

infrastructure as well as general services such as persistence, security and workflows. To provide best

integration most of these components are tied to the OpenEngSB ESB environment. Nevertheless, feel

free to add or remove them as required for your use case.

5.4. OpenEngSB Tool Domains

Although each tool provider gives a personal touch to its product their design is driven by a specific

purpose. For example, there are many different issue trackers available, each having its own advantages

and disadvantages, but all of them can create issues, assign and delete them. Tool Domains are based

on this idea and distill the common functionality for such a group of tools into one Tool Domain

interface (and component). Tool domains could be compared best to the concept of abstract classes

in in object orientated programming languages. Similar to these, they can contain code, workflows,

additional logic and data, but they are useless without a concrete implementation. Together with the

ESB, the OpenEngSB infrastructure and the core components the tool domains finally result in the

OpenEngSB.

5.5. Client Tools (Service Consumer)

Client Tools in the OpenEngSB concept are tools which do not provide any services, but consume

services provided by Tool Domains and Core Components instead. A classical example from software

engineering for a client tool is the Integrated Development Environment (IDE). Developer prefer to

have the entire development environment, reaching from the tickets for a project to its build results, at

hand. On the other hand they do not need to provide any services.

5.6. Domain Tools (Service Provider)

Domain Tools (Service Provider) Domain Tools, compared to Client Tools, denote the other extreme

of only providing services. Classically, single purpose server tools, like issue tracker or chat server,

match the category of Domain Tools best. Most tools in (software+) engineering environments fit of

course in both categories, but since there are significant technically differences between them they are

described as two different component types.

Architecture of the OpenEngSB

10

5.7. Domain- and Client Tool Connectors

Tool Connectors connect tools to the OpenEngSB environment. They implement the respective Tool

Domain interface. As Client Tool Connectors they provide a Client Tool with an access to the

OpenEngSB services. Again, Domain- and Client Tool Connectors are mostly mixed up but separated

because of their technical differences. Additionally it is worth mentioning that tools can be integrated

with more than one connector. This allows one tool to act in many different domains. Apache Maven is

an example for such multi-purpose tools, relevant for build, as well as test and deploy of Java projects.

11

Chapter 6. Semantics in the OpenEngSB

One of the core concepts of the OpenEngSB is the correct handling of domain models, versionize them

and perform model transformations on such models so that they can be easily used by tools which

connect to the OpenEngSB.

6.1. Domain Models

A domain model represents an abstraction of data a domain has to work with (e.g. Issue for issue

tracking systems). It capsulates all information which is needed for one information unit. Such domain

models are defined in the domains and can be used by connectors which use the domain.

This domain models can be saved and versionized with the help of the OpenEngSB and two core

components, namely the EDB(Engineering Database) and the EKB(Engineering Knowledge base).

Those two components will be explained in more detail in the contributor manual.

A domain model is represented as an interface. This interface has to extend a provided interface which

is called "OpenEngSBModel". To work with this interface, we provide a Utils class, (ModelUtils)

which is able to proxy the interface and gives you the feeling like you work with a normal class object.

Such domain models can be sent via events(EDBInsertEvent, EDBUpdateEvent, EDBDeleteEvent and

EDBBatchEvent) to the EDB, where they will be saved, updated or deleted. This events can be thrown

from every connector that extends "AbstractOpenEngSBConnectorService", which shall be done by

all connector implementations.

An OpenEngSBModel consists only of getter and setter pairs. Those methods describe which

fields the model have. Field types which are supported until now are: simple types, Strings, Date,

OpenEngSBModel, Lists and Files. Files are a special case, but it is possible to send models with File

objects remotely and the File which is represented by the File object will be available at the remote

machine as a local copy there.

Every OpenEngSBModel can define an id for itself. This id can be used for easier finding of domain

models and to enable the versioning possibility when they are saved in the EDB. Such an id can easily

be defined by setting a special annotation over the setter which defines the id for the object. This

annotation is called "OpenEngSBModelId".

6.2. Load Domain Models

Domain models can be loaded from the EDB through the EKB. The EKB bundle provides a service

called QueryInterface. This service provides all needed functionality to search and load models from

the EDB. It also convert the elements from the EDB to a new instance of the domain model you request.

6.3. Model Transformation

This feature is not yet implemented. There is currently research going on how to accomplish this task

the best way.

12

Chapter 7. Context Management

The context is one of the most important core concepts of the OpenEngSB. It allows to reuse predefined

workflows in several contexts. A context may often represent a project or subproject. So it is possible

to execute the same workflow with the project-specific tool-instances and other metadata (like contact-

information).

To determine in which context an action should be executed a thread-local variable is used. The

ContextHolder keeps track of this variable (the current threads' context). Invoking the set- and get-

method will always manipulate the context of the current Thread. When a new Thread is spawned it

inherits the context from the parent thread.

Attention: When using Theadpools, the ContextHolder may malfunction (i.e. return the context of

some previous task that was run in the same thread). Use

ThreadLocalUtil.contextAwareExecutor(ExecutorService)

to convert any executor to a context-aware one. ExecutorServices returned by this method ensure that

the submitted tasks are executed in the same context as the thread they were submitted from.

This way connector-implementations and other client projects always can handle actions according to

the current context, and execute actions in specific a specific context. So when a person with a certain

role in the project (e.g. project manager) needs to be notified of some event, the value of his contact-

address is specific to the context of the project(s) he is managing.

7.1. Wiring services

The context is also used to handle the wiring of services in workflows. Suppose there are two projects

that use their own SCM-repositories and for both repositories connector-instances were created to poll

them. When executing a workflow contains an action that polls the SCM, the correct service ca be

picked by looking up the current thread's context.

In general workflows have references to several domains and other services which they interact with

during execution. Each project might have their own tools behind these domains, so these references

must be resolved at runtime depending on the current context.

For this to work the workflow-engine declares global variables that are used in rules and processes. A

variable is resolved by looking up the service with the same name in the current context. If no service

with that name is available in the context it is looked up in the "root"-context.

In detail the wiring is handled via the service-properties. Services contain properties where the key

is of the format "location.<contextid>". The value is a list of "locations" represented by an array of

strings. So a service may have several locations in several contexts.

When a global variable is accessed during the execution of an action (from a process or rule), the

OSGi-context is queried for the corresponding service. The service wired to this variable must have

location with the same name as the variable. The service is searched in the current context and the

root-context. If no service is found, the action is stalled for 30 seconds. If there is still no service found

an Exception is thrown. Internally this is handled using proxies. When the workflow service is started,

${github}/core/api/src/main/java/org/openengsb/core/api/context/ContextHolder.java

Context Management

13

all globals are populated with proxies, that automatically resolve the service with the corresponding

location when a method is invoked.

Example: The auditing-service is registered with the interface AuditingDomain. The service has

property "location.root" with value {"auditing"} (array with one element). The workflow engine

contains a global named "auditing" and a rule that invokes a method on every Event that is processed.

When the rule fires and the consequence is executed, the proxy representing "auditing"-global

queries for a service with the location.currentContext or the location.root containing a location-entry

"auditing". Since root-services get a service-ranking of "-1" by default, the service current context's

would supersede the service located in the root-context.

14

Chapter 8. Persistence in the OpenEngSB

The OpenEngSB contains various different persistence solutions which should be introduced and

explained in this chapter

8.1. Core Persistence

The OpenEngSB has a central persistence service, which can be used by any component within in

the OpenEngSB to store data. The service is designed for flexibility and usability for the storage of

relatively small amounts of data with no explicit performance requirements. If special persistence

features need to be used it is recommended to use a specialized storage rather than the general storage

mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)

mechanisms. Instances of the persistence service are created per bundle and have to make sure that data

is stored persistently. If bundles need to share data the common persistence service cannot be used, as it

does not support this feature. The persistence manager is responsible for the management of persistence

service instances per bundle. On the first request from a bundle the persistence manager creates a

persistence service. All later requests from a specific bundle should get the exact same instance of the

persistence service.

Queries with the OpenEngSB persistence done via the persistence service. Behind this service an easy

query-by-example logic is used to retrieve your results. In some cases the comparison and storage

can create some wired problems for your specific use cases. For those cases the IgnoreInQueries

annotation had been added. Using this annotation on getters in classes persisted via the persistence

service querying them ignores those fields during trying to compare them to stored data.

The persistence solution of the OpenEngSB was designed to support different possible back-end

database systems. So if a project has high performance or security requirements, which can not be

fulfilled with the default database system used by the persistence service, it is possible to implement

a different persistence back-end. To make this exchange easier a test for the expected behavior of the

persistence service is provided.

8.2. Configuration Persistence

Besides the centralized Java Bean store the OpenEngSB also have a more specialized solution to

store configurations. Configurations are basically also Java Beans, but have to extend a ConfigItem.

Well, since Configurations are also only Java Beans you may ask: Why not simply store them via the

persistence service? The reason is quite simple. We do need to store configurations at various places.

Options may be the file system, an object store or any other place. In addition configurations, when

you e.g. store them to files, have to be quite specific about their types. Rule, for example, have to be

stored as simple strings, flows as xml files and connectors as key-value-pairs. Being so specific the

implementations of the backends also have to be specific. Besides, there are kind of regions. Examples

are Rules, Flows, and various others. Basically in you code you simply want to ask for a configuration

persister for rules and do not care if it is a file persister or something else. In addition rules could be

${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceManager.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/IgnoreInQueries.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java
${github}/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java
${github}/core/api/src/main/java/org/openengsb/core/api/model/ConfigItem.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/PersistenceService.java

Persistence in the OpenEngSB

15

persisted somewhere else than e.g. flows. Therefore those backends have to be configured separate

for each type.

Ok, after the need is identified let's take a look at the how. Basically it's quite simple. You

register various backend services in the OSGi registry, give them a specific ID, configure how

a region is mapped to an idea and request a persister for a specific region or type and retrieve

the correct implementation. From a user point of view this system is quite simple. Use the

getConfigPersistenceService(String type) method from the OpenEngSBCoreServices class with the

type, which is typically stored directly at the configurations, as for example for the RuleConfiguration

and retrieve and persist RuleConfigurations. The mapping between the backend and the frontend is

defined in the configuration file here. If you want to use another available and compatible backend

for rule configurations add the backend id in the configuration file and the service for this region will

switch automatically.

Although it is quite simple to configure, change and consume and provide configurations it is mostly

not a good idea to simply change the properties, backend or frontend if you're not exactly sure about

what you're doing. You can easily take the wrong backend service which will not be able to persist

e.g. a RuleConfiguration and throws exceptions. If you swtich the backend during the run everything

stored in the old backend would not be available in the new one. Within a client project mostly relay

on using those services to read the properties and use the OpenEngSB to store them.

Still the system can easily be extended to your own use. Typically you have to do the following steps to

provide a new configuration service. First of all start by providing an own Configuration which extends

ConfigItem. Please only use the metadata and content fields and do not add additional variables.

They wont get stored. Now add a configuration file into etc with org.openengsb.persistence.config-

ANY_NAME_YOU_LIKE.cfg. In this file define the region and the backend id. The exact values and

detailed explanation for those fields is available here. If you've not choosen one of the general available

services for storage you now can implement your own backend service registered in the OSGi registry

with the ID you've configured in the .cfg file before. The interface you have to implement and register

as a service is the ConfigPersistenceBackendService.

8.2.1. Context configuration persistence

The context configuration persistence follows the basic configuration persistence scheme. In this case

the backend (ContextFilePersistenceService) creates files for each context (basically empty files with

filename <contextId>.context), the context service (ContexServiceImpl) requests a config persistence

service of type CONTEXT, is given the aforementioned one and uses it to persist its data.

${github}/core/common/src/main/java/org/openengsb/core/common/OpenEngSBCoreServices.java
${github}/core/api/src/main/java/org/openengsb/core/api/model/RuleConfiguration.java
${github}/assembly/src/main/filtered-resources/etc/org.openengsb.persistence.config-rule.cfg
${github}/core/api/src/main/java/org/openengsb/core/api/model/ConfigItem.java
${github}/core/api/src/main/java/org/openengsb/core/api/Constants.java
${github}/core/api/src/main/java/org/openengsb/core/api/persistence/ConfigPersistenceBackendService.java
${github}/core/services/src/main/java/org/openengsb/core/services/internal/ContextFilePersistenceService.java
${github}/core/services/src/main/java/org/openengsb/core/services/internal/ContextServiceImpl.java

16

Chapter 9. Security in the OpenEngSB

9.1. Usermanagement

The OpenEngSB has a central user management service, which can be used for example by an user

interface. The service is designed to manage your users. You can create new user and save them to the

persistence or retrieve, update and delete them.

The user management needs a back-end database, e.g. the central persistence service of the

OpenEngSB.

The interface of the User manager supports basic CRUD mechanisms (create, retrieve, update, delete).

The User is the used user model. It holds attributes like a password, username, if the user is enabled,

or his account is expired or locked. A user is identified by his username. So the username can not be

changed. Another attribute are the authorities. These are the roles granted to the user. These can be

for example "ROLE_ADMIN" which defines the user as admin. Depending on the roles, a user can

have different rights. For the OpenEngSB-UI a user has to have at least the role "ROLE_USER" which

is the default role.

9.2. Access control

Access control is done on the service level. Core-services and connector-instances are all published as

OSGi-services. Other services and components always reference these service instances. We use the

approach of AOP to achieve security of these services. The openengsb.core.security-bundle publishes

a service that serves as a method-interceptor. When it is attached to a service every method call on the

service is preceded with an authorization-check.

A reference to the method-interceptor can be obtained by this line in the spring-context.xml

<osgi:reference id="securityInterceptor" interface="org.aopalliance.intercept.MethodInterceptor" />

In order to attach it to an existing bean, one has to create a ProxyFactoryBean:

<bean id="secureServiceManager" class="org.springframework.aop.framework.ProxyFactoryBean">

 <property name="proxyInterfaces">

 <value>other.ServiceInterface</value>

 </property>

 <property name="interceptorNames">

 <list>

 <value>securityInterceptor</value>

 </list>

 </property>

 <property name="target" ref="<realBean>" />

</bean>

When registering a service in code rather than in a spring context.xml this can be done as seen in the

AbstractServiceManager

import org.springframework.aop.framework.ProxyFactory;

//

// ...

//

${github}/core/api/src/main/java/org/openengsb/core/api/security/UserManager.java
${github}/core/api/src/main/java/org/openengsb/core/api/security/model/User.java
${github}/core/common/src/main/java/org/openengsb/core/common/AbstractServiceManager.java

Security in the OpenEngSB

17

ProxyFactory factory = new ProxyFactory(serviceObject);

factory.addAdvice(securityInterceptor);

OpenEngSBService securedService = (OpenEngSBService) factory.getProxy();

The decision about the allowing the user access to a service as made by looking at the services

instanceId. Therefore, all services that are to be placed under this access control, must implement

OpenEngSBservice, and make sure the instanceId is unique enough to ensure security. You may want

to derive your service-class from AbstractOpenEngSBService.

The persistence of the security-bundle manages a set of GrantedAuthorities (Roles) for each instanceId.

There is one exception: Users with "ROLE_ADMIN" are always granted access.

9.3. Authentication

This chapter describes how to deal with security in internal bundles and client projects

For authentication the OpenEngSB provides an AuthenticationProvider as a service. It's obtainable

via blueprint.

 <reference interface="org.springframework.security.authentication.AuthenticationManager" />

This service is able to authenticate users

(org.springframework.security.authentication.UsernamePasswordAuthenticationToken) and bundles

(org.openengsb.core.security.BundleAuthenticationToken). The use of the former is pretty obvious.

The latter is used for authentication for internal actions, that require elevated privilages. This

authentication should be used with caution, and never be exposed externally for security reasons.

${github}/core/api/src/main/java/org/openengsb/core/api/OpenEngSBService.java
${github}/core/common/src/main/java/org/openengsb/core/common/AbstractOpenEngSBService.java

18

Chapter 10. Workflows

The OpenEngSB supports the modeling of workflows. This could be done by two different approaches.

First of all a rule-based event approach, by defining actions based on events (and their content) which

were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy

to replace and extend. For long running business processes the secondary workflow method could be

used which is based on Section 10.3, “Processes” described in Drools-Flow.

The workflow service takes "events" as input and handles them using a rulebased system (JBoss

Drools). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

10.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected

to the environment (domains and connectors). When an event is fired, the workflow-service spawns a

new session of the rulebase. The session gets populated with references to domain-services and other

helper-objects in form of global variables. A drools-session is running in a sandbox. This means that

the supplied globals are the only way of triggering actions outside the rule-session.

10.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the

rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are

saved separately. All elements share a common collection of import- and global-declarations. These

parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or

function to the rulebase, make sure that all imports are present before. Otherwise the adding of the

elements will fail.

10.3. Processes

In addition to processing Events in global/context-specific rules, it is also possible to use them to

control a predefined workflow. The WorkflowService provides methods for starting and controlling

workflow-processes.

When the workflow service receives an event, it is inserted into the rulebase as a new fact (and rules

are fired accordingly). In addition the event is "signaled" to every active workflow-process. Workflow

logic may use specific rules to filter these events.

${github}/core/api/src/main/java/org/openengsb/core/api/workflow/WorkflowService.java
${github}/core/api/src/main/java/org/openengsb/core/api/workflow/RuleManager.java

19

Chapter 11. Taskbox

The Taskbox enables you to combine workflows with Human Interactions.

11.1. Core Functionality

All workflows started in the OpenEngSB are supplied with the global variable ProcessBag. Inside the

workflow you can populate the ProcessBag with your data. As soon as Human Interaction is needed

you have to incorporate the sub-workflow "humantask", which wraps the ProcessBag into a Task. You

can then query the Taskbox service for open Tasks, and manipulate the data inside of the Task (Not

necessarily by Human Interaction). When you are finished, you again call the Taskbox service and

supply the changed Task. The changed data gets extracted and is handed back over to the workflow.

11.2. UI Functionality

The Webtaskbox service provides additional UI Features, if you want to integrate the Taskbox-Concept

into a wicket Page. You can query the Webtaskbox service for an Overview Panel that displays all

open Tasks. If the default Overview Panel doesn't fit your needs exactly you can develop your own

UI-Component using the (Core-)Taskboxservice. If you navigate onto a specific Task the Overview

Panel displays a (default) Detail Panel populated with the values of the Task, if there is no custom

Panel registered for the supplied tasktype. You can develop your own Detail-Panels and register them

for a specific Tasktype via the Webtaskbox service.

