public final class SimpleBigDecimalScore extends AbstractScore<SimpleBigDecimalScore>
Score,
Serialized Form| Modifier and Type | Field and Description |
|---|---|
static SimpleBigDecimalScore |
ONE |
static SimpleBigDecimalScore |
ZERO |
INIT_LABEL, initScore| Modifier and Type | Method and Description |
|---|---|
SimpleBigDecimalScore |
add(SimpleBigDecimalScore addend)
Returns a Score whose value is (this + addend).
|
int |
compareTo(SimpleBigDecimalScore other) |
SimpleBigDecimalScore |
divide(double divisor)
Returns a Score whose value is (this / divisor).
|
boolean |
equals(Object o) |
BigDecimal |
getScore()
The total of the broken negative constraints and fulfilled positive constraints.
|
int |
hashCode() |
boolean |
isCompatibleArithmeticArgument(Score otherScore) |
boolean |
isFeasible()
A
PlanningSolution is feasible if it has no broken hard constraints
and Score.isSolutionInitialized() is true. |
SimpleBigDecimalScore |
multiply(double multiplicand)
Returns a Score whose value is (this * multiplicand).
|
SimpleBigDecimalScore |
negate()
Returns a Score whose value is (- this).
|
static SimpleBigDecimalScore |
of(BigDecimal score) |
static SimpleBigDecimalScore |
ofUninitialized(int initScore,
BigDecimal score) |
static SimpleBigDecimalScore |
parseScore(String scoreString) |
SimpleBigDecimalScore |
power(double exponent)
Returns a Score whose value is (this ^ exponent).
|
SimpleBigDecimalScore |
subtract(SimpleBigDecimalScore subtrahend)
Returns a Score whose value is (this - subtrahend).
|
Number[] |
toLevelNumbers()
Returns an array of numbers representing the Score.
|
String |
toShortString()
Like
Object.toString(), but trims score levels which have a zero weight. |
String |
toString() |
static SimpleBigDecimalScore |
valueOf(BigDecimal score)
Deprecated.
in favor of
of(BigDecimal) |
static SimpleBigDecimalScore |
valueOfUninitialized(int initScore,
BigDecimal score)
Deprecated.
in favor of
ofUninitialized(int, BigDecimal) |
SimpleBigDecimalScore |
withInitScore(int newInitScore)
For example
0hard/-8soft with -7 returns -7init/0hard/-8soft. |
assertNoInitScore, buildScorePattern, buildShortString, getInitPrefix, getInitScore, isSolutionInitialized, parseInitScore, parseLevelAsBigDecimal, parseLevelAsDouble, parseLevelAsInt, parseLevelAsLong, parseScoreTokensclone, finalize, getClass, notify, notifyAll, wait, wait, waittoInitializedScorepublic static final SimpleBigDecimalScore ZERO
public static final SimpleBigDecimalScore ONE
public static SimpleBigDecimalScore parseScore(String scoreString)
public static SimpleBigDecimalScore ofUninitialized(int initScore, BigDecimal score)
@Deprecated public static SimpleBigDecimalScore valueOfUninitialized(int initScore, BigDecimal score)
ofUninitialized(int, BigDecimal)public static SimpleBigDecimalScore of(BigDecimal score)
@Deprecated public static SimpleBigDecimalScore valueOf(BigDecimal score)
of(BigDecimal)public BigDecimal getScore()
public SimpleBigDecimalScore withInitScore(int newInitScore)
Score0hard/-8soft with -7 returns -7init/0hard/-8soft.newInitScore - always negative (except in statistical calculations), 0 if all planning variables are initializedScore.getInitScore() is set to newInitScorepublic SimpleBigDecimalScore add(SimpleBigDecimalScore addend)
Scoreaddend - value to be added to this Scorepublic SimpleBigDecimalScore subtract(SimpleBigDecimalScore subtrahend)
Scoresubtrahend - value to be subtracted from this Scorepublic SimpleBigDecimalScore multiply(double multiplicand)
ScoreMath.floor(double)).
If the implementation has a scale/precision, then the unspecified scale/precision of the double multiplicand should have no impact on the returned scale/precision.
multiplicand - value to be multiplied by this Score.public SimpleBigDecimalScore divide(double divisor)
ScoreMath.floor(double)).
If the implementation has a scale/precision, then the unspecified scale/precision of the double divisor should have no impact on the returned scale/precision.
divisor - value by which this Score is to be dividedpublic SimpleBigDecimalScore power(double exponent)
ScoreMath.floor(double)).
If the implementation has a scale/precision, then the unspecified scale/precision of the double exponent should have no impact on the returned scale/precision.
exponent - value by which this Score is to be poweredpublic SimpleBigDecimalScore negate()
Scorepublic boolean isFeasible()
ScorePlanningSolution is feasible if it has no broken hard constraints
and Score.isSolutionInitialized() is true.
Simple scores (SimpleScore, SimpleLongScore, SimpleBigDecimalScore) are always feasible,
if their Score.getInitScore() is 0.Score.getInitScore() is 0.public Number[] toLevelNumbers()
Score
When rounding is needed, each rounding should be floored (as defined by Math.floor(double)).
The length of the returned array must be stable for a specific Score implementation.
For example: -0hard/-7soft returns new int{-0, -7}
The level numbers do not contain the Score.getInitScore().
For example: -3init/-0hard/-7soft also returns new int{-0, -7}
ScoreDefinition.fromLevelNumbers(int, Number[])public int compareTo(SimpleBigDecimalScore other)
public String toShortString()
ScoreObject.toString(), but trims score levels which have a zero weight.
For example 0hard/-258soft returns -258soft.
Do not use this format to persist information as text, use Object.toString() instead,
so it can be parsed reliably.
public boolean isCompatibleArithmeticArgument(Score otherScore)
otherScore - never nullScore.add(Score), Score.subtract(Score)
and Comparable.compareTo(Object).Copyright © 2006–2021 JBoss by Red Hat. All rights reserved.