

Cluster Tuning:
Getting the best performance out of

your JBoss cluster

Bela Ban, Lead JGroups
Brian Stansberry, Lead JBoss AS Clustering

Goals

● Short overview of clustering and the test setup
● Which knobs can you turn and what's the effect

on performance
– Focus is on “end to end performance”
– Not on replication performance

● Additional tips & tricks

Topology

httpd

host-1

JBoss
host-2

JBoss
host-3

JBoss
host-4

JBoss
host-5

Cluster

Clients
AJP

R
ep

lic
at

io
n

HTTP session clustering -
architecture

HTTP session
clustering

JBossCache

JGroups

Clients

HTTP session
clustering

JBossCache

JGroups

Clients

Replication

Setup

● Client simulation with java.net.URLConnection
– We can run any number of threads (clients)
– Apache

● mod-jk, workers.properties, urimapping, modjk.conf
– JBossWeb

● jvmRoute=”node1” (jboss-web.deployer/META-INF/server.xml)

● UseJK=”true” (jboss-web.deployer/META-INF/jboss-service.xml)

Configuration

● web.xml: add <distributable/>
● jboss-web.xml

– Replication granularity (what is replicated ?)
● SESSION (default): replicate entire session after request
● ATTRIBUTE: replicate only modified attribute(s)
● FIELD: replicate modified fields of attribute values

Configuration

● jboss-web.xml
– Replication trigger (when is data replicated ?)

● SET
– When setAttribute() is called
– getAttribute() does not replicate !

● SET_AND_GET
– getAttribute() or setAttribute()

● SET_AND_NON_PRIMITIVE_GET (default)
– setAttribute(), and getAttribute() which returns non primitive

types, e.g:
● Collections, arrays, Pojos

– Only one replication per request (at end of request)

Replication mode
● Synchronous

– The HTTP response blocks until the changes to the
session have been replicated through the cluster and
acknowledgments have been received

● Asynchronous
– The HTTP response blocks only until the replication

message is put on the wire
– This is faster, but on failover all the changes may not

have been received yet by everyone
● Configuration

– REPL_SYNC or REPL_ASYNC in the JBossCache
config (deploy/jboss-web-cluster.sar/META-INF/jboss-service.xml)

Buddy vs. Total Replication
● Total Replication (default)

– Session is replicated to all nodes of cluster
● N cluster nodes == each node uses memory, CPU,

network resources to provide backup for N-1 nodes
● Doesn't scale (data wise)

● Buddy Replication
– Session is replicated to a configurable number of

backup “buddies” (default is 1)
● Configuration

– Set “buddyReplicationEnabled” to “true” in the
JBossCache config (deploy/jboss-web-cluster.sar/META-
INF/jboss-service.xml)

Perf application
● HTTP sessions have ints as keys and byte[]

buffers as values
● Each client

– Creates HTTP session with num_attrs (10)
attributes with size (2500) byte[] buffers

– Starts timer
– Loops X times

● With 10% chance, writes a random key, or
● With 90% chance, reads a random key

– Stops timer
– Destroys HTTP session

Quiz

● Each session has 10 attributes, each attribute
key is an int (1-10); each attribute value is a
byte[2500] buffer

● What happens on session.getAttribute(“5”) with
default granularity (SESSION) and trigger
(SET_AND_NON_PRIMITIVE_GET) ?
– A: nothing is replicated
– B: approx. 2'500 bytes are replicated
– C: approx. 25'000 bytes are replicated
– D: none of the above

Unoptimized Numbers

● Replication carries a heavy cost
– Need to optimize!