${github}/core/api/src/main/java/org/openengsb/core/api/workflow/model/ProcessBag.java
${github}/core/api/src/main/java/org/openengsb/core/api/workflow/model/Task.java
${github}/core/api/src/main/java/org/openengsb/core/api/workflow/TaskboxService.java
${github}/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/WebTaskboxService.java
${github}/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskOverviewPanel.java
${github}/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskPanel.java

20

Chapter 12. Remoting

The OpenEngSB provides interfaces for interacting with other applications on the network in a

generic way that allows using any programming language, transport protocol and message marshalling/

encoding. This does not mean that it magically supports all protocols and encodings, but rather that

it provides a generic API that provides means for integration of new protocols etc. All external

communication is based on single messages, which means the whole mechanism is stateless on its own.

To realize stateful computations, either the filter(s) or the service must provide such functionality.

12.1. Filters

Following the "Chain of Responsibility"-Pattern [http://en.wikipedia.org/wiki/Chain-of-

responsibility_pattern] the OpenEngSB uses Filters to modularize the processing and transport of

incoming and outgoing messages (see Figure 12.1, “How filters fit in the architecture”). A filter is

responsible for one (or more) specific transformation steps. Ideally a Filter should only represent a

specific transformation step to increase reuseability.

Figure 12.1. How filters fit in the architecture

A filter is responsible for both ways of a transformation (for example a filter that parses a request is

also responsible for marshalling the result). Since it is a chain of filters, every filter has a successor

(next) where it passes it's transformed request. After the next filter is done and returns a result the

current filter transforms the message to the desired output format. This gives filterchains a pyramid-

like architecture (see Figure 12.2, “Pyramid-like architecture of filters”)

http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern

Remoting

21

Figure 12.2. Pyramid-like architecture of filters

Example: Typically an incoming remote call can be divided into the following steps:

• receive: Reads the message in raw form a network stream.

• unmarshal request: transform the raw stream into a MethodCall object

• handle the request: resolve the corresponding osgi-service, invoke the method and wrap the result

in a MethodResult object

• marshal result: marshal the result for transporting it over the network

• send result: send the result back to the caller over the network

A port realizing such a transport would consist of a task listening for incoming messages and

a chain with two Filters: One for marshalling and one handling the request itself. An example

for such an implementation is the "jms-json-basic"-port in the "openengsb-ports-jms" project. The

incoming port is represented by a single that listens on a specific jms-queue for new requests. If a

Text-message is received it is passed on to the filterchain as a string. The filterchain starts with a

"JsonMethodCallMarshalFilter". As the name indicates, this filter expects a string containing a json-

encoded MethodCall. The string is transformed into a MethodCallRequest object and passed on to the

next filter. The next filter is the RequestHandlerFilter. It extracts the MethodCall from the request and

passes it on to the RequestHandler and wraps the returned MethodResult into a MethodResultMessage.

The MethodResultMessage is then returned to the "JsonMethodCallMarshalFilter". There the

MethodResultMessage is encoded in JSON and returned to the MessageHandler which then sends

it to the answer-queue. In the JMS-Port the result is sent to a queue named after the "callId"

submitted in the Request. The callId however cannot necessarily be extracted from the plain-text

message at the beginning of the chain. Therefore a map containing values obtained in the filter chain

(propertyContainer) is passed in to each filter during processing.

Remoting

22

This is only a specific example of creating a port. Another port behaving similarly but using xml as

encoding can easily be configured. It can use the same bean but with a different filterchain. In the

filterchain the first element is replaced by an XMLMethodCallMarshalFilter. the RequestHandlerFilter

is the same as in the jms-json-port.

12.2. Configure a filterchain

An instance of FilterChainElement may only be part of one FilterChain. In order to reuse

FilterChainElements in other filterchains new instances must be created. This is because the instances

of the filters may contain references to the next element in the chain.

That's why Filterchains are supposed to be configured using a FilterChainFactory. A filterchain is a

bean configured with a list of filters. Each element may either be the Classname of a FilterAction-class

(which must have a public default constructor) or an instance of a FilterChainElementFactory. The

last element in the list may also be an instance of a FilterAction (or other FilterChain). The following

example shows how to configure a port via blueprint.

<bean id="incomingFilterChainFactory" class="org.openengsb.core.common.remote.FilterChainFactory">

 <property name="inputType" value="java.lang.String" />

 <property name="outputType" value="java.lang.String" />

 <!-- the list of filters -->

 <property name="filters">

 <list>

 <!-- A class implementing the FilterChainElement-interface -->

 <value>org.openengsb.core.common.remote.JsonMethodCallMarshalFilter</value>

 <!-- instance of a filter-factory -->

 <bean class="org.openengsb.ports.myport.MyFilterFactory">

 <propety name="foo" value="bar" />

 </bean>

 <!-- The last item in the list may be an instance of a FilterAction -->

 <bean class="org.openengsb.core.common.remote.RequestMapperFilter">

 <property name="requestHandler" ref="requestHandler" />

 </bean>

 </list>

 </property>

</bean>

When configuring the filter-chain you have to make sure that each filter in the list is compatible with

its predecessor. Compatibility is checked when the create-method is invoked. In the above example

this would be while processing the blueprint-file.

12.3. Develop custom filters

The filters provided by the OpenEngSB only cover the the requirements for the ports that are provided

by the OpenEngSB itself. For custom ports, custom filter-classes may be required.

Filterclasses that are to be used at the end of a chain must implement the FilterAction-interface. In

order to be usable anywhere in the filterchain the Classes must implement the FilterChainElement-

interface. The interfaces do not use generic parameters because the benefit is really minimal as the

information is erased during compilation. There are however abstract classes (with generic parameters)

that make it easier to implement new FilterChainElements

Remoting

23

12.4. Develop an incoming port

Incoming ports receive messages and process them using a filterchain. There are no restrictions on

how the implementation of the incoming port actually looks like. Typically an incoming port is an

object that spawns a listening thread and uses a filterchain to process incoming messages. This is an

example of how the incoming port for JMS could look like.

<!-- example of a bean representing an incoming port -->

<bean id="incomingPortBean" class="org.openengsb.ports.myport.MyIncomingPort" init-method="start" destroy-method="stop">

 <property name="factory">

 <bean class="org.openengsb.ports.jms.JMSTemplateFactoryImpl" />

 </property>

 <property name="filterChain">

 <bean factory-ref="incomingFilterChainFactory" factory-method="create" />

 </property>

</bean>

Every filterchain should use make sure to pass the MethodCall to the RequestHandler in the and (using

a RequestHandlerFilter.

12.5. Develop an Outgoing port

Outgoing port implementations must follow a few more guidelines than incoming ports, because the

OpenEngSB needs to be aware of Outgoing ports present in the system in order to use them in other

components (like RemoteEvents).

An outgoing ports is represented as an OSGi-service that implements the OutgoingPort-interface.

Also it uses the "id"-property (not to be confused with "service.id" defined in the OSGi-spec) as

a unique identification for components that want to interact with remote applications. A reference

implementation of the OutgoingPort-interface is provided in the "openengsb-core-common"-project.

<!-- service representing the outgoing port -->

<service interface="org.openengsb.core.api.remote.OutgoingPort">

 <service-properties>

 <entry key="id" value="jms-json" />

 </service-properties>

 <!-- the outgoing port uses a filter-chain to manage the entire calling-procedure -->

 <bean class="org.openengsb.core.common.OutgoingPortImpl">

 <property name="filterChain">

 <bean factory-ref="outgoingFilterChainFactory" factory-method="create" />

 </property>

 </bean>

</service>

The actual network-communication is also implemented in a FilterAction. This is an example how a

filterchain can be used to handle an outgoing methodCall with a result.

<bean id="outgoingFilterChainFactory" class="org.openengsb.core.common.remote.FilterChainFactory">

 <property name="inputType" value="org.openengsb.core.api.remote.MethodCallRequest" />

 <property name="outputType" value="org.openengsb.core.api.remote.MethodResultMessage" />

 <property name="filters">

Remoting

24

 <list>

 <value>org.openengsb.core.common.remote.JsonOutgoingMethodCallMarshalFilter</value>

 <bean class="org.openengsb.ports.jms.JMSOutgoingPortFilter">

 <property name="factory">

 <bean class="org.openengsb.ports.jms.JMSTemplateFactoryImpl" />

 </property>

 </bean>

 </list>

 </property>

</bean>

25

Chapter 13. External Domains and Connectors

Since tools are mostly neither developed for the OpenEngSB nor written in any way that they can

be directly deployed in the OpenEngSB environment a way is required to connect via different

programming languages than Java and from multiple protocols.

13.1. Proxying

The proxy mechanism allows for any method call to be intercepted.

13.1.1. Proxying internal Connector calls

The proxy mechanism allows to create proxies for any domain. To create a proxy you have to provide

a port id, destination and service id to call on the remote service. A Port encapsulates the protocol that

is used to call another service. There are an OutgoingPort and IncomingPort interface for respective

purposes. The port id is used to load the Port via OSGi. To include a Port in OPENENGSB it just has

to be exported via OSGi. The destination is a string that has to be correctly interpreted by the port to

call the remote server. The service id is added as metadata do identify the service that should get called

on the remote server. It may not be needed for certain implementations.

The proxy calls the CallRouter which redirects the methodcall to the respective Port. Security is

implemented in this layer.

26

Chapter 14. Deployer services

The OpenEngSB supports file-based configuration through its deployer services. These services are

constantly checking the "config/" directory for new/changed/deleted configuration files.

If a new file is created, its configuration is loaded into the OpenEngSB. When the file changes the

configuration is updated and when it is deleted the configuration is unloaded. Each deployer handles a

different type of configuration file represented by different file name extensions. Details and structure

of these files are covered in this section.

It should be noted that the OpenEngSB itself uses deployer services for internal configuration. For this

purpose the deployer services also listen for configuration files in "etc/". These config files however

are essential for the correct operation of the OpenEngSB and should not be modified.

14.1. Connector configuration

The connector deployer service creates, updates or deletes instances of connector services.

All files in the "config/" directory with the extension ".connector" are handled by the connector

deployer. The .connector files have to be simple property files containing the configuration

properies of a certain connector service and their values. Those files have to follow a

specific form to be read correctly. First of all they follow the pattern: "domain+connector

+instance.connector". Here "domain" stands for the domainId to use (e.g. notification), "connector"

for the name of the connector which should be created in the domain (e.g. mail) and

"instance" is a unique id per connector. A simple UUID or a unique counter should do here.

The content of the file is two-fold. On one hand you can configure the properties of a

service directly using property.NAME_OF_THE_PROPERTY=VALUE_OF_THE_PROPERTY (for

example property.location.root=notificaiton). Those properties are directly added to the properties of

a service. On the other hand you have to configure the connectors themselves. Therefore you have the

attribute.NAME_OF_THE_CONNECTOR_ATTRIBUTE=VALUE_TO_ASSIGN. Throwing this

together you can end with a connector file as shown next.

Example 14.1. Example .connector configuration file for the email connector

The email connector is regsitered in the root context with the name notify. The file name has

to be notificaiton+email+dc110658-c6be-4470-8b41-6db154301791.connector which represents a

connector instance with the instanceId dc110658-c6be-4470-8b41-6db154301791 of the eemail

connector in the notificaiton domain.

property.location.root=notify

attribute.user = user

attribute.password = test

attribute.prefix = [test]

attribute.smtpAuth = true

attribute.smtpSender = test@test.com

attribute.smtpPort = 25

attribute.smtpHost = smtp.testserver.com

Deployer services

27

14.1.1. Root services

Note, that root services (i.e. connector services deployed from the "etc/" directory) are deployed with

a lower service ranking. This is done so that normal services are preferred when matching services.

14.2. Context configuration

The context deployer service creates contexts according to any .context files found in the config

directory. The context id is the file-name (without the extension). The file content will be ignored.

So for example

28

Chapter 15. Client Projects and Embedding The
OpenEngSB

Although the OpenEngSB is distributed as a binary ZIP it is basically not meant to be used that way.

Instead you typically start developing your own project using the OpenEngSB as a base environment

and Maven to assembly your code with the OpenEngSB.

15.1. Using the same dependencies as the OPENENGSB

To use the same dependencies as the OPENENGSB project you have to import the openengsb-bundle-

settings project into your dependency management section:

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.openengsb.build</groupId>

 <artifactId>openengsb-bundle-settings</artifactId>

 <version>Version of OPENENGSB you use</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

This will import all the dependencies with the correct versions into the dependencyManagement

section. You can now define the dependencies shared between your project and OPENENGSB in your

dependencies section without setting the version.

29

Chapter 16. OpenEngSB Platform

The aim of the OpenEngSB project, as for every open source project, is to make the life of everyone

better. Or at least the life of engineers :). With that said, we want to support projects using the

OpenEngSB as base environment, or providing domains and connectors. While it is easy to find a

source repository and use the OpenEngSB (because of its business friendly Apache 2 license), it

is not that easy to get the visibility your project earns. We want to provide you with this visibility

by including your project into the OpenEngSB product family. Basically we provide you with the

following infrastructure:

• Sub domain within the OpenEngSB: yourproject.openengsb.org

• Upload space for a homepage at yourproject.openengsb.org

• Two mailinglists (yourproject-dev@openengsb.org and yourproject-user@openengsb.org)

• A git repository at github.com/openengsb/yourpoject

• A place at our issue tracker

• A place at our build server

To get your project on the infrastructure you have to use the Apache 2 license for your code and use

the OpenEngSB. It is not required to have any existing source base. Simply send your project proposal

to the openengsb-dev mailing list and we'll discuss your project. Don't be afraid; it's not as hard as

it sounds ;)

30

Chapter 17. HowTo - Setup OpenEngSB for
development (First steps)

17.1. Goal

This section describes the setup process required for OpenEngSB development.

If you would like to view a use-case centric tutorial take a look at the continuous integration example.

17.2. Time to Complete

If you are already familiar with Java EE servers about 15 minutes. We will not be using advanced

concepts, so you likely be able to continue with the tutorial even without it.

17.3. Prerequisites

It is assumed you have basic knowledge of system administration and you are able to set up auxiliary

software (i.e. JDK 1.6) yourself.

17.4. Java Development Kit 6

First of all the JDK6 should be installed on the system and the JAVA_HOME variable should be set.

(Java download).

Also, make sure that the java-command is available in the PATH-variable.

17.5. Getting OpenEngSB

Download the latest OpenEngSB release from here.

17.6. Installing OpenEngSB

Extract the archive, and run the openengsb-script (bin/openengsb.bat on windows, bin/openengsb

otherwise). Click the following link to open the web interface in your browser http://localhost:8090/

openengsb.You should automatically be directed to a page asking for a login. The default login is

"admin" with "password" as password.

login

If everything works fine you should be welcomed by the following page presenting you the currently

installed domains:

http://java.sun.com/javase/downloads
http://openengsb.org/downloads.html
http://localhost:8090/openengsb
http://localhost:8090/openengsb

HowTo - Setup OpenEngSB for development (First steps)

31

main page

17.7. Setup required domains

OpenEngSB implements it's functionality in so called features. Each feature contains a number of

OSGi bundles. While all features are distributed with the OpenEngSB not all of them are installed

to speed up the startup. For the next section (First Steps) it is required to install additional features.

Therefore open the console in which you've started the OpenEngSB and enter "list" which should

output something like:

karaf@root> list

START LEVEL 100 , List Threshold: 50

 ID State Blueprint Level Name

[42] [Active] [Created] [60] Apache Karaf :: Shell :: Service Wrapper (2.2)

...

[116] [Active] [] [60] Jackson JSON processor (1.5.3)

[165] [Active] [Created] [60] OpenEngSB :: Framework :: API (Version)

[166] [Active] [Created] [60] OpenEngSB :: Framework :: Engineering Database (Version)

[167] [Active] [Created] [60] OpenEngSB :: Framework :: Engineering Knowledge Base (Version)

[168] [Active] [Created] [60] OpenEngSB :: Framework :: Common (Version)

[169] [Active] [Created] [60] OpenEngSB :: Framework :: Services (Version)

[170] [Active] [Created] [60] OpenEngSB :: Framework :: Persistence Layer (Version)

...

In order to install domains and connectors from other repositories you need to add the corresponding

feature-URLs. Note that in order to install a connector you need to install all domains it implements.

In order to install a domain first add the feature-repository using the command features:addurl.

When the URL has been added the domain can usually be installed using features:install

root@openengsb>features:addurl mvn:org.openengsb.domain/org.openengsb.domain.notification/[domain version]/xml/features

root@openengsb>features:install openengsb-domain-notification

Note that domains and connectors are versioned independently of each other and the OpenEngSB.

HowTo - Setup OpenEngSB for development (First steps)

32

17.8. First Steps

Now that the OpenEngSB is up and running (and all required bundles are installed) start with the first

integration tutorial.

17.9. Shutdown OpenEngSB

To shutdown the OpenEngSB, go to the command-window and type shutdown or press Ctrl+D

33

Chapter 18. HowTo - First steps with the
OpenEngSB (Send mails via the OpenEngSB)

18.1. Goal

This section describes a "hello world" use-case for the notification domain using the email connector.

18.2. Time to Complete

If you are already familiar with setting up services in OpenEngSB about 15 minutes. (see HowTo:

Setup

18.3. Prerequisites

This HowTo assumes you have already a running instance of the OpenEngSB.

18.4. Creating E-Mail Services

Create a new Email Notification Service by clicking the "New..." link for the Email Notification on

the Test Client link.

test client

In the following view you have the possibility to configure the Notification Service. The following

screen provides an example for a Gmail account. Please use "test1" for the Service Id field.

#howto.setup
#howto.setup

HowTo - First steps with the OpenEngSB

(Send mails via the OpenEngSB)

34

email notification

When you have finished setting all fields to appropriate values, create the new instance by clicking

the "Save" button.

Now create another service with the Service Id "test2". Otherwise you can use exactly the same values

again.

You can validate the services open the "Services" page, which should look similar to the following

screenshot. All your created services should be available with the state "ONLINE".

overview

18.5. Executing Service Actions Directly

Now we're going to validate the created services. First of all start by open the "Test Client" link. Now

open the "Notification Domain" tree and choose test1. Next get the notify method from the drop down

box. The available fields should change instantly. Let the attachment field free and enter anything into

HowTo - First steps with the OpenEngSB

(Send mails via the OpenEngSB)

35

message and subject. The address should be a valid email address (not validated for the moment). After

all the view should look similar to the following image:

notification properties

Call the service by using the "Call" button. Some seconds after you've pressed the call button the

following message should occur on on your screen:

success

Within the next seconds to minutes the address, specified by you, should receive a mail.

Next validate if the service test2 does the same. Therefore press on test2, choose notify again and enter

your values. Click "Call" again and validate if you receive an email.

18.6. Executing Service Actions via Domains

Till now you've used the services directly. Now one of the OpenEngSB core concepts is presented:

the Domains:

To send messages via domains, instead of directly via the connectors a default receiver for a specific

project has to be set. A graphical user interface for doing so is the "Context Page":

HowTo - First steps with the OpenEngSB

(Send mails via the OpenEngSB)

36

context

Change the entry "domains/NotificationDomain/defaultConnector/id" to test1 or test2. Do this by

clicking on the node (id). This should create a drop down box next to it. Select test1 or test2. Afterwards

go back to the "Test Client" page and select "Notification Domain/domains.notification". Now choose

the notify method again and try sending a message to yourself.

Again, the call was successful if you receive a message (with the prefix of the notifier you've chosen

in the context).

Congratulations, you have just finished the first implementation HowTo of Open Engineering Service

Bus.

18.7. Next Steps

Now that you've finished the most easy OpenEngSB use case go on with a more complex one: Events

#howto.contexteditor

37

Chapter 19. HowTo - Events with the OpenEngSB
(Using the logging service)

19.1. Goal

This tutorial shows how the event system in the OpenEngSB can be used. Therefore a log and a domain

connector are created and configured. The context system in the OpenEngSB is used to define which

connectors should be used and a simple event is used starting a rule.

19.2. Time to Complete

If you are already familiar with using services in OpenEngSB about 30 minutes. (see HowTo: First

steps)

19.3. Prerequisites

This HowTo assumes you are already familiar with using and configuring services in OpenEngSB.

19.4. Create required connectors

Now one logging service and one email service should be created. Create one notification service as

described in the previous example. Please name it "notification" instead of test1 or test2. Now create

a logging service:

logging service

19.5. Configure

Go to the "Context" page and configure the domains to use the connectors created:

#howto.logging
#howto.logging
./howto_logging.html

HowTo - Events with the OpenEngSB (Using the logging service)

38

context overview

19.6. Creating a rule

On the "Send Event Page" you can create and edit Rules. Therefore they have to be edited directly

with a text editor. The initial system is empty and does not include any rules. To create a rule choose

"new". Enter "hello1" into the rulename input field. Make also sure that "Rule" is selected in the type

dropdown box.

As soon as you edit the content of the rule you can save your changes by clicking "save" or

revert the changes by clicking "cancel". The name of the rule will automatically be prefixed with

"org.openengsb". Please insert the following content into the text box and save the changes:

#

My notification rule

#

Sends "Hello World" notification to test recipient.

#

when

 Event(name == "42")

then

 example.doSomething("Hello World");

 Notification n = new Notification();

 n.setSubject("testsubject");

 n.setMessage("testMessage");

 n.setRecipient("testRecipient");

 notification.notify(n);

HowTo - Events with the OpenEngSB (Using the logging service)

39

event

Basically this rule reacts on all events (when clause). "log" is a helper class using the default log

connector of the log domain to write information to a log file. Notification uses the default notification

connector to inform a person. More details about this topic can be found in the user documentation

at rules, domains and connectors.

To run a test the n.setRecipient property should be changed to a (e.g.) your email address.

19.7. Throw Event

Now we can throw an event and see if the rules work correctly. Stay on the "Send Event Page" enter

for the contextId field "foo" and press send:

foo represents the name of the project. For a detailed description about projects and the context see

the user documentation. You've should received a email via the rule to the email address configured

previously). In addition using the "log:display" command in the OpenEngSB console should present

(anywhere in the long log) a logging entry similar to the following (you have to search for the output

of the LogService. The other fields can change):

output

HowTo - Events with the OpenEngSB (Using the logging service)

40

19.8. Next Steps

Congratulation. You've gained basic knowledge about the OpenEngSB and its functionality.

Nevertheless, you've just touched the surface. As a next step it is recommended continue with further

tutorials user manual and start exploring the world of the OpenEngSB.

41

Chapter 20. HowTo - Create a Client-Project for the
OpenEngSB

20.1. Goal

This tutorial describes how to setup a client project for OpenEngSB using maven archetype

20.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes (This includes only the setup for the

project). If you are not familiar with the OpenEngSB please read this manual from the start or check

the homepage for further information.

20.3. Step 1 - Needed tools

You need to have following tools to be installed

20.3.1. Java Development Kit 6

First of all the JDK6 should be installed on the system and the JAVA_HOME variable should be set.

(Java download). Also, make sure that the java-command is available in the PATH-variable

20.3.2. Maven 3

You will also need Maven 3 be installed on your system. (Maven download) Also, make sure that the

maven-command is available in the PATH-variable

20.4. Step 2 - Using the archetype

The OpenEngSB provides an maven archetype to create a client project. To use it go into your target

directory and type in a shell:

mvn openengsb:genClientProjectRoot

The script generates the result in the directory from where it was started

You will be asked to fill out following values (if no input is provided the default value is kept):

 Project Group Id [org.openengsb.client-project]:

 Project Artifact Id [openengsb-client-project]:

 Project Name [Client-Poject]:

 Project Version [1.0.0-SNAPSHOT]:

 Project Description [This is a client project for the OpenEngSB]:

 Project Url [http://www.openenbsb.org]:

 OpenEngSB version [1.2.0-SNAPSHOT]:

 OpenEngSB maven plugin Version [1.4.0-SNAPSHOT]:

 Plugin Assembly version [2.2-beta-5]:

You will be asked what the groupId, artifactId and a name of your client project should look like. You

can also specify the OpenEngSB version you want to use, but it is recommended to use an up-to-date

http://www.openengsb.org
http://java.sun.com/javase/downloads
http://maven.apache.org/download.html

HowTo - Create a Client-Project for the OpenEngSB

42

version. To check the current OpenEngSB version have a look at the Download section. It asks you

to confirm the configuration and will create the project.

20.5. Step 3 - The result

If everything worked as expected you will get a client project having following structure:

.

`-- openengsb-client-project

 |-- assembly

 | |-- pom.xml

 | `-- src

 | `-- main

 | |-- descriptors

 | | `-- bin.xml

 | `-- filtered-resources

 | |-- etc

 | | `-- org.apache.karaf.features.cfg

 | |-- features.xml

 | `-- README.txt

 |-- core

 | `-- pom.xml

 |-- docs

 | |-- homepage

 | | |-- pom.xml

 | | `-- src

 | | `-- site

 | | `-- ...

 | |-- manual

 | | |-- pom.xml

 | | `-- src

 | | `-- ...

 | `-- pom.xml

 |-- LICENSE

 |-- poms

 | |-- compiled

 | | `-- pom.xml

 | |-- nonosgi

 | | `-- pom.xml

 | |-- pom.xml

 | `-- wrapped

 | `-- pom.xml

 |-- pom.xml

 `-- README.md

You can find further information about these modules in the OpenEngSB-Manual

20.6. Step 4 - Install features

To install features to the project have a look at the file org.apache.karaf.features.cfg in assembly/src/

main/filtered-resource/etc. Here you can define features to be registered by default or which feature

should be installed on startup. To install your own features see the file features.xml in assembly/src/

main/filtered-resource. E.G.: You want to add a module called clientproject-ui the core features add

this to the features.xml

 <bundle>mvn:org.openengsb.clientproject.ui/clientproject-ui-web$\{project.version\}/war</bundle>

http://www.openengsb.org/downloads.html
http://www.openengsb.org/manual/index.html

HowTo - Create a Client-Project for the OpenEngSB

43

20.7. Step 5 - Start the Client-Project

To start the client-project, go to the command-window and type

mvn clean install openengsb:provision

Now you can enter "list" into the karaf console to check what features are installed and running

20.8. Step 6 - Shutdown

To shutdown, go to the command-window and type "shutdown" or press "Ctrl+D"

44

Chapter 21. HowTo - Interact with the OPENENGSB
Remotely

21.1. Using JMS proxying

The current JMS Connector allows for internal method calls being redirected via JMS as well as internal

services being called.

For resources regarding JMS please take a look at the according Wikipedia Page and for specific

language bindings take a look at ActiveMQ

21.1.1. Proxying internal Connector calls

Whenever now a method is sent through the JMS Port the call is marshalled and sent via JMS to a queue

named "receive"". The marshalling is done via JSON. The mapping has the parameters methodName,

args, classes, metadata and potentially answer and callId. methodName gives the name of the method

to call. Args are the serialised parameters of the method. classes are the types of the arguments. This

way it is easy to unmarshall the args into the appropriate classes. metadata is a simple Map which

stores key value pairs. answer can simply be yes or no and denotes if the methodcall wants an answer

to the call. callId gives the return queue the caller will listen to for an answer.

An answer can have the type, arg, className and metaData properties. type can be Object, Exception

or Void. arg is the serialised form of the return argument. className is the runtime class of the arg for

deserialisation. metadata is a simple key value store.

21.1.1.1. HowTo call an external service via proxies

This section will give a short introduction how to instantiate a proxy and call an external connector

First you have to go to the TestClient to instantiate a new Proxy. Select the Domain you want to have

proxied and click New Proxy for that Domain.

Testclient new proxy link

Then you have to set the correct values for the proxy properties. The Service Id is a unique value that

identifies the proxy in the OPENENGSB system. The Port Id defines to Port to be used for sending

the request. "jms-json" is a currently supported Port that sends the request via a json encoded JMS

message. The destination describes the endpoint the message should be sent to. When using jms-json

the domain and port of the JMS provider have to be set. When calling a remote connector the unique id

http://en.wikipedia.org/wiki/Java_Message_Service
http://activemq.apache.org/connectivity.html

HowTo - Interact with the OPENENGSB Remotely

45

of the remote service or connector has to be provided. This way the remote service can identify, load

and call a certain service. If the call is not intended to go to another OPENENGSB, or the external

service needs no identification of the service to call the remote service id can be omitted.

Create Proxy

After saving the proxy you should be able to test it via the TestClient page. Following is an example

of an unsecured call:

{

 "authenticationData": {

 "className":"org.openengsb.core.api.security.model.UsernamePasswordAuthenticationInfo",

 "data": {

 "username":"admin",

 "password":"password"

 }

 },

 "timestamp":42,

 "message": {

 "callId":"xyz",

 "answer":true,

 "methodCall": {

 "classes": [

 "java.lang.String",

 "org.openengsb.core.api.workflow.model.ProcessBag"

],

 "methodName": "executeWorkflow",

 "metaData": {

 "serviceFilter": "(objectClass=org.openengsb.core.api.workflow.WorkflowService)",

 "contextId": "foo"

 },

 "args": [

 "simpleFlow",

 {

 }

]

 }

 }

}

IF you would like to use security instead you should prefer the following call:

{

HowTo - Interact with the OPENENGSB Remotely

46

{

 "encryptedContent":"encodedMessage", // Base 64 and encryped string of the message above

 "encryptedKey":"encodedKey" // The encoded key

}

Test a proxy

When proxying connector calls you have to provide an answer to every call, as the system blocks until

it gets an answer. You have to send a JSON message containing a type string parameter, which can

be Object, Exception or Void depending on the return argument of the method, arg where you simply

serialise the Return Object, so it can be deserialised into the correct object later and className which

gives the exact class that has to be used for deserialisation. The request contains a parameter callId

which is the name of the queue the answer has to be sent to.

{"type":"Object","className":"org.openengsb.core.ports.jms.JMSPortTest$TestClass",

 "metaData":{"test":"test"},"arg":{"test":"test"}}

Whenever a call to this proxy is then made a new JMS message will be sent to the "receive" queue on the

destination you entered. The exact make up of the message was already described. When implementing

an external connector it is best to test the call you want to receive first via the TestClient, so you get

the exact message that you will have to work with.

Please always keep in mind security. By default security is turned on. If you want to turn it off please

take a look into the etc/system.properties file. While using no security for testing is very interesting

we would not advise you to send unencrypted messages in a production environment.

21.1.2. Calling internal Services

To call an internal Service send a methodcall as described before to the "receive" queue on the server

you want to call. The service works exactly as defined before. There currently are two ways of

specifying which service to address.

• serviceId: This will call the service that was exported with the specified "id"-property. It behaves

like the following Filter in OSGi-syntax: (id=<serviceId>)

• serviceFilter: This way you can specify any filter in OSGi-syntax to adress the service, so it is not

necessary to bind the client to a specific id, but to other properties as well (e.g. location.root,

location.<context>, objectClass, ...)

You can also use both attributes (serviceId and serviceFilter). It will create a filter matching both

constraints.

Example: if you want to execute a workflow via the WorkflowService send

HowTo - Interact with the OPENENGSB Remotely

47

{"callId":"12345","answer":true,"classes":["java.lang.String",

"org.openengsb.core.api.workflow.model.ProcessBag"],

"methodName":"executeWorkflow","metaData":{"serviceId":"workflowService",

"contextId":"foo"},"args":["simpleFlow", {}]}

Please be aware that the flow the above method tries to call (simpleFlow) is not available by default

on the OpenEngSB. To make sure that there's a flow you can call install the flow in the OpenEngSB.

Therefore start the OpenEngSB and go to the SendEventPage. There choose to create a new process

and press new. Now enter simpleFlow as processname and past the following process:

<process xs:schemaLocation="http://drools.org/drools-5.0/process

 drools-processes-5.0.xsd" type="RuleFlow" name="simpleFlow" id="simpleFlow"

 package-name="org.openengsb" xmlns="http://drools.org/drools-5.0/process"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance">

 <header>

 <variables>

 <variable name="processBag">

 <type name="org.drools.process.core.datatype.impl.type.ObjectDataType"

 className="org.openengsb.core.api.workflow.model.ProcessBag"/>

 </variable>

 </variables>

 </header>

 <nodes>

 <start id="1" name="Start" x="16" y="16" width="91" height="48"/>

 <end id="2" name="End" x="21" y="168" width="80" height="40"/>

 <actionNode id="3" name="Action" x="21" y="96" width="80" height="40">

 <action type="expression" dialect="mvel">

 processBag.addProperty("test", 42);

 processBag.addProperty("alternativeName", "The answer to life the universe and everything");

 </action>

 </actionNode>

 </nodes>

 <connections>

 <connection from="3" to="2"/>

 <connection from="1" to="3"/>

 </connections>

</process>

After pressing save you can access the process via the message shown above.

to the receive queue on the OPENENGSB JMS Port which is started by default on Port 6549. Make sure

that classes and args has the same number of arguments. If you just want an object to be instantiated,

but have no corresponding values that should be set for the object simply add {} (as in the example

above) which will instantiate the object but recognize, that no values have to be set on the object.

{"name" : "SomeName"} would on the other hand call the setName method with SomeName.

The response to the above message will be returned on a queue you've pasted via the callId field.

21.1.3. Examples

We provide examples in different languages how to connect to the OpenEngSB. The examples are

grouped according to language and the documentation to the different examples are directly done in

the code of the examples. We try to keep those examples as good as possible up-to-date, but do not

gurantee that they all work as expected since we can't add them to our integration tests. If you want to

provide examples in different languages you're always welcomed to provide them.

http://localhost:8090/openengsb/SendEventPage/

HowTo - Interact with the OPENENGSB Remotely

48

21.1.3.1. Connect With Python

To test the OPENENGSB JMS implementation with Python please follow the instructions

The example can be downloaded here

21.1.3.2. Connect With CSharp

The CSharp connector is written on basis of the Apache ActiveMQ JMS connector. There an EngSB.sln

file. This project file has been developed with SharpDevelop 4, but is also tested with VisualStudio

2008 CSharp Express Edition with the .Net Framework 4.

The example can be downloaded here

21.1.3.3. Connect With Perl

As shown in this example you can connect to the OpenEngSB in a similar way as with Python or

CSharp.

The example can be downloaded here

21.1.4. Alternatives for JMS

In addition to providing a very general infrastructure we also support the specialities of the various

protocols. For JMS e.g. you've the possiblitiy to make use of the JmsCorrelationId and JmsReplyTo

fields. If you set the JMSReplyTo field messages will be returned there instead of to the callId. In

addition, if you set a correlationId in your message it will be set in the outgoing message too. Otherwise

the messageID is now written into the correlationID field.

21.2. Using WS Proxing

TBW(Jira-ISSUE)

21.3. Internal Specialities

Basically there is nothing special to do to get up a service. Still, since java has no static type information

there is no possibility to marshal things like a java.util.List of options. The fix we've introduced

for this problem is to annotate parameters and define a custom marshaller. Therefore create a class

with a default constructor extending CustomJsonMarshaller. Then annotate the parameter of the

implementations you're using with the UseCustomJasonMarshaller annotation adding the Marshaller

class. That's it. The framework will automatically create the mapper and call the transform method

for you.

Since there is an issue right now with Aries Proxies hiding parameter annotations the

CustomMarshallerRealTypeAccess interface provides a workaround for the problem. In case this

interface is found the class provided by it is used for searching. Otherwise the class directly is scanned.

${github}/docs/examples/src/main/python/PythonClient.txt
/org/openengsb/docs/openengsb-docs-examples/2.4.0/openengsb-docs-examples-2.4.0-python.zip
/org/openengsb/docs/openengsb-docs-examples/2.4.0/openengsb-docs-examples-2.4.0-csharp.zip
/org/openengsb/docs/openengsb-docs-examples/2.4.0/openengsb-docs-examples-2.4.0-perl.zip
http://issues.openengsb.org/jira/browse/OPENENGSB-2507

49

Chapter 22. HowTo - Combine multiple connectors

It is possible to combine several connector-instances to one parent connector that appears to workflows

like any other connector. For example you may want to have several notification-connectors in a

workflow. It uses the location-placeholder "foo". So when the workflow expects the connector-instance

at location "foo", you may want it to call multiple connectors. One would expect that simply assigning

the location "foo" to every connector would create this behaviour, but it doesn't. By default, the

connector with the highest service ranking is chosen (see OSGi-core-specification section 5.5.5).

22.1. Composite strategies

There are also other issues with using multiple service in a place where one single service is expected:

• Should the services be called concurrently or sequentially?

• Which service should be called first?

• What should be returned as a result?

All this is specified by a CompositeStrategy. Strategy-implementations must implement the

CompositeConnectorStrategy interface and be registered as OSGi-services exporting this interface.