1 2 4 8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Performance Before Optimization

(400 concurrent clients)

Default Distributed
Session

Non-Distributed
Session

Cluster Size

R
eq

ue
st

s
/

se
co

n
d

First Tip: Use ATTRIBUTE
Granularity

● Reduce amount of data replicated
● Session in our test app has 10 attributes, 2.5KB

in each attribute
– We access one attribute per request
– SESSION: we replicate ~ 25KB per request
– ATTRIBUTE: we replicate ~ 2.5KB per request

jboss-web.xml

<replication-config>
 <replication-granularity>ATTRIBUTE</replication-granularity>
</replication-config>

Effect of Using ATTRIBUTE

● Approximately a 5x improvement

1 2 4 8

0

1000

2000

3000

4000

5000

6000

7000

8000

Optimization of Replication Granularity
(400 concurrent clients, SET_AND_NON_PRIMITIVE_GET)

ATTRIBUTE
SESSION (Default)

Cluster Size

R
e

q
u

e
st

s
/ s

e
co

n
d

Caveat: Object relationships
● Be careful with shared object refs between

attributes
– With ATTRIBUTE they are separately serialized
– On remote nodes, refs will no longer be shared!

Address Address Address

husband husbandwife wife

replication

2 Address instances!

Next Tip: Use SET

● Avoid unnecessary replication
● In test only 10% of requests modify the session

– 90% just read an attribute of type byte[]
– JBoss doesn't know if code modifies the byte[] after

reading, so by default we replicate
● 100% of requests replicate when only 10% need to!

– Use replication-trigger SET to give you control
jboss-web.xml

<replication-config>
 <replication-trigger>SET</replication-trigger>
</replication-config>

Effect of Using SET

● Performance close to non-distributed sessions
– In combination with ATTRIBUTE

1 2 4 8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Optimization of Replication Trigger
(400 concurrent clients)

ATTRIBUTE+SET
ATTRIBUTE+SANPG
SESSION+SANPG
(Default)

Cluster Size

R
e

q
u

e
st

s
/ s

e
co

n
d

Next Tip: Buddy Replication

● Replicate to N backups instead of all nodes

● Use of TCP for intra-cluster comm

jboss-web-cluster.sar/META-INF/jboss-service.xml

<buddyReplicationEnabled>true</buddyReplicationEnabled>
<buddyLocatorProperties>
 numBuddies = 1
.....

jboss-web-cluster.sar/META-INF/jboss-service.xml

<attribute name="ClusterConfig">
 <config>
 <TCP start_port="7810" loopback="true"

Effect of Buddy Replication
● We didn't use SET here as we wanted to push

more data, better to show effect of buddy repl
– Each request replicates ~ 2.5KB

1 2 4 8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Buddy Replication

(400 concurrent clients, ATTRIBUTE, SET_AND_NON_PRIMITIVE_GET)

BUDDY+TCP
BUDDY+UDP
TOTAL+UDP

Cluster Size

R
e

q
u

e
st

s
/ s

e
co

n
d

Caveat

● With buddy replication, if a node fails or is
shutdown, other nodes need to pick new buddy
– Need to transmit all session state to new buddy
– Failover requests need to pull session's state over

from failed node's buddy
– Adds stress to system already under stress

● Total replication doesn't need to do this
– Everyone already has all state
– KISS principle: if total replication meets your needs,

it's simpler

Next Tip: TCP vs. UDP

● By default, intra-cluster comm channel uses
UDP and multicast
– Logical for total replication

● Send one multicast message, all peers receive it
– For buddy replication, UDP unicast is used

● You can configure the channel to use TCP
– If group has N members, N – 1 TCP unicasts are

sent with total replication
– jboss-web-cluster.sar/META-INF/jboss-service.xml

Effect of TCP vs. UDP

● TCP is a valid choice if number of peers is low
● UDP unicast performs well

1 2 4 8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

TCP vs. UDP

(400 concurrent clients, ATTRIBUTE, SET_AND_NON_PRIMITIVE_GET)

BUDDY+TCP
BUDDY+UDP
TOTAL+TCP
TOTAL+UDP

Cluster Size

R
e

q
u

e
st

s
/ s

e
co

n
d

Cost of REPL_SYNC

● With TOTAL, cost increases with cluster size

1 2 4 8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Cost of REPL_SYNC
(400 concurrent clients, ATTRIBUTE, SET_AND_NON_PRIMITIVE_GET)