Also the service must specify the "composite.strategy.name" property. The strategy is provided with

a list of ServiceReferences, and the invocation parameters. The implementation can decide which

services to resolve and to invoke. Also the strategy must return a single result.

22.2. Create a composite connector

A composite connector instance can be created like a regular connector-instance. You need to supply

the following attributes:

• querystring: a string representing an OSGi-query. All services that match this query are passed on to

the strategy as ServiceReferences. Example: Suppose we have two notification services. One has the

property location.foo=notification/1 and the other one has location.foo=notification/2. A

possible query-string for the composite-service could be (location.foo=notification/*).

• composite-strategy-name: The name of the strategy that should be used.

50

Chapter 23. How to define a domain model

23.1. Goal

This tutorial explains how to define a domain model for a specific domain. What a domain model is,

can be read in the user manual in the semantics section(Chapter 6, Semantics in the OpenEngSB). The

structure of a domain model is an interface which extends the OpenEngSBModel.

23.2. Time to complete

If you are already familiar with the OpenEngSB about 10 minutes. If you are not familiar with the

OpenEngSB please read this manual from the start or check the homepage for further information.

23.3. Prerequisites

For information about how to get started as contributor to the OpenEngSB project and how to get the

current OpenEngSB source please read the contributor section of the manual: Part VI, “OpenEngSB

Contributor Detail Informations”.

23.4. Step 1 - Plan the structure of the model

The first thing to do is to think about the structure of the model you need. Think about which

informations are needed and should be included. (e.g. if you want to create a domain model for an

appointment domain, the domain model will contain informations like start time, end time, title, ...).

Also give a think about if there exists a field which has the potential to be the id of a model. Such

a field has to be unique for a specific domain and connector combination. Such an id can be defined

through an annotation with the name OpenEngSBModel.

23.5. Step 2 - Write the model

Writing a model is quite simple. A domain model is an interface, which contains only pairs of getter

and setter methods. The method names define the internal names of the fields of the model. Example

model:

 interface Appointment extends OpenEngSBModel {

 @OpenEngSBModelId

 void setId(Integer id);

 Integer getId();

 void setStartTime(Date startTime);

 Date getStartTime();

 void setEndTime(Date endTime);

 Date getEndTime();

 ...

 }

http://www.openengsb.org

How to define a domain model

51

This model defines a part of a domain model for an appointment domain. In this model we also have

defined the id of the model, with the name id. You can see that through the set annotation.

23.6. Step 3 - Add the model to a domain

The last step is to add the model to the specific domain. For that you simply have to add the model

to the model package in the specific domain. Now the model is ready to use in the connectors for the

specific domain.

23.7. Step 4 - Use the model

The last step is to use the model. For that you have to use a util class which is placed in the core/

common bundle called ModelUtils. An instantiation of a model looks like this:

 Appointment appointment = ModelUtils.createEmptyModelObject(Appointment.class);

After that you can use the appointment object like a normal instantiated object.

52

Chapter 24. HowTo - Integrate services with
OpenEngSB

24.1. Goal

The service integration tutorial shows how to combine and automate different software tools, services

and applications with OpenEngSB. To show OpenEngSB's versatility the use case we will be

implementing is a continuous integration (CI) tool for software development processes. The tutorial

takes a straight forward approach favoring visible results over architectural details of tool integration.

Whether or not you have experience with CI, bear with the tutorial for a moment and you will see

how simple it works out.

Before we get started let us lay out the idea of our CI tool and create a step-by-step development plan.

The practice of continuous integration aims at improving software quality by frequent (automated)

building and testing of a project's source base and by reporting back to the developers. The CI tool must

be able to access the source repository, build the project, test the binaries and reports to the developers.

And there we have a basic four step plan:

(1) Repository access

(2) Building source

(3) Testing binaries

(4) Notification process

If you would like to take a look at a fully functional CI server built on OpenEngSB check out OpenCIT.

It implements a wider range of features, but it's a great reference.

24.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes. If you are not familiar with the

OpenEngSB please read this manual from the start or check the homepage for further information.

24.3. Prerequisites

It is assumed you have basic knowledge of software development practices and you are able to set up

auxiliary software (i.e. JDK 1.6) yourself.

Warning: This section is likely to change in the near future, as the web UI as well as domains and

connectors are subject to change.

http://opencit.openengsb.org
http://www.openengsb.org

HowTo - Integrate services with OpenEngSB

53

24.4. Setting up OpenEngSB

download openengsb

Getting OpenEngSB is simple. Go to openengsb.org, download the latest stable version to your

computer and unpack the archive to a convenient location. Before you fire up OpenEngSB for the first

time, please make sure you have a Java Development Kit 1.6+ available and set up.

openengsb console

You can startup OpenEngSB via the openengsb script in the "bin" folder. If you want to explore the

web interface yourself before digging into implementing the CI use case, open up your web browser

and navigate to http://localhost:8090/openengsb and log on as "admin" with password "password".

openengsb web UI

If you want to take a break or shutdown OpenEngSB in the middle of the tutorial, go ahead and do

not worry. All changes made so far are saved and restored upon restart, so you can continue working

with the most up-to-date state. Use the shutdown command in OpenEngSB's management console to

stop any running services.

http://www.openengsb.org
http://www.openengsb.org/downloads.html
http://localhost:8090/openengsb

HowTo - Integrate services with OpenEngSB

54

24.5. Step 1 - Source repository

check maven and JDK version

It turns out, we actually need a sample project before we can start developing and testing our CI tool.

In this tutorial we will be using Apache Maven for project and source management and a small Hello
World application written in Java. For this to work flawlessly we need JDK 1.6+ (download) and

Maven 3+ (download) to be set up on the computer.

tutorial project package

You may download and extract the openengsb-tutorial (download) project that works out of the

box or set up your own sample project via maven archetypes. Put the project files in a memorable

location (i.e. "/home/user/Desktop/openengsb-tutorial" or "C:\users\user\desktop\openengsb-tutorial")

and that's about it for now.

24.6. Step 2 - Building the source code

login

You could certainly build the project using Maven, but we want this to happen from within

OpenEngSB. Open up your browser and go to the web interface at http://localhost:8090/openengsb.

Authenticate using the Login link as "admin" with password "password".

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html
/org/openengsb/docs/openengsb-docs-examples/2.4.0/openengsb-docs-examples-2.4.0-citutorial.zip
http://localhost:8090/openengsb

HowTo - Integrate services with OpenEngSB

55

test client

Switch to the Test client tab and check whether the build domain is available to accept commands.

install connector in console

As the build domain is not shown, we will need to go to OpenEngSB's console. Use the

"features:install openengsb-connector-maven" command to load the tool connector for Apache Maven.

The tool connector allows OpenEngSB to communicate with an external service or application,

Maven in this case. By loading the connector OpenEngSB also loads the domains associated with the

connector. A domain is a generic interface that is implemented by specific connectors. For example,

the build domain offers a generic function to build a software project. Whether this is done by Apache

Maven, an Ant script or a plain compiler depends on the connector chosen by the user, but does not

affect the basic model of our CI tool that simply "builds" the source. Using this technique specific

tools can be exchanged quickly and transparently while data-flow and process models are completely

unaffected.

create new connector instance

Now let us return to the web interface. After a page refresh we are able to create a new Maven connector

instance by following the new link next to the connector description.

HowTo - Integrate services with OpenEngSB

56

setup build connector

The service id is an arbitrary name that can be referred to later on, i.e. builder. The project path refers

to the local copy of the source repository, i.e. "/home/user/Desktop/openengsb-tutorial". Finally, the

maven command is the command line option handed to Apache Maven, i.e. "clean build". Whenever

the connector is ordered to build the project it will now execute "mvn clean compile" in the project

directory of openengsb-tutorial. Click save to create the connector instance.

test build connector

It is time for some action. Scroll down all the way in the Test Client tab, navigate to the BuildDomain
in the tree view and click the builder service. From the drop down menu below select build() and

click the "Call" button. When the project is built successfully a "Method called successfully" message

appears.

HowTo - Integrate services with OpenEngSB

57

hello world

Let us check the directory of openengsb-tutorial to find the newly created target directory. Using a

console we can navigate to the classes sub-folder and run "java org.openengsb.Main". It returns "Hello

World!". Congratulations, you have just implemented the core functionality of our CI tool.

In case an error message is returned, we need to check the connector configuration. Please make sure

that Maven is able to build the project by manually executing "mvn clean build" in the project directory

of openengsb-tutorial. If this does not work out, most likely the setup of either Maven or JDK are

incorrect. If it works however, please check the configuration of the connector by navigating to the

builder service in the web interface again and clicking the "Edit Service" button.

24.7. Step 3 - Testing binaries

The next step in building the CI tool is implementation of automated testing. We can use the test
domain to achieve this. Conveniently, the Maven connector also exports this type of functionality and

we do not to load any additional features in the management console.

setup test connector instance

Use the Test client tab and create a new instance of the Maven connector for the "test" domain. It

works the same way as before. The Service Id is an arbitrary name, i.e. tester. The project path points

at the location of openengsb-tutorial's base directory, i.e. "/home/user/Desktop/openengsb-tutorial",

and the maven command indicates the command line arguments passed to Maven, i.e. "test". Click

save to create the connector instance.

HowTo - Integrate services with OpenEngSB

58

test test connector (yes, that's necessary)

We are also going to test the newly created connector. Use the tree view at the bottom of the page to

navigate to TestDomain and select the tester service. In the drop down box below choose runTests()
and click the "Call" button. If the "method called successfully" message is returned, the Maven

connector ran the rigorous unit tests on our sample application and they were passed with flying colors.

send event page

In case you are wondering about the output of the test suite go to the Send Event page. There you

will find an audit list of all events processed by OpenEngSB and their corresponding payload, i.e. the

output of the test run. The list behaves like a log file with most recent events appended to the bottom.

In OpenEngSB any input from connectors is processed by domains and packaged in form of events.

Every time an event is raised it can be matched by a rule in a central rule-base and cause a reaction

of the system possibly invoking different domains or spawning additional events. By editing the rule-

base we become able to link different actions together. Depending on the outcome of an action, we

may receive different events, i.e. build success or build failure. By creating separate rules for each

case we can react accordingly and by chaining multiple actions and events we could create a longer

decision tree or process model.

HowTo - Integrate services with OpenEngSB

59

24.8. Step 4 - Notification Process

In the final step we link the build and test stages together and add functionality to output results of the

process. For this purpose we will create a small number of rules that react to events generated by the

build and test stage. To keep things simple we do not add further connectors and assume that the build

process is started by calling the builder's "build()" method in the Test client web UI.

We are going to write the results of the build and test stage to the management console of OpenEngSB.

We will notify about the build starting and its outcome. Also, in case the build works out successfully

we will automatically start the test process. Hence, we need rules matching "BuildStartEvent" and

"BuildSuccessEvent" that write output to the console and potentially activate the test connector.

rule base editor

The easiest way to edit the rule-base of our OpenEngSB instance is the editor area at the bottom of

the Send Event page. You can find event types and names by checking the event log displayed on the

page and create rules manually in the editor below. The rules are written in plain text, based on Drools

(documentation) and Java standards. They are quickly understood, just take a look at the auditEvent
rule used to generate the event log displayed on top of the page. You can display the rule by choosing

"Rule" in the left-most drop-down box and "org.openengsb.auditEvent" in the second one. The text

editor now shows that there is a when section that acts as filter for incoming events and there is a then
section that describes the actions to be taken in case of a match.

build started rule

Let us start out and create our own rule. We will inform the user via console when a build process

starts. Click the new button next to the drop-down boxes, enter a name for the newly created rule,

i.e. "buildStarted", and save it. After selecting the rule in the drop-down box the text editor actually

shows the same content as for the audit event. Do not be confused, it's the default template. You can

start editing right away. Note: Writing output directly to the console without using a logger service is

considered bad practice. Yet, it's simple and sufficient for demonstration purposes.

http://www.jboss.org/drools/documentation

HowTo - Integrate services with OpenEngSB

60

when

 Event(type == "BuildStartEvent")

then

 System.out.println("Build started");

This rule matches "BuildStartEvent" and prints a line to the console window. Click save to prepare the

rule for testing. Switch to the Test client tab, select the builder and call the "build()" method. If things

work out, you'll instantly see the "Build started" notification pop up in the management console.

It's time to push this further. Create another rule, i.e. "buildSuccessful" and edit it to look like this:

when

 Event(type == "BuildSuccessfulEvent")

then

 System.out.println("Build successful, running tests");

 tester.runTests();

Note: as of OpenEngSB 1.1.2 there is a bug in the editor that prevents connector invocations

("connectorId.doSomething()") from working correctly.

console output

The rule also matches "BuildSuccessEvent" and prints a line to the console window. In addition,

however, it calls a method provided by the test connector. Remember the "runTests()" method you

called in the tester service by using the test client before? This has exactly the same effect but replaces

manual UI interaction with an automated response. Click save and kick off another build using the

Test client again. There you go: "Build started" and "Build successful, running tests".

Congratulations, you have created a basic CI tool! The foundations have been extended to allow

for easy auditing and extensibility. Of course, at the moment it simply replicates the functionality of

existing CI tools, but it can be easily extended using SCM access, reporting and notification tools and

work together with project management software and PIM applications. Take a look on the long list

of available domains and tool connectors.

If you want to do some more practice you can add more rules, i.e. for "TestSuccessEvent" or

"BuildFailureEvent". You can find event types, names and properties by checking the event log

displayed on the Send Event page.

HowTo - Integrate services with OpenEngSB

61

24.9. Further Reading

There are a number of different HowTo's and tutorials in the online documentation. They describe

different scenarios for setup, connectors and domains and event processing. Also, the user manual

contains additional information about the topics discussed and numerous OpenEngSB sub projects,

i.e. OpenCIT and OpenTicket, can be used for reference.

#howto.setup
#howto.logging
#howto.contexteditor
http://opencit.openengsb.org
http://openticket.openengsb.org

62

Chapter 25. HowTo - Change EDB database back
end

25.1. Goal

This tutorial describes how to change the database which is used by the EDB to persist

OpenEngSBModels.

25.2. Time to Complete

The time needed to perform this task depends heavily on which database you want to use instead of the

standard H2 database and on your experience with the OpenEngSB. This chapter will list the different

possibilities from the shortest time period needed to the most complex one. If you are not familiar with

the OpenEngSB please read this manual from the start or check the homepage for further information.

25.3. Use JPA compatible database

If you want to replace the standard database with another JPA supported database (supported databases

listet here), the procedure of changing is rather simple. You have to change the properties for the

database connection of the "infrastructure/jpa" bundle. This is done by changing the config file

"org.openengsb.infrastructure.jpa.cfg". This file is in the "assembly/src/main/filtered-resources/etc"

folder. The file has the following entries:

 driverClassName=[here shall be the name of your driver class name,

 example: org.h2.jdbcx.JdbcDataSource]

 url=[here shall be the url to the used database file, example: jdbc:h2:openengsb]

 username=[here shall be the username for authentication at the database]

 password=[here shall be the password for authentication at the database]

After changing of this file, you have to assure that the driver which shall be used by the data source is

loaded at runtime. For that you have to load the database driver before the connection to the database

is established. Your database bundle dependency should be added to the "parents/shared/pom.xml"

file. A dependency entry for the h2 database looks like this (the h2.version is defined as property in

the same file:

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <version>1.3.163</version>

 </dependency>

After you added the dependency, you have to make sure the database is loaded before the database

connection is established. For that just replace following code line in the file "assembly/src/main/

filtered-resources/features.xml" with the new database driver bundle (as you can see you only have to

copy and paste the values of the dependency):

http://www.openengsb.org
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/supported_databases.html

HowTo - Change EDB database back end

63

 <bundle>mvn:com.h2database/h2/1.3.163</bundle>

After this steps, you are done and the EDB uses now the new database as persistence backend.

25.4. Use non JPA compatible database

If you want to replace the standard database with another non JPA supported database you will have

to change first the data source like described in the previous section. After that you have to write your

own bundle that provides the EngineeringDatabaseService. In this case you also have to reproduce all

SQL commands and port it for the new database and replace the standard EngineeringDatabaseService.

25.5. Appendix: Use no OSGi compatible database

In this case you have to wrap the driver for the database. How to do that can be read in the developer

manual where wrapping is explained.

64

Chapter 26. HowTo - Test Remote Messaging using
Hermes JMS

26.1. Preparation

Those sections shows what have to be done initally.

26.1.1. Preparing the Server

Before starting the server you have to edit the file OPENENGSB_HOME/etc/system.properties You

will find the lines:

Uncomment to disable encryption for jms-messages

#org.openengsb.jms.noencrypt=true

Uncomment to disable signature and timestamp verification for all remote requests

#org.openengsb.security.noverify=true

Uncomment (or if not existing add) the lines

org.openengsb.jms.noencrypt=true

org.openengsb.security.noverify=true

This will enable you to send unencrypted messages to the server.

Now start the server and enter the following line:

features:install openengsb-ports-jms

This will open the JMS port of the OpenEngSb server, which is used to receive Json messages.

Installation Check

26.1.2. Setup Hermes

• Download the latest Hermes version from www.hermesjms.com

• Download ActiveMQ from activemq.apache.org

• Unpack ActiveMQ

• Install and Open Hermes (it is better to have the OpenEngSb server already running at this point)

• Rightclick on the node “sessions” in the tree, go to New->New Session:

HowTo - Test Remote Messaging using Hermes JMS

65

Add Session

• In the First Dropdown, enter "ActiveMQ"

Enter Name for Session

• Click on the Tab “Providers”

Available Tabs

• Rightclick in the center of the "Classpath Groups" panel. Select "Add Group" and enter "ActiveMQ".

• Click on the new Group “ActiveMQ” and rightclick “Libary”, select “Add Jars”. Go to

ActiveMQ_HOME/lib/ and select all contained jars. It should now look something like:

HowTo - Test Remote Messaging using Hermes JMS

66

List of AMQ libraries

• IMPORTANT – An alert message is prompted, select “Scan”

Checkbox during import of Libraries

• Close the window with “Ok”.

• Open the "sessions" folder in the tree and rightclick "ActiveMQ", select "edit":

HowTo - Test Remote Messaging using Hermes JMS

67

Edit a session

• Select "ActiveMQ" in the "Loader" Dropdown (if you don't see the entry "ActiveMQ", then you

probably did not select "Scan" in the Alertmessage above):

Select the previously configured loader.

• Select "org.apache.activemq.ActiveMQConnectionFactory" in the "Class" dropdown. Rightclick on

properties and select "Add Property". Select "brokerURL" as the property-name and enter "tcp://

localhost:6549" (this is the standard jms port of the OpenEngSb server, enter a different port if you

have changed it in your distribution. The Entry should now look something like:

The completely finished entry.

• Select “Ok” to close and save.

• Rightclick on the node “ActiveMQ” in the sessions folder and select New -> Add Queue:

HowTo - Test Remote Messaging using Hermes JMS

68

Add a queue in hermes.

• Click on the “Name” entry and enter “receive”, press ENTER to save your input (Hermes JMS is

a little buggy here). This the standard OpenEngSb-receive queue in this OpenEngSb-release. You

must send all your Json messages to this queue.

• Select “Ok” to close and save.

• Now you have to open the queue on which the response of your message will come back. In this

OpenEngSb-release, the response-queue has the same name as the "callId" of your message. Repeat

the steps above and use the "callId" of your message instead of "receive".

• Now you are ready to send and receive Json Messages to the OpenEngSb-Server.

26.2. Send and Receive Messages

• Startup the OpenEngSb-Server before you Startup Hermes JMS (or else Hermes JMS might not

recognise the server).

• Expand the node "ActiveMQ" in the folder "sessions" and rightclick on the "receive" queue. Select

New -> New Message

Create a new Message in Hermes.

• Switch to the "Payload" tab and paste your message into the textfield.

HowTo - Test Remote Messaging using Hermes JMS

69

Configure a message for the OpenEngSB.

• Press "Send" to send your message, there is no further response or notification that the message was

sent. Press "Done" to close the window.

• Now Doubleclick on the queue with your "callId", you should see your responses:

Retrieve a message response.

• If you do not see a respone, then enter "display" in the console of your OpenEngSb server to view the

last logmessages. It is likely that you will see some Error-messages, concerning your Jsonmessage,

there.

Have fun testing with Json. :-)

70

Part III. Included
Domains and Connectors

This part contains descpriptions and documentation for all domains and connectors that are included in the bundle

release.

71

Chapter 27. Appointment Domain

The appointment domain is the tool domain for calendar tools, like gcalendar or Facebook.

27.1. Description

The appointment domain provides the possibility to create, update, delete and retrieve appointments.

27.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

/**

 * This domain is used to integrate different calendar programs. It can create, update, delete and

 * retrieve Appointments.

 */

public interface AppointmentDomain extends Domain {

 /**

 * creates an appointment and returns the generated id

 */

 String createAppointment(Appointment appointment);

 /**

 * updates an appointment

 */

 void updateAppointment(Appointment appointment);

 /**

 * deletes an appointment

 */

 void deleteAppointment(String id);

 /**

 * loads an appointment

 */

 Appointment loadAppointment(String id);

 /**

 * Returns a list of appointments which are lying between the given start and end time.

 */

 ArrayList<Appointment> getAppointments(Date start, Date end);

}

27.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface AppointmentDomainEvents extends DomainEvents {

}

72

Chapter 28. Build Domain

The build domain is a domain for all build tools, like Maven or Ant.

28.1. Description

The build domain builds a specific pre-configured project or suite of projects.

28.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

/**

 * This domain can be used to build projects. The affected project is usually configured in the respective tool

 * connector.

 */

public interface BuildDomain extends Domain {

 /**

 * build the currently configured project. This method returns at once with an id. The build is conducted

 * asynchronously. The result can be retrieved using the events raised by this domain, which also contain the id.

 */

 @Raises({ BuildStartEvent.class, BuildSuccessEvent.class })

 String build();

 /**

 * build the currently configured project. This method returns at once with an id. The build is conducted

 * asynchronously. As soon as the build is finished an event is raised. The processId-field of the event must be

 * populated with the supplied processId.

 */

 @Raises({ BuildStartEvent.class, BuildSuccessEvent.class })

 void build(long processId);

}

28.3. Event Interface

The following interface presents the events a build connector can throw:

public interface BuildDomainEvents extends DomainEvents {

 void raiseEvent(BuildStartEvent e);

 void raiseEvent(BuildSuccessEvent e);

 void raiseEvent(BuildFailEvent e);

}

http://maven.apache.org/
http://ant.apache.org/

73

Chapter 29. Contact Domain

The contact domain is the tool domain for all contact books in tools which are using contact books

like gcontacts or Facebook.

29.1. Description

The contact domain provides the possibility to create, update, delete and retrieve contacts.

29.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

/**

 * This domain is used to maintain different contact books in different tools like gcontacts or facebook.

 */

public interface ContactDomain extends Domain {

 /**

 * creates a contact on the server and returns the generated id

 */

 String createContact(Contact contact);

 /**

 * updates a contact on the server

 */

 void updateContact(Contact contact);

 /**

 * loads a contact from the server

 */

 Contact loadContact(String id);

 /**

 * deletes a contact on the server

 */

 void deleteContact(String id);

 /**

 * retrieves a list of contacts from the server based on "query by example"

 */

 ArrayList<Contact> retrieveContacts(String id, String name, String homepage,

 Location location, Date date, String comment);

}

29.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface ContactDomainEvents extends DomainEvents {

}

Contact Domain

74

75

Chapter 30. Deploy Domain

The deploy domain is a domain for all deploy tools, like Maven.

30.1. Description

The deploy domain deploys a specific pre-configured project or suite of projects.

30.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

/**

 * This domain can be used to deploy projects. The affected project is usually configured in the respective tool

 * connector.

 */

public interface DeployDomain extends Domain {

 /**

 * Deploy the currently configured project. This method returns at once with an id. The deploy process is conducted

 * asynchronously. The result can be retrieved using the events raised by this domain, which also contain the id.

 */

 @Raises({ DeployStartEvent.class, DeployEndEvent.class })

 String deploy();

 /**

 * Deploy the currently configured project. This method returns at once with an id. The deploy process is conducted

 * asynchronously. The result can be retrieved using the events raised by this domain where the processId-field

 * contains the supplied processId

 */

 @Raises({ DeployStartEvent.class, DeployFailEvent.class, DeploySuccessEvent.class })

 void deploy(long processId);

}

30.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface DeployDomainEvents extends DomainEvents {

 void raiseEvent(DeployStartEvent e);

 @Deprecated

 void raiseEvent(DeployEndEvent e);

 void raiseEvent(DeployFailEvent e);

 void raiseEvent(DeploySuccessEvent e);

}

http://maven.apache.org/

76

Chapter 31. Issue Domain

The issue domain is the tool domain for all issue tracking tools, like Jira, Trac, Github or Mantis.

31.1. Description

The issue Domain provides the possibility to create, update, delete and comment issues.

31.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

public interface IssueDomain extends Domain {

 /**

 * creates an issue on the server and returned the generated id

 */

 String createIssue(Issue issue);

 /**

 * add a comment to an issue, specified by his id

 */

 void addComment(String id, String comment);

 /**

 * update an issue, specified by his id, the comment param can be null, changes: key of map is what field has to be

 * changed,

 */

 void updateIssue(String id, String comment, HashMap<IssueAttribute, String> changes);

 /**

 * move all issues from one release (specified by releaseFromId) to another release (specified by releaseToId)

 */

 void moveIssuesFromReleaseToRelease(String releaseFromId, String releaseToId);

 /**

 * close a release specified by his id

 */

 void closeRelease(String id);

 /**

 * generates an report for all closed issues belonging the the specified release

 */

 List<String> generateReleaseReport(String releaseId);

 /**

 * adds a component

 */

 void addComponent(String component);

 /**

 * removes a component

 */

 void removeComponent(String component);

}

Issue Domain

77

31.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface IssueDomainEvents extends DomainEvents {

}

78

Chapter 32. Notification Domain

The notification domain is an abstraction for basic notification services, like for example email

notification.

32.1. Description

The notification domain provides the functionality for sending notifications to a specific recipient.

32.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

public interface NotificationDomain extends Domain {

 void notify(Notification notification);

}

32.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface NotificationDomainEvents extends DomainEvents {

}

79

Chapter 33. Report Domain
The report domain is the tool domain for report generation and management tools.

33.1. Description

The report domain supports basic report generation functionality, like event logging and manual report

building. Furthermore it provides basic report management features, like persistent storage of reports

and a category system for report storage.

33.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

public interface ReportDomain extends Domain {

 /**

 * Generate the report using the information stored under the given reportId and stop collecting data for this

 * report. The report is added to the specified report category and named as specified by the {@code reportName}

 * parameter. The category is created if it is not already present. If there is already a report with the same name

 * under this category it is overwritten.

 *

 * @return the generated report

 * @throws NoSuchReportException if no report with the given {@code reportId} is currently collecting data.

 */

 Report generateReport(String reportId, String category, String reportName) throws NoSuchReportException;

 /**

 *

 * Generate a report based on the currently available data stored for the given {@code reportId}. The report is

 * generated but not stored. Furthermore the data collection is not stopped for this report. This method can be used

 * if a preview of the report is needed, but the data collection is not finished yet.

 *

 * @return the generated report draft

 * @throws NoSuchReportException if no report with the given {@code reportId} is currently collecting data.

 */

 Report getDraft(String reportId, String draftName) throws NoSuchReportException;

 /**

 * Start a report data collection. If the data collection process is finished the report can be generated by calling

 * the {@link #generateReport(String, String, String)} method specifying the reportId returned by this method.

 *

 * @return the reportId that can later be used to generate the report by calling

 * {@link #generateReport(String, String, String)}

 */

 String collectData();

 /**

 * Add the given report part to the report data currently collected for the given {@code reportId}. The report part

 * is appended at the end of the report.

 *

 * @throws NoSuchReportException if no report with the given {@code reportId} is currently collecting data.

 */

 void addReportPart(String reportId, ReportPart reportPart) throws NoSuchReportException;

 /**

 * Analyzes the given event and adds all information stored in the event to the report data collection associated

Report Domain

80

 * with the given {@code reportId}, which was initialized by calling {@link #collectData(IdType, String)}.

 *

 * @throws NoSuchReportException if no report with the given {@code reportId} is currently collecting data

 */

 void processEvent(String reportId, Event event) throws NoSuchReportException;

 /**

 * Get all finished reports of the given category. Reports, which are currently generated and collect data are not

 * included. If the given category does not exist an empty list is returned.

 */

 List<Report> getAllReports(String category);

 /**

 * Store the given report in the report store under the given category. The category is created if it is not already

 * present. If there is already a report with the same name under this category it is overwritten.

 */

 void storeReport(String category, Report report);

 /**

 * Remove the given report from the given category. The report is deleted and cannot be restored if it is not also

 * stored under another category. If no such report exist no operation is performed.

 */

 void removeReport(String category, Report report);

 /**

 * Get all report categories.

 */

 List<String> getAllCategories();

 /**

 * Remove the given category and all reports stored in this category. If no category with the specified name exists,

 * nothing is done.

 */

 void removeCategory(String category);

 /**

 * Creates the given category, which is empty at the start. Reports can later be added by either calling

 * {@link #storeReport(String, Report)} or {@link #generateReport(String, String, String)} specifying the respective

 * category. If a category exists with the given name no operation is performed.

 */

 void createCategory(String category);

}

33.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface ReportDomainEvents extends DomainEvents {

}

81

Chapter 34. SCM Domain
The source code management (SCM) domain is the tool domain for all SCM tools, like Git or

Subversion.

34.1. Description

The SCM Domain polls external repositories for changes of content under source control and provides

functionality to copy/export the repository content for further processing.

34.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

/**

 * ScmDomain is an abstraction for working with SCM tools.

 *

 */

public interface ScmDomain extends Domain {

 /**

 * Looks up changes in a remote repository and updates the local repository

 * or checks out a new local repository and returns a list of

 * {@link CommitRef} with the revisions produced since the last update or

 * <code>null</code>.

 */

 List<CommitRef> update();

 /**

 * Exports the files and directories of the HEAD revision from a repository

 * without the SCM specific data in a compressed format.

 */

 File export();

 /**

 * Exports the files and directories of a revision identified by the

 * {@link CommitRef} from a repository without the SCM specific data in a

 * compressed format.

 */

 File export(CommitRef ref);

 /**

 * Check if file identified by its {@code fileName} exists in the HEAD

 * revision and returns <code>true</code> if it does.

 */

 boolean exists(String file);

 /**

 * Retrieves a single {@link File} from a repository identified by its

 * {@code fileName} if it exists in the HEAD revision. If the file does not

 * exist in the revision <code>null</code> will be returned.

 */

 File get(String file);

 /**

 * Check if file identified by its {@code fileName} exists in a revision

SCM Domain

82

 * identified by the {@link CommitRef} and returns <code>true</code> if it

 * does.

 */

 boolean exists(String fileName, CommitRef version);

 /**

 * Retrieves a single {@link File} from a repository identified by its

 * {@code fileName} if it exists in the revision identified by the

 * {@link CommitRef}. If the file does not exist in the revision

 * <code>null</code> will be returned.

 */

 File get(String fileName, CommitRef ref);

 /**

 * Returns the {@link CommitRef} of the current HEAD in the repository or

 * <code>null</code>.

 */

 CommitRef getHead();

 /**

 * Adds one or more {@link File} existing in the working directory to the

 * repository and commits them with the passed {@code comment}. Returns the

 * {@link CommitRef} of the commit triggered.

 */

 CommitRef add(String comment, File... file);

 /**

 * Removes one or more {@link File} from the working directory of the

 * repository and commits them with a passed {@code comment}. Returns the

 * {@link CommitRef} of the commit triggered.

 */

 CommitRef remove(String comment, File... file);

 /**

 * Tags the actual HEAD of the repository with the passed {@code tagName}

 * and returns the corresponding {@link TagRef} or <code>null</code>.

 */

 TagRef tagRepo(String tagName);

 /**

 * Tags the commit of the repository identified by the {@link CommitRef}

 * with the passed {@code tagName} and returns the corresponding

 * {@link TagRef} or <code>null</code>.

 */

 TagRef tagRepo(String tagName, CommitRef ref);

 /**

 * Resolves and returns the {@link CommitRef} for a {@link TagRef} or

 * <code>null</code> if the reference does not exist.

 */

 CommitRef getCommitRefForTag(TagRef ref);

}

34.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface ScmDomainEvents extends DomainEvents {

}

SCM Domain

83

84

Chapter 35. Test Domain

The test domain is a domain for all test tools, like Maven.

35.1. Description

The test domain runs all tests for a specific pre-configured project or suite of projects.

35.2. Functional Interface

The following listing presents the Java Domain Interface. This interface also contains information

about events raised by this domain.

/**

 * This domain can be used to run tests for projects. The affected project is usually configured in the respective tool

 * connector.

 */

public interface TestDomain extends Domain {

 /**

 * run all tests for the currently configured project. This method returns at once with an id. The tests are run

 * asynchronously. The result can be retrieved using the events raised by this domain, which also contain the id.

 */

 @Raises({ TestStartEvent.class, TestSuccessEvent.class, TestFailEvent.class })

 String runTests();

 /**

 * run all tests for the currently configured project. This method returns at once with an id. The tests are run

 * asynchronously. The result can be retrieved using the events raised by this domain, with the processId set to the

 * supplied processId

 */

 @Raises({ TestStartEvent.class, TestSuccessEvent.class, TestFailEvent.class })

 void runTests(long processId);

}

35.3. Event Interface

The following interface presents the events an appointment connector can throw:

public interface TestDomainEvents extends DomainEvents {

 void raiseEvent(TestStartEvent e);

 void raiseEvent(TestEndEvent e);

 void raiseEvent(TestFailEvent e);

 void raiseEvent(TestSuccessEvent e);

}

http://maven.apache.org/

85

Chapter 36. Email Connector

Email Connector implements the Notification Domain and is used for sending emails. It is based on

the JavaMail API.

36.1. Configuration

The email connector configuration recognizes the following attributes:

• prefix

• smtpSender

• smtpPort

• smtpHost

• smtpAuth

• user

• password

• secureMode

86

Chapter 37. gcalendar Connector

Implements the connector to Google Calendar for appointment domain

37.1. Configuration

TBW

87

Chapter 38. gcontacts Connector

Implements the connector to Google Contacts for contact domain

38.1. Configuration

TBW

88

Chapter 39. Git Connector

Git Connector implements SCM Domain and is an SCM connector for the git version control system.

39.1. Configuration

TBW

89

Chapter 40. github Connector

github Connector implements the Issue Domain and is an issue tool connector for the github issue

tracker system.

40.1. Configuration

TBW

90

Chapter 41. Maven Connector

Maven Connector implements the Build Domain, the Deploy Domain and the Test Domain and is used

for building, deploying and running tests for maven projects.

41.1. Configuration

TBW

91

Chapter 42. Plaintext Report Connector

Plaintext Report Connector implements the Report Domain and generates plain text reports

42.1. Configuration

TBW

92

Chapter 43. Prom Report Connector

ProM Report Connector implements the Report Domain and generates files in MXML format, which

can be analyzed with the ProM framework.

43.1. Configuration

TBW

93

Chapter 44. trac Connector

Trac Connector implements the Issue Domain and is an issue tool connector for the Trac project

management and issue tracker system.

44.1. Configuration

TBW

94

Part IV. Administration Console
This part gives an introduction to the OpenEngSB Console . It shows the functionality and gives an idea what the

admin can change in the system and how this is done in the console.

The target audience of this part are users and in special admins of the system.

95

Chapter 45. OpenEngSB console commands

This section describes how to control OpenEngSB via the Karaf-Console

45.1. Start the console

It is not much needed to get the OpenEngSB console started. Just type in a shell "mvn

openengsb:provision" or execute the corresponding shell script (etc/scripts/run.sh)

45.2. Available commands

This section is work in progress, which means that it will be extended every time a new command

is available

• openengsb:info - prints out the current project version

openengsb:domains - prints out all available domains

96

Part V. Administration User Interface
This part gives an introduction to the OpenEngSB Administration user interface. It shows the functionality and

gives an idea what the admin can change in the system and how he can perform this changes.

The target audience of this part are users and in special admins of the system.

97

Chapter 46. Testclient

The admin interface for the user to manage domains, connectors(services) and things that have things

in common with this. Also you can test services here. If you select a service you can delete it with

the corresponding button.

46.1. Managing global variables

Global variables are needed to access domain-services and other helper-objects. To manage this

variables there is a button in the testclient which brings you to a own site where you can manage

this variables. Here you can add, edit and delete them. If some error occur while managing the

variables(deleting a variable that is already in a rule, ...), the site tells you what did go wrong.