BUDDY+TCP
BUDDY+TCP+SYNC
TOTAL+UDP
TOTAL+UDP+SYNC

Cluster Size

R
e

q
u

e
st

s
/ s

e
co

n
d

Additional Tips & Tricks
● Enable KeepAlive in httpd.conf!
● Connection pool sizes must be big enough to

handle the max # of concurrent connections
– Remember, nodes can fail, adding load to survivors
– Defaul AJP Connector pool size is 40

● Too small to run these tests

httpd.conf server.xml

<IfModule prefork.c>
StartServers 100
MinSpareServers 25
MaxSpareServers 100
ServerLimit 500
MaxClients 500
MaxRequestsPerChild 4000
</IfModule>

<Connector port="8009"
 address="${jboss.bind.address}"
 protocol="AJP/1.3" emptySessionPath="true"
 enableLookups="false" redirectPort="8443"
 maxThreads=”500”
 connectionTimeout=”600000” />

Additional tips & tricks
● JBossWeb: use native APR lib (better scaling)
● Use EAPs if possible

– Heavily tested and optimized
– All subsystems are certified to work together

● JMX
– listThreadCpuUtilization(), listThreadDump()
– TomcatCluster MBean: look at contents of tree

● Unused HTTP sessions take up space
– Set HTTP session timeout
– Call invalidate() when done with a session

Logging

● Make sure logging is tuned!
– JBoss by default logs at DEBUG

● Useful for development, debugging
● Turn it down (WARN) in production

– Modify conf/jboss-log4j.xml

● JBoss logging can be changed at runtime
● Apache: access_log, modjk.log: might be big

– error_log should be enabled

Losing some fat

● Remove unneeded stuff
● From 'all' to 'trimmed'

– Starting: 1m07s 'all', 14s 'trimmed' (on a quad-core
box !)

– From 4 clusters to 1 cluster (session repl)
– From 699 MBeans down to 203
– From 106 threads down to 32

Tips & Tricks
● Separate networks for client, AJP and replication

traffic, e.g.
– Client requests come in through eth0 (switch-1)
– AJP uses eth1 (switch-2)
– Replication traffic uses eth2 (switch-3)
– Otherwise client traffic and repl share bandwidth !

● Increase bandwidth or decrease sharing
– Multiple httpds
– Port trunking
– Mod-jk domains

Mod-jk domains
mod-jk domain

JBossWeb

JBossWeb

JBossWeb

mod-jk domain

JBossWeb

JBossWeb

JBossWeb

mod-jk domain

JBossWeb

JBossWeb

JBossWeb

R
e
p

lic
a

tio
n

R
e

p
lic

at
io

n
R

e
p
lic

at
io

n

httpd

httpd

httpdLoad balancer

Load balancer
backup

Clients

DNS
round robin

Mod-jk domains
● Independent bouncing of domains
● Graceful draining of sessions

– Apache 'status' application to gracefully take a
domain down (drains HTTP sessions)

● With or without total replication
● Less contention
● Mod-jk: standby servers

– Take part in replication, but no requests are sent
– Can be activated on more load, are fully hot
– Only works with total replication

Outlook: mod-cluster

● Dynamic discovery (no workers.props anymore)
● Session creation based on actual load

– Load computation pluggable
● CPU, number of HTTP sessions, total number of attrs

over all sessions, bytes accessed and so on...

● JBossCache partitioning
– Splitting huge sessions across cluster

Links and Q&A

● References
– AS Clustering: http://labs.jboss.com/jbossclustering/

– JBoss Cache: http://labs.jboss.com/jbosscache/

– JGroups: http://labs.jboss.com/jgroups/

– http://www.jboss.org/wiki/Wiki.jsp?page=UsingMod_jk1.2WithJBoss

● Questions?

http://labs.jboss.com/jbosscache/
http://labs.jboss.com/jgroups/
http://www.jboss.org/wiki/Wiki.jsp?page=UsingMod_jk1.2WithJBoss