46.2. Managing imports

Imports are important so that global variables can work. If the class of the global variable isn't imported

an error occurs because the necessary classes can't be loaded. To manage this imports there is a button

in the testclient which brings you to a own site where you can manage this imports. Here you can

add, edit and delete them. If some error occur while managing the imports, the site tells you what did

go wrong.

98

Chapter 47. Wiring

This user interface constitutes a way for administrators to do wiring. Wiring is a process, where global

variables get connected with connectors (domain endpoints) in a certain context. As there are several

steps to do that, this page gives you a fast and easy managing possibility. For further reading, please

visit http://www.openengsb.org/nightly/docbook/developer.context.html.

47.1. Wire a global variable with a service

1. Select a domain-type in the drop-down-field. Doing that, all domain endpoints and all globals of

this domain-type will be loaded. If nothing appears, then there will be probably no suitable global

available and no suitable connector is instantiated. This can be checked on the Testclient page.

Selecting a domain in the drop-down-field lets globals and endpoints appear

2. You have to choose a global, because that is the object you want to get wired with a connector. A

global variable is part of a rule allowing the workflow service to communicate with connectors and

other objects. More information you can find in the Chapter about Workflows.

There are two possibilities to specify a global. Either you select one from the list or you write

autonomous a name of a global in the corresponding text field. If the global doesn't exist, there

will be a new one created with the type of the selected domain. If a global already exists and have

another type as selected, then there will be an error message after submitting.

Input field for the global variable

3. You must select a domain endpoint from the corresponding list. The list will be loaded after you

have selected a domain.

Input field for the service Id, which can be edited by selecting an endpoint from the list

4. You must select the contexts, where the wiring shall happen. You can select all but at least one have

to be selected. Information about what a context means can be found at the Context Management.

List of all available contexts

http://www.openengsb.org/nightly/docbook/developer.context.html
http://www.openengsb.org/nightly/docbook/ui.testclient.html
http://www.openengsb.org/docbook/user.workflows.html
http://www.openengsb.org/docbook/user.context.html

Wiring

99

5. After submitting the form, a success message for each context should appear. If an error occurs,

an error message will be shown.

Screenshot of the wiring results

47.2. What wiring does in the background

The properties of the service will be updated. First, it will try to get the property with the key 'location.'

+ context from these properties, because there are all locations stored. If there is no such property, a

new one will be added. After that, it will insert a new location in that property, which is the name of

the given global. As there can be more locations, the new one will be appended excepted such location

already exists. Then nothing will be changed, but an info message will appear.

100

Part VI. OpenEngSB
Contributor Detail Informations

This part gives an introduction to more detailed concepts of the OpenEngSB which should be interesting for

contributors which should have a deeper view on specialised topics of this project. This part is also interesting

for users which want to have a deeper insight what is happening in the background of the OpenEngSB magic.

101

Chapter 48. Prepare and use Non-OSGi Artifacts

Basically, wrapped JARs do not differ in any way from basic jars, besides that they are deployable in

OSGi environments. They are used as regular jar files in the OpenEngSB. Nevertheless, the wrapping

itself is not as painless. This chapter tries to explain the process in detail.

48.1. Create Wrapped Artifacts

This chapter is a step by step guide on how to create a wrapped JAR.

1. In case that no OSGi compatible library is available in the public repositories a package has to

be created. Because of the simplicity of the process it should be done by hand. First of all create

a folder with the name of the project you like to wrap within openengsb/wrapped. Typically the

groupId of the bundle to wrap is sufficient. For example, for a project wrapping all Wicket bundles

the folder org.apache.wicket is created.

2. As a next step add the newly created folder as a module to the openengsb/wrapped/pom.xml file

in the module section. For the formerly created Wicket project org.apache.wicket should be added

to the module section.

3. Now create a pom.xml file in the newly created project folder.

4. The pom.xml contains the basic project information. As parent for the project the wrapped/pom.xml

should be used. Basically for every wrapped jar the project has the following structure:

<?xml version="1.0" encoding="UTF-8"?>

<!--

OPENENGSB LICENSE

-->

<project>

 <parent>

 <groupId>org.openengsb.wrapped</groupId>

 <artifactId>openengsb-wrapped</artifactId>

 <version>1</version>

 </parent>

 <properties>

 <bundle.symbolicName>wrapped_jar_group_id</bundle.symbolicName>

 <wrapped.groupId>wrapped_jar_group_id</wrapped.groupId>

 <wrapped.artifactId>wrapped_jar_artifact_id</wrapped.artifactId>

 <wrapped.version>wrapped_jar_version</wrapped.version>

 <bundle.namespace>${wrapped.groupId}</bundle.namespace>

 </properties>

 <modelVersion>4.0.0</modelVersion>

 <groupId>${wrapped.groupId}</groupId>

 <artifactId>org.openengsb.${wrapped.groupId}</artifactId>

 <version>${wrapped.version}</version>

 <name>${bundle.symbolicName}</name>

 <packaging>bundle</packaging>

 <dependencies>

 <all_jars_which_should_be_embedded />

 </dependencies>

Prepare and use Non-OSGi Artifacts

102

</project>

5. Now add the OSGi specific statements for the maven-bundle-plugin. While the default export

and import are already handled in the root pom project specific settings have to be configured

here. For example all packages within the bundle-namespace are always exported. This is for most

scenarios sufficient. In addition all dependencies found are automatically imported as required. This

is generally not desired. Instead the parts of the library which have to be imported should be defined

separately. The following listing gives a short example how this OSGi specific part can look like.

For a full list of possible commands see the maven-bundle-plugin documentation.

 <?xml version="1.0" encoding="UTF-8"?>

 <build>

 ...

 <plugins>

 ...

 <plugin>

 <groupId>org.apache.felix</groupId>

 <artifactId>maven-bundle-plugin</artifactId>

 <extensions>true</extensions>

 <configuration>

 <instructions>

 <Import-Package>sun.misc;resolution:=optional,

 javax.servlet;version="[2.5.0, 3.0.0)",

 *;resolution:=optional

 </Import-Package>

 </instructions>

 </configuration>

 </plugin>

 </plugins>

 </build>

 </project>

48.2. Tips and Tricks

Although the description above sounds quite simple (and wrapping bundles is simple mostly) still

some nasty problems can occur. This section summarizes good tips and ideas how to wrap bundles

within the OpenEngSB.

• The best workflow to wrap a bundle is according to our experiences, to execute the previously

described steps and simply start the OpenEngSB (openengsb:provision). Either it works or creates

a huge stack of exceptions with missing import statements. Simply try to fulfill one problem, than

start again till all references are resolved.

• Embedding artifacts is nothing bad. Although it is recommended to use all references artifacts of a

bundle directly as OSGi components it can be such a pain sometimes. Some references are simply

not required by any other bundle or are too hard to port. In such cases feel free to directly embed

the dependencies in the wrapped jar.

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

103

Chapter 49. OpenEngSBModels

The OpenEngSBModels are the base concept for the whole semantic part of the OpenEngSB. They

are needed to enable the persisting of domain models into the EDB. Also they give the OpenEngSB

the possibility to send models via remote and to hide complexity from the user.

49.1. Motivation

The idea behind the concept of the OpenEngSBModels or domain models is corelated to the domain/

connector structure of the OpenEngSB. Models should represent the objects used by a domain in

an abstract manner (e.g. the model "Issue" in the issue domain). Since such models are defined on

the domain level. All connectors, which belong to a specific domain, use the models defined by this

domain. In that way every connector of a specific domain "speaks the same language".

49.2. Structure of a model

What is a little bit different from the normal approach to develop and design such domain models is,

that in the OpenEngSB all domain models are interfaces. This interfaces have to extend the interface

"OpenEngSBModel" which is defined in the "core/api" bundle. Which advantage this brings will be

explained later on in this chapter.

Another important thing is the structure of such a model interface. Every domain model or

OpenEngSBModel interface contains only getter and setter pairs. It is important that every getter has

a equivalent setter and the other way round to ensure correct behaviour of this models.

But how to work only with interfaces? Since an OpenEngSBModel is only an interface, we need a

mechanism to work in an efficient way with such objects. The way we choose was to create a static

model proxy class, which simulates the implementation of a model. The class enabling this, is the

ModelUtils class which can be found in the "core/common" bundle.

Every OpenEngSBModel object has three defined functions: getOpenEngSBModelEntries,

addOpenEngSBModelEntry and deletOpenEngSBModelEntry. Whenever

getOpenEngSBModelEntries is called, the model transform itself into a list of key/value pairs,

where every entry have in addition the type of the value saved. This mechanism is used for

easier saving of models to the EDB and also to transfer a model to a different machine. With the

addOpenEngSBModelEntry you can add additional entries which are not part of the model definition

itself to the model. And finally with the removeOpenEngSBModelEntry you can manually remove an

entry which has been inserted manually through addOpenEngSBModelEntry.

49.3. Supported field types

Currently the models are able to work with primitive types, strings, dates, lists, models and files. All

those objects can be set and got through the interface and can also be persisted in the EDB (see the

chapter about the EDB for more details).

Special case in the supported field types are file objects. They are quite tricky, especially if the models

shall be transfered to another machine. The behaviour of the models are: Whenever a model have to

transform itself to a list of OpenEngSBModelEntry, the model is aware of file objects. If it finds a file

OpenEngSBModels

104

object, it creates a FileWrapper object out of it. A FileWrapper object contains the name of the file and

a byte array which holds the zip compressed content of the file object.

If such a FileWrapper would be accessed by a getter of a file object, the ModelUtils does the conversion

work of the FileWrapper to the file object for you. So this feature is completely transparent for the

normal user. Note that the conversion of a file object to a FileWrapper and the other way round has

only to be done if getOpenEngSBModelEntries is called. For now this is only the case at two points:

when a model has to be saved into the EDB or when a model is sent via remote.

49.4. Model Ids

For easier maintaining and faster finding of models (and also to enable the versioning possibility), the

user is able to define a field to be the id of a model. An important point to consider here is that this id

has to be unique for a connector of a domain (this is because the id will be enlarged with the domain

id and the connector id).

To define a field to be the id of the model you simply have to add an annotation to the corresponding

setter. The annotation is called OpenEngSBModelId. If no id is defined for a model and this model

has to be inserted into the EDB, the EDB just take an arbitrary id to save the model.

105

Chapter 50. Engineering Database - EDB

The EDB is a core component of the semantic part of the OpenEngSB. It's purpose is the persisting

and versioning of domain models (so called OpenEngSBModel objects).

50.1. Motivation

The EDB concept was introduced with the idea to build a central persisting unit for the domain models

of all domains. This central approach offers some interesting advantages, like for example:

• easy to change

• easy data maintainence

• single point of versioning configuration

• central instance where model transformations can take place

Model transformation is the out of the scope of the EDB and will be covered by the EKB.

Another important feature of the EDB are build-in conflict checkers. Until now, there is only one

implementation which is based on version numbers. Whenever someone tries to save something into

the EDB with the wrong version, the conflict checker tells the user that a conflict has been found and

that he has to checkout the newest version of the model before he can save the model.

50.2. Structure

The EDB is a JPA based implementation of a central database supplier in service orientated

architectures, which also have the additional functionality to version data. Currently we are using

OpenJPA as JPA implementation.

Since the EDB simulates the functionality of a scm system, the structures of the tables in the EDB are

no big surprise. They consist of objects which have a list of key/value pairs bound to them. Also there

exist a commit table, with which the EDB is able to keep track of all meta-data of changes.

50.3. Usage

Until now, the saving/updating of models into/in the EDB is done through specific events which every

connector which implements the interface "OpenEngSBConnectorService" can throw. This events hide

many details of the saving procedure like the automatically load from where the event is coming and

with this, an automatic event enhancement. Also the conflict check is started through such an event. In

future the EDB has to be used directly without events to easier enable the possibility to use the EDB

functionality in workflows(Jira-ISSUE).

The loading of models from the EDB is in conceptionally possible, but should always be done through

the QueryService of the EKB bundle, since this service does the automatic transformation work of

elements from the EDB to an OpenEngSBModel. See the detailed explanation of the EKB for more

informations.

http://issues.openengsb.org/jira/browse/OPENENGSB-2431

Engineering Database - EDB

106

50.4. Conflict Detection

The conflict detection, as it is implemented now, is a very simple implementation of a conflict checker.

The checker is based on simple version numbers. If the version number of the model which has to be

saved doesn't fit to the actual version number, the conflict detection throws an error.

In the future there should be more possibilities for conflict detections been found. But for the start,

this conflict detection is enough(Jira-ISSUE).

http://issues.openengsb.org/jira/browse/OPENENGSB-2432

107

Chapter 51. Engineering Knowledge Base - EKB

The EKB, as it is now, is at the very beginning of its development, so there is not much to write here

for now. The most important thing which is provided by the EKB at the moment is the QueryService.

51.1. Motivation

The main idea for the introduction of the EKB is the idea to provide automatic transformations of

domain models between tools and the OpenEngSB. But soon it was clear that this will not the only

task the EKB should provide.

Some other things the EKB shall provide when it is finished will be the QueryInterface service which

represents the loading force of models from the EDB (this is already implemented), the possibility to

provide better conflict checkers for the EDB and if possible automatic conflict solving.

51.2. Query Service

This service has the task to load models from the EDB. Since models are no real objects but proxied

interfaces, this service has to create a new model instance. This new model instance is initialised with

the data which is loaded from the EDB. After all loaded data is inserted, the user can start work with

this model. All transformations are done in this service. The user doesn't have to worry about that. In

fact, he won't even notice that all this steps were necessary.

The query service provide a list of possibilities how to load models from the EDB (e.g. based on the

model id or based on the key value pairs of the model).

108

Chapter 52. How To Create an Internal Connector

This chapter describes how to implement a connector for the OpenEngSB environment. A connector

is an adapter between an external tool and the OpenEngSB environment. Every connector belongs to

a domain which defines the common interface of all its connectors. This means that the connector is

responsible to translate all calls to the common interface to the externally provided tool.

52.1. Prerequisites

In case it isn't known what a tool domain is and how it defines the interface for the tool connector

then Section 5.4, “OpenEngSB Tool Domains” is a good starting point. If there's already a matching

domain for this tool it is strongly recommended to use it. If the tool requires a new domain to be created

relevant information can be found in Chapter 53, How To Create an Internal Domain.

52.2. Creating a new connector project

To take burden off the developer of creating the initial boilerplate code and configuration, a Maven

archetype is provided for creating the initial project structure. Furthermore we provide the openengsb-

maven-plugin (see ???) (or the etc/scripts/gen-connector.sh script, which wraps the invocation

of the maven plug-in) which simplifies the creation of a connector project from the archetype. It should

be used for assisted creation of a new connector project.

52.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genConnector goal of the

openengsb-maven-plugin executes additional tasks, I.e. renaming of the resulting project. Furthermore,

it tries to make sure that the new project is consistent with the naming conventions of the OpenEngSB

project.

The following parameters have to be specified to execute the correct archetype:

• archetypeGroupId - the groupId of the OpenEngSB connector archetype.

• archetypeArtifactId - the artifactId of the OpenEngSB connector archetype.

• archetypeVersion - the current version of the OpenEngSB connector archetype.

The following parameters have to be defined for the parent of the new connector. It is not solely parent

of the connector itself, but parent of the implementation of the domain and all other connectors of

this domain too.

• parentArtifactId - the artifactId of the project parent.

The following parameters have to be defined for the domain of the new connector.

• groupId - the groupId of the domain.

• domainArtifactId - the artifactId of the domain.

The following parameters have to be defined for the connector.

How To Create an Internal Connector

109

• artifactId - the connector artifact id. Has to be "openengsb-domains-<yourDomain>-

<yourConnector>".

• version - the package for the source code of the domain implementation. Has to be

"org.openengsb.domains.<yourDomain>".

• domainInterface - The name of the domain interface.

• parentPackage - The package in which the domain interface can be found.

• package - the package for the connector code. Usually <parentPackage>.<yourConnector> is used.

• name - the name of the implementation module. Has to be "OpenEngSB :: Domains ::

<yourDomain> :: <yourConnector>"

Where <yourDomain> has to be replaced by your domain name and <yourConnector> has to be

replaced by the respective connector name.

Note that the archetype will use the artifactId to name the project, but the OpenEngSB convention is

to use the connector name. Therefore you will have to rename the resulting project (however if you

use the genConnector mojo, this renaming will be performed automatically). Do not forget to check

that the new connector is included in the modules section of the domain parent pom xml file.

52.2.2. Using mvn openengsb:genConnector

Simply invoke mvn openengsb:genConnector from the connector directory (connector/)

(alternatively the etc/scripts/gen-connector.sh script can be used which invokes the openengsb-

maven-plugin for you).

 connector $ mvn openengsb:genConnector

The mojo tries to guess as much as possible from your previous input. Guessed values are displayed

in brackets. If the guess is what you want, simply acknowledge with Return. The following output has

been recorded by executing the script in the connector/ directory:

Domain Name [domain]: notification <Enter>

Domain Interface [NotificationDomain]: <Enter>

Connector Name [myconnector]: twitter <Enter>

Version [1.0.0-SNAPSHOT]: <Enter>

Project Name [OpenEngSB :: Domains :: Notification :: Twitter]: <Enter>

Only the domain and connector name was set, everything else has been guessed correctly. After

these inputs are provided the Maven Archetype gets called and may ask you for further inputs. You

can simply hit Return each time to acknowledge standard values. If it finishes successfully the new

connector project is created and you may start implementing.

52.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

How To Create an Internal Connector

110

-- src

| -- main

| -- java

| -- org

| -- openengsb

| -- connector

| -- [myconnector]

| -- internal

| | -- [MyConnector]Connector.java

| | -- [MyConnector]ConnectorProvider.java

| | -- [MyConnector]InstanceFactory.java

| -- resources

| -- OSGI-INF

| -- blueprint

| -- [myconnector]-[mydomain]-context.xml

| -- l10n

| -- bundle.properties

| -- bundle_de.properties

| -- bundle.info

-- pom.xml

The MyServiceConnector class implements the interface of the domain and thus is the communication

link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run

the end user) enough information on how to configure a connector, the MyServiceInstanceFactory

class provides the OpenEngSB with meta information for configuring and functionality for creating

and updating a connector instances. The MyServiceConnectorProvider class connects connector

instances with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as

OSGi services and adds necessary meta information to each instance. Since the basic functionality is

mostly similar for all service managers, the MyServiceConnectorProvider class extends a common

base class AbstractConnectorProvider. In addition the AbstractConnectorProvider also persists

the configuration of each connector, so that the connector instances can be restored after a system

restart.

The blueprint setup in the resources folder contains the setup of the service manager. Additional bean

setup and dependency injection can be configured there.

The OpenEngSB has been designed with localization in mind. The Maven Archetype already

generates two bundle*.properties files, one for English (bundle.properties) and one for the German

(bundle_de.properties) language. Each connector has to provide localization through the properties

files for service and attributes text values. This includes localization for names, descriptions, attribute

validation, option values and more. For convenience the BundleStrings class is provided on all method

calls where text is needed for user representation for a specific locale.

52.4. Integrating the Connector into the OpenEngSB
environment

The connector provided is responsible for the integration of the connector into the OpenEngSB

infrastructure. The correct definition of this service is critical.

111

Chapter 53. How To Create an Internal Domain

This chapter describes how to implement a domain for the OpenEngSB environment. A domain

provides a common interface and common events and thereby defines how to interact with connectors

for this domain. For a better description of what a domain exactly consists of, take a look at the

architecture guide Chapter 5, Architecture of the OpenEngSB.

53.1. Prerequisites

In case it isn't known what a domain is and how it defines the interface and events for connectors, then

Section 5.4, “OpenEngSB Tool Domains” is a good starting point.

53.2. Creating a new domain project

To get developers started creating a new domain a Maven archetype is provided for creating the initial

project structure. The openengsb-maven-plugin (see ???) or the etc/scripts/gen-domain.sh script

(which only wraps the invocation of the plug-in) simplifies the creation of a domain.

53.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genDomain goal of the

openengsb-maven-plugin executes additional tasks, i.e. renaming of the resulting project. Furthermore

it tries to make sure that the new project is consistent with the naming conventions of the OpenEngSB

project.

The following parameters have to be specified to execute the correct archetype:

• archetypeGroupId - the groupId of the OpenEngSB domain archetype.

• archetypeArtifactId - the artifactId of the OpenEngSB domain archetype.

• archetypeVersion - the current version of the OpenEngSB domain archetype.

The following parameters have to be defined for the parent of the new domain. It is not solely parent

of the domain implementation, but parent of all connectors of this domain too.

• groupId - the groupId of the project parent. Has to be "org.openengsb.domains.<yourDomain>".

• artifactId - the artifactId of the project parent. Has to be "openengsb-domains-<yourDomain>-

parent".

• version - the version of the domain parent, which is usually equal to the current archetype version.

• name - the name of the parent module. Has to be "OpenEngSB :: Domains :: <yourDomain> ::

Parent"

The following parameters have to be defined for the implementation of the new domain.

• implementationArtifactId - the implementation artifact id. Has to be "openengsb-domains-

<yourDomain>-implementation".

How To Create an Internal Domain

112

• package - the package for the source code of the domain implementation. Has to be

"org.openengsb.domains.<yourDomain>".

• implementationName - the name of the implementation module. Has to be "OpenEngSB ::

Domains :: <yourDomain> :: Implementation"

Where <yourDomain> has to be replaced by your domain name which is usually written in lower case,

i.e. report for the report domain.

Note that the archetype will use the artifactId to name the project, but the OpenEngSB convention is to

use the domain name. Therefore you will have to rename the resulting project. Do not forget to check

that the new domain is included in the modules section of the domains pom.

53.2.2. Using mvn openengsb:genDomain

Simply invoke mvn openengsb:genDomain from the domains directory in your OpenEngSB repository

(alternatively the etc/scripts/gen-domain.sh script can be used which invokes the openengsb-

maven-plugin for you).

 domains $ mvn openengsb:genDomain

You'll be asked to fill in a few variables which are needed to create the initial project structure. Based

on your input, the mojo tries to guess further values. Guessed values are displayed in brackets. If the

guess is correct, simply acknowledge with Return. As example, the following output has been recorded

while creating the Test domain:

Domain Name [mydomain]: test <Enter>

Version [1.0.0-SNAPSHOT]: <Enter>

Prefix for project names [OpenEngSB :: Domains :: Test]: <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed. After giving the

inputs, the Maven archetype gets executed and may ask for further inputs. You can simply hit Return,

as the values have been already correctly set. If the mojo finishes successfully two new Maven projects,

the domain parent and domain implementation project, have been created and setup with a sample

implementation for a domain.

53.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

-- src

| -- main

| -- java

| -- org

| -- openengsb

| -- domain

| -- [mydomain]

| -- [MyDomain]Domain.java

| -- [MyDomain]DomainEvents.java

| -- [MyDomain]DomainProvider.java

How To Create an Internal Domain

113

| -- resources

| -- OSGI-INF

| -- blueprint

| -- [mydomain]-context.xml

| -- l10n

| -- bundle.properties

| -- bundle_de.properties

| -- bundle.info

-- pom.xml

The project contains stubs for the domain interface, the domain events interface and the domain

provider and a resources folder with the spring setup and property files for internationalization.

Although the generated domain does in effect nothing, you can already start the OpenEngSB for testing

with mvn clean install openengsb:provision and the domain will be automatically be picked up

and started.

The blueprint setup in the resources folder already contains the necessary setup for this domain to

work in the OpenEngSB environment. Furthermore the default implementation proxies for the domain

interface, which forwards all service calls to the default connector for the domain and the default

implementation of the domain event interface, which forwards all events to the workflow service of

the OpenEngSB are configured.

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. The

Maven Archetype already creates two bundle*.properties files, one for English (bundle.properties)

and one for the German (bundle_de.properties) language. Each connector has to provide localization

through it own properties files. For domains, this only means localization for a name and description

of the domain itself.

53.3. Components

1. Domain interface - This is the interface that connectors of that domain must implement. Operations

that connectors should provide, are specified here. Events that are raised by this Domain in

unexpected fashion (e.g. new commit in scm system) are specified on the Interface. The Raise

Annotation and the array of Event classes it takes as an argument are used. If the Raise annotation

is put on a method the events that are specified through the annotation are raised in sequence upon

a call.

2. Domain event interface - This is the interface the domain provides for its connectors to send events

into OpenEngSB. The event interface contains a raiseEvent(SomeEvent event) method for each

supported event type.

3. Domain Provider - The domain provider is a service that provides information about the domain

itself. It is used to determine which domains are currently registered in the environment. There is

an abstract class, that takes over most of the setup.

4. Blueprint context - There are three services, that must be registered with the OSGi service-

environment. First, there is the Domain Provider. Moreover, the domain must provide a kind

of connector itself since it must be able to handle service calls and redirect it to the default-

connector specified in the current context. And finally the domain provides an event interface for its

connectors which can be used by them to send events into OpenEngSB. The default implementation

How To Create an Internal Domain

114

of this event interface simply forwards all events sent through the domain to the workflow service.

However, domains can also provide their own implementation of their event interface and add data

to events or perform other tasks. There is a bean factory that creates a Java-Proxy that can be used

as ForwardService both for the forwarding of service calls from domain to connector and for the

forwarding of events to the workflow service. The service call to ForwardService looks up the

default-connector for the specified domain in the current context and forwards the method-call right

to it. The event forward service simply forwards all events to the workflow service of OpenEngSB.

53.4. Connectors

For information regarding the implementation of connectors for the newly created domain see

Chapter 52, How To Create an Internal Connector.

115

Chapter 54. HowTo - Extend OpenEngSB Console

54.1. Goal

This tutorial shows how to extend the OpenEngSB console.

54.2. Time to Complete

To read this tutorial and get add a first command should not take more than 10 minutes

54.3. Prerequisites

This HowTo assumes you already have downloaded the OpenEngSB.

54.4. Start the console

It is not much needed to get the OpenEngSB console started. Just type in a shell "mvn

openengsb:provision" or execute the corresponding shell script (etc/scripts/run.sh)

54.5. Adding new commands

This section describes how to add new commands. The project is located in core/console. To

add a new command not much is needed. For a finished example have a look at the class

org.openengsb.core.console.OpenEngSBInfo. Here a short description:

 import org.apache.felix.gogo.commands.Command;

 import org.apache.karaf.shell.console.OsgiCommandSupport;

 @Command(scope = "openengsb", name = "info", description = "Prints out some information")

 public class OpenEngSBInfo extends OsgiCommandSupport {

 @Override

 protected Object doExecute() throws Exception {

 System.out.println("Here is the information");

 return null;

 }

 }

There is just one single other step which has to be done: Go into the core/console/src/main/resources/

OSGI-INF/bluepring/shell-config.xml and add the following lines:

 <command-bundle xmlns="http://karaf.apache.org/xmlns/shell/v1.0.0">

 <command name="openengsb/info">

 <action class="org.openengsb.core.console.OpenEngSBInfo"/>

OpenEngSBInfo

 </command-bundle>

HowTo - Extend OpenEngSB Console

116

This will lead to following command "openengsb:info". To execute this command, start the

OpenengSB console in a shell as described above and type in openengsb:info, this will print out the

text "Here is the information"

117

Chapter 55. HowTo - Create a connector for an
already existing domain for the OpenEngSB

55.1. Goal

This tutorial describes exemplary for all connectors the implementation of an email connector. The

email connector implements the interface of the Chapter 32, Notification Domain, which is already

implemented in the OpenEngSB. Therefore, this tutorial describes the implementation of a connector

for an already present domain.

55.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes. If you are not familiar with the

OpenEngSB please read this manual from the start or check the homepage for further information.

55.3. Prerequisites

Warning: This section is likely to change in the near future, as domains and connectors are currently

separated from the rest of the OpenEngSB project. Currently connectors are developed together with

the core system.

For information about how to get started as contributor to the OpenEngSB project and how to get the

current OpenEngSB source please read the contributor section of the manual: Part VI, “OpenEngSB

Contributor Detail Informations”.

55.4. Step 1 - Use the archetype

As the development of a connector is a recurring task the OpenEngSB developer team has prepared

Maven archetypes and useful mojos, which provide support for the initial creation of a connector. A

new connector can be created by invoking mvn openengsb:genConnector (or using /etc/scripts/

gen-connector.sh)

Go into the directory "/connector" and invoke the mojo from there. It generates the result in the

directory from where it is started, therefore it is recommended to run it from the "/connector" directory.

You can also run it from a different directory and copy the results into the "/connector" directory. Fill

in the following values (if no input is provided the default value is kept):

Domain Name (is domainname): notification

Domain Interface (is NotificationDomain):

Connector Name: email

Version (is 1.1.0-SNAPSHOT):

Project Name (is OpenEngSB :: Connector :: Email):

Now the maven archetype is executed. It asks you to confirm the configuration:

groupId: org.openengsb.connector

artifactId: org.openengsb.connector.email

version: 1.1.0-SNAPSHOT

package: org.openengsb.connector.email

http://www.openengsb.org

HowTo - Create a connector for an already

existing domain for the OpenEngSB

118

connectorName: Email

connectorNameLC: email

domainArtifactId: org.openengsb.domain.notification

domainInterface: NotificationDomain

domainPackage: org.openengsb.domain.notification

name: OpenEngSB :: Connector :: Email

 Y: : y

A project named "email" is created with the following structure:

email

-- src

| -- main

| -- java

| -- org

| -- openengsb

| -- connector

| -- email

| -- internal

| | -- EmailConnector.java

| | -- EmailConnectorProvider.java

| | -- EmailInstanceFactory.java

| -- resources

| -- OSGI-INF

| -- blueprint

| -- email-notification-context.xml

| -- l10n

| -- bundle.properties

| -- bundle_de.properties

| -- bundle.info

-- pom.xml

All these artifacts will be covered during the implementation of the connector and explained in step

2 of this tutorial.

55.5. Step 2 - Add the dependencies

Let's start with the dependencies. As the email connector will be based upon the javax mail libraries,

we need to include dependencies for the OSGi versions of these artifacts into the pom file located at

"/provision/pom.xml". So we add this dependency to the dependencies section:

 <dependency>

 <groupId>org.apache.servicemix.bundles</groupId>

 <artifactId>org.apache.servicemix.bundles.javax.mail</artifactId>

 <version>1.4.4</version>

</dependency>

55.6. Step 3 - Configure the connector

To configure the connector as part of the OpenEngSB two more things are necessary. At first we

have to add the connector to the modules section of its parent pom if it is not already present there.

If you have run openengsb:genConnector in the "connector" directory this step should have already

been performed automatically for you. To check or manually add the entry, open the file "/connector/

pom.xml" and add the new connector to the modules section:

HowTo - Create a connector for an already

existing domain for the OpenEngSB

119

 ...

<modules>

 <module>email</module>

...

</modules>

...

The second step is necessary to configure Karaf correctly. Please open the file "/assembly/pom.xml"

and add the following line:

 ...

<profile>

 <id>release</id>

 ...

 <deployURLs>

 ...

 scan-bundle:mvn:org.openengsb.connector/org.openengsb.connector.email/2.4.0,

 ...

 </deployURLs>

...

55.7. Step 4 - Implement the connector

Now you can run the following command in the root folder of the OpenEngSB to create an eclipse

project for the new connector:

mvn openengsb:eclipse

Now import the connector project into Eclipse and implement the email service by implementing the

classes EmailServiceImpl.java and EmailServiceInstanceFactory.java. We won't go into detail about

the actual mail implementation here, so we encapsulated the mailing functionality in a mail abstraction.

While the class EmailServiceImpl is responsible for the realization of the domain interface, the factory

is responsible for creating instances of the email service and for publishing the meta data necessary to

configure an instance of the email service. These two classes are now explained in detail.

package org.openengsb.connector.email.internal;

import org.openengsb.connector.email.internal.abstraction.MailAbstraction;

import org.openengsb.connector.email.internal.abstraction.MailProperties;

import org.openengsb.core.api.AliveState;

import org.openengsb.domain.notification.NotificationDomain;

import org.openengsb.domain.notification.model.Notification;

import org.osgi.framework.ServiceRegistration;

public class EmailServiceImpl implements NotificationDomain {

 private final String id;

 private final MailAbstraction mailAbstraction;

 private ServiceRegistration serviceRegistration;

 private final MailProperties properties;

HowTo - Create a connector for an already

existing domain for the OpenEngSB

120

 public EmailServiceImpl(String id, MailAbstraction mailAbstraction) {

 this.id = id;

 this.mailAbstraction = mailAbstraction;

 properties = mailAbstraction.createMailProperties();

 }

 /**

 * Perform the given notification, which defines message, recipient, subject and

 * attachments.

 */

 @Override

 public void notify(Notification notification) {

 mailAbstraction.send(properties, notification.getSubject(), notification

 .getMessage(), notification.getRecipient());

 }

 /**

 * return the current state of the service,

 *

 * @see org.openengsb.core.api.AliveState

 */

 @Override

 public AliveState getAliveState() {

 AliveState aliveState = mailAbstraction.getAliveState();

 if (aliveState == null) {

 return AliveState.OFFLINE;

 }

 return aliveState;

 }

 public String getId() {

 return id;

 }

 public ServiceRegistration getServiceRegistration() {

 return serviceRegistration;

 }

 public void setServiceRegistration(ServiceRegistration serviceRegistration) {

 this.serviceRegistration = serviceRegistration;

 }

 public MailProperties getProperties() {

 return properties;

 }

}

As you can see, without the mail specific stuff the implementation is quite straight forward. Simply

implement the domain interface as well as the getAliveState() method, which is used to query to current

status of a tool.

package org.openengsb.connector.email.internal;

import java.util.HashMap;

import java.util.Map;

import org.openengsb.connector.email.internal.abstraction.MailAbstraction;

import org.openengsb.core.api.ServiceInstanceFactory;

import org.openengsb.core.api.descriptor.AttributeDefinition;

import org.openengsb.core.api.descriptor.ServiceDescriptor;

HowTo - Create a connector for an already

existing domain for the OpenEngSB

121

import org.openengsb.core.api.validation.MultipleAttributeValidationResult;

import org.openengsb.core.api.validation.MultipleAttributeValidationResultImpl;

import org.openengsb.domain.notification.NotificationDomain;

public class EmailServiceInstanceFactory implements

 ServiceInstanceFactory<NotificationDomain, EmailServiceImpl> {

 private final MailAbstraction mailAbstraction;

 public EmailServiceInstanceFactory(MailAbstraction mailAbstraction) {

 this.mailAbstraction = mailAbstraction;

 }

 private void setAttributesOnNotifier(Map<String, String> attributes,

 EmailServiceImpl notifier) {

 if (attributes.containsKey("user")) {

 notifier.getProperties().setUser(attributes.get("user"));

 }

 if (attributes.containsKey("password")) {

 notifier.getProperties().setPassword(attributes.get("password"));

 }

 if (attributes.containsKey("prefix")) {

 notifier.getProperties().setPrefix(attributes.get("prefix"));

 }

 if (attributes.containsKey("smtpAuth")) {

 notifier.getProperties().setSmtpAuth(Boolean.parseBoolean(attributes.

 get("smtpAuth")));

 }

 if (attributes.containsKey("smtpSender")) {

 notifier.getProperties().setSender(attributes.get("smtpSender"));

 }

 if (attributes.containsKey("smtpHost")) {

 notifier.getProperties().setSmtpHost(attributes.get("smtpHost"));

 }

 if (attributes.containsKey("smtpPort")) {

 notifier.getProperties().setSmtpPort(attributes.get("smtpPort"));

 }

 }

 /**

 * Called when the {@link #ServiceDescriptor} for the provided service is needed.

 *

 * The {@code builder} already has the id, service type and implementation type

 * set to defaults.

 */

 @Override

 public ServiceDescriptor getDescriptor(ServiceDescriptor.Builder builder) {

 builder.name("email.name").description("email.description");

 builder

 .attribute(buildAttribute(builder, "user", "username.outputMode",

 "username.outputMode.description"))

 .attribute(

 builder.newAttribute().id("password").name("password.outputMode")

 .description("password.outputMode.description").defaultValue("")

 .required().asPassword().build())

 .attribute(buildAttribute(builder, "prefix", "prefix.outputMode",

 "prefix.outputMode.description"))

 .attribute(

 builder.newAttribute().id("smtpAuth").name("mail.smtp.auth.outputMode")

 .description("mail.smtp.auth.outputMode.description")

 .defaultValue("false").asBoolean().build())

 .attribute(

 buildAttribute(builder, "smtpSender", "mail.smtp.sender.outputMode",

HowTo - Create a connector for an already

existing domain for the OpenEngSB

122

 "mail.smtp.sender.outputMode.description"))

 .attribute(

 buildAttribute(builder, "smtpPort", "mail.smtp.port.outputMode",

 "mail.smtp.port.outputMode.description"))

 .attribute(

 buildAttribute(builder, "smtpHost", "mail.smtp.host.outputMode",

 "mail.smtp.host.outputMode.description")).build();

 return builder.build();

 }

 private AttributeDefinition buildAttribute(ServiceDescriptor.Builder builder,

 String id, String nameId, String descriptionId) {

 return builder.newAttribute().id(id).name(nameId).description(descriptionId)

 .defaultValue("").required().build();

 }

 /**

 * Called by the {@link AbstractServiceManager} when updated service attributes for

 * an instance are available. The attributes may only contain changed values and

 * omit previously set attributes.

 *

 * @param instance the instance to update

 * @param attributes the new service settings

 */

 @Override

 public void updateServiceInstance(EmailServiceImpl instance, Map<String,

 String> attributes) {

 setAttributesOnNotifier(attributes, instance);

 }

 /**

 * The {@link AbstractServiceManager} calls this method each time a new service

 * instance has to be started.

 *

 * @param id the unique id this service has been assigned.

 * @param attributes the initial service settings

 */

 @Override

 public EmailServiceImpl createServiceInstance(String id,

 Map<String, String> attributes) {

 EmailServiceImpl notifier = new EmailServiceImpl(id, mailAbstraction);

 setAttributesOnNotifier(attributes, notifier);

 return notifier;

 }

 /**

 * Validates if the service is correct before updating.

 */

 @Override

 public MultipleAttributeValidationResult updateValidation(EmailServiceImpl instance,

 Map<String, String> attributes) {

 return new MultipleAttributeValidationResultImpl(true,

 new HashMap<String, String>());

 }

 /**

 * Validates if the attributes are correct before creation.

 */

 @Override

 public MultipleAttributeValidationResult createValidation(String id,

 Map<String, String> attributes) {

 return new MultipleAttributeValidationResultImpl(true,

 new HashMap<String, String>());

HowTo - Create a connector for an already

existing domain for the OpenEngSB

123

 }

}

The factory is more interesting with respect to the OpenEngSB. It is used to create and configure

instances of the email service. Furthermore it is responsible for publishing which properties a

mail notifier needs to be configured in a proper way. The "getDescriptor" method returns a

service descriptor, which is created with the help of a builder. This service descriptor contains

the properties a mail notifier needs. In this case things like user password, smtp server and so

on. The "updateServiceInstance" method updates an already created instance of the mail service.

Basically this means setting the properties, which are provided in the attributes map parameter (see

"setAttributesOnNotifier" method). The "createServiceInstance" method is responsible for the creation

of a new email service. The methods "updateValidation" and "createValidation" are used to check

properties before "updateServiceInstance" or "createServiceInstance" are called. As the mail service

does not want to check properties beforehand it simply returns that all values are OK.

55.8. Step 5 - Blueprint Setup and Internationalization

The Maven archetype already created the blueprint setup for the email service at src/main/resources/

OSGI-INF/blueprint. If properties or constructor arguments are needed for the service factory, they

have to be defined in the blueprint setup here. In our case the mail abstraction has to be injected as

constructor argument on the creation of the email service factory.

With regards to internationalization it is necessary to add a name and a description for each property

used in the service descriptor (see email service factory). The properties files for English and German

are also already created by the Maven archetype and can be found at "src/main/resources/OSGI-INF/

l10n/". In our case the bundle.properties file contains the following entries:

email.name=Email Notification

email.description=This is a Email Notification Service

username.outputMode = Username

username.outputMode.description = Specifies the username of the email account

password.outputMode = Password

password.outputMode.description = Password of the specified user

prefix.outputMode = Prefix

prefix.outputMode.description = Subject prefix for all mails sent by this connector

mail.smtp.auth.outputMode = Authentification

mail.smtp.auth.outputMode.description = Specifies if the smtp authentication is on or off

mail.smtp.sender.outputMode = Sender Emailadress

mail.smtp.sender.outputMode.description = Specifies the Emailadress of the sender

mail.smtp.port.outputMode = SMTP Port

mail.smtp.port.outputMode.description = Specifies the Port for the smtp connection

mail.smtp.host.outputMode = SMTP Host

mail.smtp.host.outputMode.description = Specifies the SMTP Hostname

HowTo - Create a connector for an already

existing domain for the OpenEngSB

124

As you can see each property is defined with name and description. The same entries can be found in

the German properties file (bundle_de.properties) with German names and descriptions.

55.9. Step 6 - Start the OpenEngSB with your Connector

After implementing and testing your connector locally you can try to start up the OpenEngSB with

your new connector. Enter the following commands in the root directory of the OpenEngSB to build

and start the OpenEngSB in development mode:

mvn clean install

mvn openengsb:provision

Now you can enter "list" into the karaf console to check whether your new connector was installed

and started.

55.10. Step 7 - Test the new connector

Now you can use the OpenEngSB administration WebApp (available at http://localhost:8090/

openengsb) to test your new connector. For more information about how to use the WebApp see the

How-to section} of the OpenEngSB homepage.

http://localhost:8090/openengsb
http://localhost:8090/openengsb
http://openengsb.org/howto/howtoSimpleUsecase.html
http://openengsb.org/howto/howtoSimpleUsecase.html

125

Chapter 56. How to add new field support for
domain models

56.1. Goal

This tutorial explains how to create new supported field types for domain models. What a domain

model is, can be read in the user manual in the semantics section(Chapter 6, Semantics in the

OpenEngSB). In this section is also explained which fields are supported until now. This task is divided

in two subtasks, where the second one is optional. The first subtask provides the functionality that the

model is working correctly with the new field type. The second subtask is the possibility that this fields

are also saved in the EDB and can be loaded from the EDB.

56.2. Time to complete

If you are already familiar with the OpenEngSB the first subtask will take about 45 minutes. The

second subtask will take about another 45 minutes. If you are not familiar with the OpenEngSB please

read this manual from the start or check the homepage for further information.

56.3. Prerequisites

For information about how to get started as contributor to the OpenEngSB project and how to get the

current OpenEngSB source please read the contributor section of the manual: Part VI, “OpenEngSB

Contributor Detail Informations”.

56.4. Subtask 1 - Add model support

All that have to be done is to add a new converter step to the ModelProxy class in the core common

bundle. Step by step:

56.4.1. Create new converter step

A converter step is a class which extends the interface ModelEntryConverterStep. A

ModelEntryConverterStep interface consists of 4 methods. This methods are 2 match functions, which

define if the given object can be converted by one of the converter methods, which are the other 2

functions. The interface looks like this:

 public interface ModelEntryConverterStep {

 /**

 * Checks if the given object is suitable for converting work when "getOpenEngSBModelObjects" of the proxy is

 * called. (e.g. an OpenEngSBModel)

 */

 boolean matchForGetModelEntries(Object object);

 /**

 * Does the converting work for the proxy when "getOpenEngSBModelObjects" is called. (e.g. OpenEngSBModel ->

 * OpenEngSBModelWrapper)

 */

 Object convertForGetModelEntries(Object object);

 /**

 * Checks if the given object is suitable for converting work when a getter of the proxy is called. (e.g. an

http://www.openengsb.org

How to add new field support for domain models

126

 * OpenEngSBModelWrapper)

 */

 boolean matchForGetter(Object object);

 /**

 * Does the converting work for the proxy when a getter is called. (e.g. OpenEngSBModelWrapper ->

 * OpenEngSBModel)

 */

 Object convertForGetter(Object object);

 }

The first two functions define the converting functionality if getOpenEngSBModelObjects is called.

(e.g. we used this to convert a File object to a FileWrapper object). The other two functions define the

converting functionality if a corresponding getter method is called. (e.g. convert FileWrapper object

to File object.

56.4.2. Add converter step

To add the new converter step, you have to add the converter step to the list of converter steps

in the method "initializeModelConverterSteps" in the ModelProxyHandler class. Important: The

DefaultConverterStep have to be the last step in the converter step list.

56.5. Subtask 2 - Add EDB support

To accomplish this task, the EDB and the EKB has to be extended. WARNING: This step is currently

under construction and very likely to be changed soon. As example for this subtask, you can check

how it was done with the File object.

56.5.1. Extend EDB

To extend the EDB, the method "convertSubModel" in the class JPADatabase of the EDB bundle has

to be extended. In the part where every OpenEngSBModelEntry get analyzed, a new if statement has

to be added, which does a special handling if the new introduced wrapper class is the parameter. How

this wrapper class is saved, is up to you.

56.5.2. Extend EKB

To extend the EKB, you have to extend the method "getValueForProperty" of the

QueryInterfaceService in the EKB bundle. Again, here must also a new if statement been added, where

the parameter type is checked for the new field object which should be supported. If this statement fits,

you have to undo the conversion which have you done in the "Extend EDB" part.

	OpenEngSB Manual
	Table of Contents
	Part I. Introduction
	Chapter 1. How to read the Manual
	Chapter 2. What is the Open Engineering Service Bus
	Chapter 3. When to use the OpenEngSB
	3.1. The OpenEngSB as Base Environment
	3.2. Reusing integration Components and Workflows
	3.3. Management Environment
	3.4. Simple Development and Distribution Management
	3.5. Simple Plug-Ins and Extensions

	Part II. OpenEngSB Framework
	Chapter 4. Quickstart
	4.1. Writing new projects using the OpenEngSB
	4.2. Writing Domains for the OpenEngSB
	4.3. Writing Connectors for the OpenEngSB

	Chapter 5. Architecture of the OpenEngSB
	5.1. OpenEngSB Enterprise Service Bus (ESB)
	5.2. OpenEngSB Infrastructure
	5.3. OpenEngSB Components
	5.4. OpenEngSB Tool Domains
	5.5. Client Tools (Service Consumer)
	5.6. Domain Tools (Service Provider)
	5.7. Domain- and Client Tool Connectors

	Chapter 6. Semantics in the OpenEngSB
	6.1. Domain Models
	6.2. Load Domain Models
	6.3. Model Transformation

	Chapter 7. Context Management
	7.1. Wiring services

	Chapter 8. Persistence in the OpenEngSB
	8.1. Core Persistence
	8.2. Configuration Persistence
	8.2.1. Context configuration persistence

	Chapter 9. Security in the OpenEngSB
	9.1. Usermanagement
	9.2. Access control
	9.3. Authentication

	Chapter 10. Workflows
	10.1. Workflow service
	10.2. Rulemanager
	10.3. Processes

	Chapter 11. Taskbox
	11.1. Core Functionality
	11.2. UI Functionality

	Chapter 12. Remoting
	12.1. Filters
	12.2. Configure a filterchain
	12.3. Develop custom filters
	12.4. Develop an incoming port
	12.5. Develop an Outgoing port

	Chapter 13. External Domains and Connectors
	13.1. Proxying
	13.1.1. Proxying internal Connector calls

	Chapter 14. Deployer services
	14.1. Connector configuration
	14.1.1. Root services

	14.2. Context configuration

	Chapter 15. Client Projects and Embedding The OpenEngSB
	15.1. Using the same dependencies as the OPENENGSB

	Chapter 16. OpenEngSB Platform
	Chapter 17. HowTo - Setup OpenEngSB for development (First steps)
	17.1. Goal
	17.2. Time to Complete
	17.3. Prerequisites
	17.4. Java Development Kit 6
	17.5. Getting OpenEngSB
	17.6. Installing OpenEngSB
	17.7. Setup required domains
	17.8. First Steps
	17.9. Shutdown OpenEngSB

	Chapter 18. HowTo - First steps with the OpenEngSB (Send mails via the OpenEngSB)
	18.1. Goal
	18.2. Time to Complete
	18.3. Prerequisites
	18.4. Creating E-Mail Services
	18.5. Executing Service Actions Directly
	18.6. Executing Service Actions via Domains
	18.7. Next Steps

	Chapter 19. HowTo - Events with the OpenEngSB (Using the logging service)
	19.1. Goal
	19.2. Time to Complete
	19.3. Prerequisites
	19.4. Create required connectors
	19.5. Configure
	19.6. Creating a rule
	19.7. Throw Event
	19.8. Next Steps

	Chapter 20. HowTo - Create a Client-Project for the OpenEngSB
	20.1. Goal
	20.2. Time to Complete
	20.3. Step 1 - Needed tools
	20.3.1. Java Development Kit 6
	20.3.2. Maven 3

	20.4. Step 2 - Using the archetype
	20.5. Step 3 - The result
	20.6. Step 4 - Install features
	20.7. Step 5 - Start the Client-Project
	20.8. Step 6 - Shutdown

	Chapter 21. HowTo - Interact with the OPENENGSB Remotely
	21.1. Using JMS proxying
	21.1.1. Proxying internal Connector calls
	21.1.1.1. HowTo call an external service via proxies

	21.1.2. Calling internal Services
	21.1.3. Examples
	21.1.3.1. Connect With Python
	21.1.3.2. Connect With CSharp
	21.1.3.3. Connect With Perl

	21.1.4. Alternatives for JMS

	21.2. Using WS Proxing
	21.3. Internal Specialities

	Chapter 22. HowTo - Combine multiple connectors
	22.1. Composite strategies
	22.2. Create a composite connector

	Chapter 23. How to define a domain model
	23.1. Goal
	23.2. Time to complete
	23.3. Prerequisites
	23.4. Step 1 - Plan the structure of the model
	23.5. Step 2 - Write the model
	23.6. Step 3 - Add the model to a domain
	23.7. Step 4 - Use the model

	Chapter 24. HowTo - Integrate services with OpenEngSB
	24.1. Goal
	24.2. Time to Complete
	24.3. Prerequisites
	24.4. Setting up OpenEngSB
	24.5. Step 1 - Source repository
	24.6. Step 2 - Building the source code
	24.7. Step 3 - Testing binaries
	24.8. Step 4 - Notification Process
	24.9. Further Reading

	Chapter 25. HowTo - Change EDB database back end
	25.1. Goal
	25.2. Time to Complete
	25.3. Use JPA compatible database
	25.4. Use non JPA compatible database
	25.5. Appendix: Use no OSGi compatible database

	Chapter 26. HowTo - Test Remote Messaging using Hermes JMS
	26.1. Preparation
	26.1.1. Preparing the Server
	26.1.2. Setup Hermes

	26.2. Send and Receive Messages

	Part III. Included Domains and Connectors
	Chapter 27. Appointment Domain
	27.1. Description
	27.2. Functional Interface
	27.3. Event Interface

	Chapter 28. Build Domain
	28.1. Description
	28.2. Functional Interface
	28.3. Event Interface

	Chapter 29. Contact Domain
	29.1. Description
	29.2. Functional Interface
	29.3. Event Interface

	Chapter 30. Deploy Domain
	30.1. Description
	30.2. Functional Interface
	30.3. Event Interface

	Chapter 31. Issue Domain
	31.1. Description
	31.2. Functional Interface
	31.3. Event Interface

	Chapter 32. Notification Domain
	32.1. Description
	32.2. Functional Interface
	32.3. Event Interface

	Chapter 33. Report Domain
	33.1. Description
	33.2. Functional Interface
	33.3. Event Interface

	Chapter 34. SCM Domain
	34.1. Description
	34.2. Functional Interface
	34.3. Event Interface

	Chapter 35. Test Domain
	35.1. Description
	35.2. Functional Interface
	35.3. Event Interface

	Chapter 36. Email Connector
	36.1. Configuration

	Chapter 37. gcalendar Connector
	37.1. Configuration

	Chapter 38. gcontacts Connector
	38.1. Configuration

	Chapter 39. Git Connector
	39.1. Configuration

	Chapter 40. github Connector
	40.1. Configuration

	Chapter 41. Maven Connector
	41.1. Configuration

	Chapter 42. Plaintext Report Connector
	42.1. Configuration

	Chapter 43. Prom Report Connector
	43.1. Configuration

	Chapter 44. trac Connector
	44.1. Configuration

	Part IV. Administration Console
	Chapter 45. OpenEngSB console commands
	45.1. Start the console
	45.2. Available commands

	Part V. Administration User Interface
	Chapter 46. Testclient
	46.1. Managing global variables
	46.2. Managing imports

	Chapter 47. Wiring
	47.1. Wire a global variable with a service
	47.2. What wiring does in the background

	Part VI. OpenEngSB Contributor Detail Informations
	Chapter 48. Prepare and use Non-OSGi Artifacts
	48.1. Create Wrapped Artifacts
	48.2. Tips and Tricks

	Chapter 49. OpenEngSBModels
	49.1. Motivation
	49.2. Structure of a model
	49.3. Supported field types
	49.4. Model Ids

	Chapter 50. Engineering Database - EDB
	50.1. Motivation
	50.2. Structure
	50.3. Usage
	50.4. Conflict Detection

	Chapter 51. Engineering Knowledge Base - EKB
	51.1. Motivation
	51.2. Query Service

	Chapter 52. How To Create an Internal Connector
	52.1. Prerequisites
	52.2. Creating a new connector project
	52.2.1. Using the Maven Archetype
	52.2.2. Using mvn openengsb:genConnector

	52.3. Project Structure
	52.4. Integrating the Connector into the OpenEngSB environment

	Chapter 53. How To Create an Internal Domain
	53.1. Prerequisites
	53.2. Creating a new domain project
	53.2.1. Using the Maven Archetype
	53.2.2. Using mvn openengsb:genDomain
	53.2.3. Project structure

	53.3. Components
	53.4. Connectors

	Chapter 54. HowTo - Extend OpenEngSB Console
	54.1. Goal
	54.2. Time to Complete
	54.3. Prerequisites
	54.4. Start the console
	54.5. Adding new commands

	Chapter 55. HowTo - Create a connector for an already existing domain for the OpenEngSB
	55.1. Goal
	55.2. Time to Complete
	55.3. Prerequisites
	55.4. Step 1 - Use the archetype
	55.5. Step 2 - Add the dependencies
	55.6. Step 3 - Configure the connector
	55.7. Step 4 - Implement the connector
	55.8. Step 5 - Blueprint Setup and Internationalization
	55.9. Step 6 - Start the OpenEngSB with your Connector
	55.10. Step 7 - Test the new connector

	Chapter 56. How to add new field support for domain models
	56.1. Goal
	56.2. Time to complete
	56.3. Prerequisites
	56.4. Subtask 1 - Add model support
	56.4.1. Create new converter step
	56.4.2. Add converter step

	56.5. Subtask 2 - Add EDB support
	56.5.1. Extend EDB
	56.5.2. Extend EKB

